

Towards a 10-fold improved measurement of the antiproton magnetic moment

Bela Peter Arndt

Institutes: **MPIK, GSI, RIKEN** 2024 / 07 / 09

SE Matter-Antimatter Asymmetry

Estimated matter-energy content of the Universe

Antimatter	

<1e-5 %

Matter 4.9 %

Dark matter 26.8 %

Dark energy 68.3 % Sakharov conditions

B-violation (plausible)
CP-violation (observed / too small)

3.) Arrow of time (less motivated)

[2]

Alternative Source: CPT violation – adjusts matter/antimatter asymmetry by natural inversion given the effective chemical potential.

Naive Expectation		Observation	
Baryon/Photon Ratio	10-18	Baryon/Photon Ratio	0.6 * 10 ⁻⁹
Baryon/Antibaryon Ratio	1	Baryon/Antibaryon Ratio	10 000

[1] Peplow, Mark. "Planck telescope peers into primordial Universe." Nature (2013).

[2] Charlton, Michael, Stefan Eriksson, and Graham M. Shore. Antihydrogen and fundamental physics. Cham: Springer, 2020.

Direct measurement via invariance theorem

$$\omega_c = \sqrt{\omega_+^2 + \omega_-^2 + \omega_z^2} = \frac{qB}{m}$$

Compare protons and antiprotons

$$\frac{\omega_{c,\bar{p}}}{\omega_{c,p}} = \frac{e_{\bar{p}}/m_{\bar{p}}}{e_{p}/m_{p}}$$
$$\frac{(q/m)_{\bar{p}}}{(q/m)_{p}} + 1 = -3(16) \times 10^{-12} \text{ 16ppt [3]}$$

4 Schneider, Georg, et al. "Double-trap measurement of the proton magnetic moment at 0.3 parts per billion precision." *Science* 358.6366 (2017): 1081-1084. 5 Smorra, Ch, et al. "A parts-per-billion measurement of the antiproton magnetic moment." *Nature* 550.7676 (2017): 371-374.

- 1. Spin state is initialized (AT) // ω_c is measured (PT)
- 2. Transport
- 3. Larmor excitation
- 4. Transport
- 5. Spin state detection // ω_c measurement (PT)

SE Understanding Systematic Errors

Table 1 | Error budget of the antiproton magnetic momentmeasurement

Effect	Correction (p.p.b.)	Uncertainty (p.p.b.)		Shift related to: mT
Image-charge shift Relativistic shift Magnetic gradient	0.05 0.03 0.22	0.001 0.003 0.020		
Magnetic bottle Trap potential	0.12	0.009		$B_1 = 71.2(4) \ \overline{m^2}$
Voltage drift Contaminants	0.04	0.020		Shift related to: m^T
Drive temperature	0.00	0.970		$B_2 = 2740(220) \ \frac{m^2}{m^2}$
Spin-state analysis	0.00	0.130	-	Dominant error contribution!
	0.44	1.020	[5]	

Decoherence due to line width parameter
$$\omega_c = \frac{q}{m} B_0 \left(1 + \frac{B_2 E_z}{B_0 m \omega_z^2} \right)$$

5 Smorra, Ch, et al. "A parts-per-billion measurement of the antiproton magnetic moment." *Nature* 550.7676 (2017): 371-374.

Hardware Upgrades

Upgrade	Effect	Reduction
Superconducting -shiming coils	Residual B2	1000 fold
Superconducting -shield coils	Magnetic field fluctuations	50-100 fold
New trap stack including a dedicated cooling trap	Measurement time	Cooling time reduced by a factor of 25
Phase sensitive ω_+ measurement	Decreased ω_+ scatter	Philip Geissler Poster

