- Custom built high-Q resonators allow precise determination of ω_z and sidebands of ω_- and ω_+
- resonators at ω_+ only at much lower Q
- ω_- sufficiently precisely measured with SB method

 $\sigma(\omega_c) \approx \sigma(\omega_+)$!

Phase-sensitive modified cyclotron Frequency Measurements with a single trapped Antiproton

P. Geißler⁰, B. P. Arndt^{2,4}, F. Abbass¹, I. Ahrens¹, J. Devlin^{0,3}, S. Erlewein^{0,2,3}, T. Imamura⁷, J. Jaeger^{2,3}, B. M. Latacz³ M. Leonhardt¹, P. Micke^{0,2,4}, D. Popper^{1,8}, F. Völksen¹, C. Will², E. Wursten⁰, H. Yildiz⁸, K. Blaum², Y. Matsuda⁶ A. Mooser^{0,2}, C. Ospelkaus^{5,7}, W. Quint⁴, A. Soter¹⁰, J. Walz^{8,9}, Y. Yamazaki⁰, C. Smorra^{0,1} and S. Ulmer^{0,1}

⁰Ulmer Fundamental Symmetries Laboratory, RIKEN, Japan, ¹Heinrich Heine University, Düsseldorf, Germany, ²Max Planck Institute for Nuclear Physics, Heidelberg, Germany, ³CERN, Geneva, Switzerland, ⁴GSI Darmstadt, ⁵Leibniz Univeristät Hannover, Germany, ⁶University of Tokyo, Japan, ⁷PTB Braunschweig, Germany, ⁸Johannes Gutenberg Universität, Mainz, Germany, ⁹Helmholtz Institute Mainz, Germany, ¹⁰ETH Zürich, Switzerland

Acknowledgements

• p and \bar{p} magnetic moment relative to the (anti-)nuclear magnetron

> Financial support by RIKEN, the Max Planck Society, CERN, HHU Düsseldorf, Mainz, Hannover, Heidelberg, PTB Braunschweig, DFG, and the Max-Planck/RIKEN/PTB Center for Time, Constants and Fundamental Symmetries

References

[1] C. Smorra et al., EPJ ST **224**, 3055 (2015) [2] M. Borchert et al., Nature **601**, 53 (2022) [3] G. Schneider et al., Science **358**, 1081 (2017) [4] C. Smorra et al., Nature **239**, 47 (2017)

[5] L. S. Brown et al., RMP **58**, 233 (1986) [6] M. Borchert, PhD Thesis (2021) [7] S. Sturm et al., PRL **107**, 143003 (2011) [8] E. A. Cornell et al., PRA **41**, 312 (1990)

Motivation

t si

€

FREEX

 $\frac{1}{2}$

READ

RRIKEN

Dhu

Considerations in Phase Method Implementation

- Cyclotron resonator limited in Q-value, potential dip too thin to detect at $\Delta\omega_{+,\text{dip}} \sim 20$ mHz, and SNR lower (10 dB) than axial (20 dB)
- Induce peak in LSD by exciting particle on ω_{+} resonator
- $U_{\text{Res}} = RI_{\overline{p}}$ \rightarrow stronger signal at resonator resonance frequency
- advantage: direct measurement
- problem: inhomogeneous $\vec{B}(\vec{r})$
	- high E_+ \rightarrow high r_+ \rightarrow systematic shifts in ω_+
	- high $E_+ \to h$ igh $\sigma(E_+) \to h$ igh $\sigma(r_+) \to$ increased scatter in ω_+
- recording requires particle energy loss (energy decay exponential)
	- upper limit in single shot FFT timespan

Measurements at BASE CERN [1]

• p and \bar{p} **charge-to-mass ratio** relative to each other to remove B dependence $(H^-$ used instead of p due to opposite charge)

- $\Delta g_{\overline{p}} \gtrsim \Delta \omega_{c,\overline{p}} \gg \Delta \omega_{L,\overline{p}}$
- $\Delta \omega_{L,\overline{p}} \approx$??? (coherence limited)
- $\Delta \omega_{c,\overline{p}} \approx$???