Cooling Trap

Outer layer: Self shielding coils

Inner layer: Shiming coils for B2 and B1

SE Reduction of the Resonance Linewidth

Thinner linwidth-> more systematics

The shifts $\Delta \omega_z$, $\Delta \omega_+$, $\Delta \omega_c$ dominated by

Particles are not similar: Larmor particle: low E_+, E_- Cyclotron particle: high E_+, E_-

terms that scale with

 $(g_{\exp}-g_0)/g_0+\delta$

B-field contributions Potential contributions Mixing term relativistic and more $\left|\frac{1}{4\pi^2 m v_z^2} \left[\left(\frac{B_1}{B_0}\right)^2 + \left(\frac{v_z}{v_+}\right)^4 \right] \right]$ $\frac{9v_z^2}{16\pi^2 m v_+^4} \frac{C_3^2}{C_2^2} +$ $\frac{3}{4qV_0}\frac{C_4}{C_2^2}\left(\frac{v_z}{v_+}\right)$ $\left(\frac{B_2}{B_0}\right)$ $2C_3B_1$ $\boldsymbol{v}_+(\boldsymbol{E}_+) = \boldsymbol{v}_+(\boldsymbol{0}) \big\{ \boldsymbol{1}$ *C*₃ B_1 , B_2 *C*₄ B_{1}, C_{3} asymmetric 10

BSE Manipulate Potentials

BSE Tuning Ratio Optimisation

Axial frequency is energy dependent

$$\frac{\Delta v_z}{v_z} \propto \left(\frac{C_4}{C_2^2} - \frac{5}{4}\frac{C_3^2}{C_2^3} + \cdots\right)E_z \to 0$$

Not optimised:

Energy distribution smears out signal → low signal-to-noise ratio

Optimised:

Frequency independent of E_z \rightarrow high signal-to-noise ratio

Centering the Particle

- 1. Vary a correction electrode
- 2. Optimise tuning ratio
- 3. Find the trap center at ring voltage maximum

But: This does not get rid of C_3 !

Simulate and fit different endcap offset to the data:

$$C_3 \text{ simulation} = 22900 \pm 2500 \frac{V}{m^3}$$

Direct Measurement of C3

Recall: E_z axial shift optimisation:

Vary tuning ratio \rightarrow

Optimise the SNR

 v_{z}

 E_{-} axial shift optimisation:

Excite magnetron mode externally \rightarrow

Measure energy dependent shift Δv_z

$$\frac{\Delta v_Z}{v_Z} \propto \left(\frac{C_4}{C_2^2} - \frac{5}{4}\frac{C_3^2}{C_2^3} + \cdots\right)E_Z \to 0$$

Combine measurements to get C_3 independent of C_4

Resulting offset C_3 in the Base 2024 g-factor run: 22500 \pm 2200 V/m^3

Systematic Errors

- C_3 leads to:
- Direct systematic shifts
- Increase residual C₄
- Increased v_z , v_+ scatter

Small effects <10 ppt error

BUT Faulty B_2 evaluation \rightarrow reduced coherence time

Controlling assymetry is crucial to perform sub 100 ppt g-factor experiments!

Thanks for your attention

Std. scatter =
$$X_0(B_2) + X_1(B1)c_3 + X_3c_3^2$$

Background gaussian scatter axial : 33.5 mHz Resonator temperature: 48 K

18

$$v_{z}(E_{+}) = v_{z}(0) * \left\{ 1 + \left(-\frac{1}{2mc^{2}} + \frac{1}{4\pi^{2}mv_{z}^{2}} \frac{b_{2}}{b_{0}} + \frac{3}{4qV_{0}} \left[-\frac{c_{4}}{c_{2}^{2}} \left(\frac{v_{z}}{v_{+}} \right)^{2} + \frac{3}{2} \frac{c_{3}^{2}}{c_{2}^{3}} \left(\frac{v_{z}}{v_{+}} \right)^{2} - \frac{c_{3}b_{1}}{c_{2}^{2}b_{0}} \right] \right\} \dots \right\} E_{+}$$

1. Solve Laplace with given geometry ^[1] $\Delta \phi(\rho, z) = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial}{\partial \rho} \phi(\rho, z) \right) + \frac{\partial^2}{\partial z^2} \phi(\rho, z) = 0$

- 2. Calculate potential coefficient of each electrode
- 3. Optimise for different endcap offsets

[1] Ulmer, Stefan. First observation of spin flips with a single proton stored in a cryogenic Penning trap. Diss. Ruprecht-Karls-Universität Heidelberg, Germany, 2011.

- Update plots
- First slide money hierarchy
- Physics scope
- Align presentation: capital letters/slide nr etc
- Additional slides