- $\phi \in \mathbb{R}/2\pi\mathbb{Z} \neq \mathbb{R}$ \rightarrow phase jumps
- remove jumps by *unwrapping* • unstable at low phase SNR
- in optimized 5-pole penning trap, TR determined in advance and $V_r = V_r(f_{z,resonator}, TR)$
- scan TR around canonical point to minimize phase scatter
- $X(z) = X_0 + X_1 z + X_2 z^2 + X_3 z^3$... compensated $B_1, B_2, ...$ and Φ_1 , Φ_3 , Φ_4 , ... minimizes phase scatter FFT acquisition start, length and f_S decreasing particle cool drive time increases phase measurement rate

• repeating variations in measured phase currently limiting phase meas. to \approx 3 ppb

Peak Method ω_+ **Phase Method** [8] ω_+

- $\Delta \phi = \omega_+ \Delta t$, allowing frequency fit of ω_+ from $\Delta \phi$ information
- Excite particle with from ω_+ *detuned* resonator, knowing inital phase
- Rabi coupling for $\frac{1}{2}$ $\frac{1}{2}T_{\rm Rabi} \sim \sqrt{P_{\rm RF}}$ imprints ω_+ phase onto $\omega_{\rm Z}$ phase
- Axial phases are able to be determined via FFT of decaying axial peak
- Advantages: method allows long particle evolution at constant E_{+}
- Problems / limits:
	- inital phase scatter from cyclotron excitation procedure
	- systematic frequency shifts from high energy cyclotron mode
- frequency drifts due to magnetic field drift
- frequency aliasing due to limited sampling frequency span f_s

Implementation Diagram

all instruments referenced to high precision Rb clock to avoid phase drifts • drive outputs both gated *and* externally switched, minimizing crosstalk

Timing Sequence

- excite ω_+ , evolve, couple at $\omega_+ \omega_z$, acquire, cool $\phi(t_{\text{evo}}) = \omega_{+} t_{\text{evo}} + \phi_{0}$ (ϕ_{0} unknown, but constant)
- locked phases $\sim 1/T_{\rm pulse}$ | f_{LO} , $1/T_{\rm pulse}$ | $f_{S,\rm FFT}$

FFT Acquisition

- axial signal decays exponentially, noise const. • $\tau_A = 180 \text{ ms} \rightarrow t_{\text{opt}} = 225 \text{ ms} \approx 256 \text{ ms}$
- expected maximum SNR of approximately 5
- unwindowed FFT minimzes NENBW
- axial peak centered in one bin for maximum SNR
- **SNR** proportional to $\sqrt{f_S}$

Phase Unwrapping

Optimizations

Limits

systematic ω_+ shifts from B₁, B₂, ... $\neq 0$ • increases at higher E_{+}

- phase scatter after excitation $\sigma(E_+) \approx \sqrt{2E_{+,0}E_{+,\text{exc}}}$
- increases with initial T_+ and $B_1, B_2, ... \neq 0$
- acquisition noise phase scatter
- \cdot decreases at higher E_{+} and increases for $\Phi_1, \Phi_3, \Phi_4, ... \neq 0$ due to axial peak broadening • Magnetic Field Drift \sim 40 ppb/day • AD magnet ramping \sim 400 ppb/min when on!

-
- Solution: treat phases in $\mathbb C$
- Direct helix fit is susceptible to convergence into local minima
- FFT for init. ω_+ estimation

Outlook

- upper SB coupling at $\omega_+ + \omega_z$ for increased SNR at the cost of even larger systematics (PnA [7]) • systematic corrections to reach consistency
- with sideband and peak methods
- with sideband and peak mediums

subsequent improved measurements of $g \& q_{\overline{p}}/m_{\overline{p}}$ 0.2
- direct axial phase methods in high- B_2 analysis trap

Determining $\omega_{c,\overline{p}}$

• BASE uses Penning traps to confine particles [5]