
• BASE uses Penning traps to confine particles [5]

• 𝝎𝒄 = 𝝎+
𝟐 + 𝝎𝒛

𝟐 + 𝝎−
𝟐, 𝝎+ ≫ 𝝎𝒛 ≫ 𝝎−

• Custom built high-Q resonators allow precise
determination of 𝝎𝒛 and sidebands of 𝝎− and 𝝎+

• resonators at 𝝎+ only at much lower Q
• 𝝎− sufficiently precisely measured with SB method
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Motivation
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Considerations in Phase Method Implementation

Determining 𝝎𝒄,𝒑
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Modified cyclotron
𝝂+

0

k

k

V
V
V

𝐵

Φ 𝜌, 0

(𝑞/𝑚)pഥ

(𝑞/𝑚)p
+1 = −3 16 × 10−12 16ppt [2]

𝑔𝑝

2
= 2.792 847 344 62 82 0.3ppb [3]

𝑔𝑝ഥ

2
= 2.792 847 344 1(42) 1.5ppb [4]

Measurements at BASE CERN [1]
• 𝑝 and 𝑝̅ charge-to-mass ratio

relative to each other to remove 𝐵 dependence
(𝐻− used instead of 𝑝 due to opposite charge)
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• 𝑝 and 𝑝̅ magnetic moment
relative to the (anti-)nuclear magnetron

• Δ𝑔𝑝 ≳ Δ𝜔𝑐,𝑝 ≫ Δ𝜔𝐿,𝑝
• Δ𝜔𝐿,𝑝 ≈ ??? (coherence limited)
• Δ𝜔𝑐,𝑝 ≈ ???

𝝈 𝝎𝒄 ≈ 𝝈 𝝎+ !

Sideband Method + Phase Method [8] +Peak Method +
• Single Dip

• low energy particle thermally coupled to a parallel RCL resonator
• Johnson noise in resonator causes LSD ~ 4kBT Re[𝑍 𝜔 ] noise
• around the particles axial resonance frequency 𝜔𝑧, the particle

shorts the noise, acting as a serial RCL resonator with a greater Q
• no energy transfer due to random phase, but thermalization

• Double Dip
• using prior knowledge of 𝜔+/− , radiating 𝜔𝑅𝐹 ≈ 𝜔+/− ∓ 𝜔𝑧

Rabi-couples axial with other mode
• then 𝜔+/− can be determined via 𝜔+/− = 𝜔𝑅𝐹 ± 𝜔𝑙 ± 𝜔𝑟 ∓ 𝜔𝑧

(optimal conditions) 𝜎+,𝑆𝐵 ≈ 𝟏. 𝟒𝟔 𝐩𝐩𝐛 ~ 1 𝑇⁄ (avg)

• Cyclotron resonator limited in Q-value, potential dip too thin to detect
at Δ𝜔+,dip ~ 20 mHz, and SNR lower (10 dB) than axial (20 dB)

• Induce peak in LSD by exciting particle on 𝜔+ resonator
• 𝑈Res = 𝑅𝐼𝑝  stronger signal at resonator resonance frequency
• advantage: direct measurement
• problem: inhomogeneous B 𝑟

• high 𝐸+  high 𝑟+  systematic shifts in 𝜔+
• high 𝐸+  high 𝜎(𝐸+)  high 𝜎(𝑟+)  increased scatter in 𝜔+

• recording requires particle energy loss (energy decay exponential)
• upper limit in single shot FFT timespan

(optimal conditions) 𝜎+,𝑃𝐾 ≈ 𝟎. 𝟓 𝐩𝐩𝐛 ~ 1 𝑇⁄ (avg.)
(optimal conditions) 𝜎+,𝑃𝐾 ≈ 𝟎. 𝟐𝟒 𝐩𝐩𝐛 ~ 𝟏 𝑻⁄ (evolve) [6]

(current progress) 𝜎+,𝑃𝐾 ≈ 𝟑 𝐩𝐩𝐛 (AD limited)

• Δ𝜙 = 𝜔+Δ𝑡, allowing frequency fit of 𝜔+ from Δ𝜙 information
• Excite particle with from 𝜔+ detuned resonator, knowing inital phase
• Rabi coupling for 1

2𝑇Rabi ~ 𝑃RF imprints 𝜔+ phase onto 𝜔𝑧 phase
• Axial phases are able to be determined via FFT of decaying axial peak
• Advantages: method allows long particle evolution at constant 𝐸+
• Problems / limits:

• inital phase scatter from cyclotron excitation procedure
• systematic frequency shifts from high energy cyclotron mode
• frequency drifts due to magnetic field drift
• frequency aliasing due to limited sampling frequency span fS

proton g-factor resonance

Implementation Diagram

Timing Sequence
• excite 𝜔+, evolve, couple at 𝜔+ − 𝜔𝑧, acquire, cool
• 𝜙 𝑡evo = 𝜔+𝑡ev𝑜 + 𝜙0 (𝜙0 unknown, but constant)
• locked phases -> 1 𝑇pulse⁄ | 𝑓𝐿𝑂, 1 𝑇pulse⁄ | 𝑓𝑆,FFT

• all instruments referenced to high precision Rb clock to avoid phase drifts
• drive outputs both gated and externally switched, minimizing crosstalk

FFT Acquisition
• axial signal decays exponentially, noise const.

• 𝜏𝐴 = 180 ms  𝑡opt = 225 ms ≈ 256 ms
• expected maximum SNR of approximately 5

• unwindowed FFT minimzes NENBW
• axial peak centered in one bin for maximum SNR
• SNR proportional to fS

Phase Unwrapping
• 𝜙 ∈ ℝ 2𝜋ℤ⁄ ≄ ℝ  phase jumps
• remove jumps by unwrapping

• unstable at low phase SNR
• Solution: treat phases in ℂ
• Direct helix fit is susceptible to

convergence into local minima
• FFT for init. 𝜔+ estimation

Optimizations
• in optimized 5-pole penning trap,

TR determined in advance and
Vr = Vr(𝑓𝑧,resonator, TR)
• scan TR around canonical

point to minimize phase scatter
• X z = X0 + X1z + X2z2 + X3z3 …

compensated B1, B2, … and Φ1,
Φ3, Φ4, … minimizes phase scatter

• FFT acquisition start, length and fS
• decreasing particle cool drive time

increases phase measurement rate

Limits
• systematic 𝜔+ shifts from B1, B2, … ≠ 0

• increases at higher E+
• phase scatter after excitation 𝜎 𝐸+ ≈ 2𝐸+,0𝐸+,exc

• increases with initial 𝑇+ and B1, B2, … ≠ 0
• acquisition noise phase scatter

• decreases at higher E+ and increases for
Φ1, Φ3, Φ4, … ≠ 0 due to axial peak broadening

• Magnetic Field Drift ∼ 40 ppb day⁄
• AD magnet ramping ∼ 400 ppb min⁄ when on!

• repeating variations in measured phase
currently limiting phase meas. to ≈ 3 ppb

evolution time = 2500 ms         evolution time = 2 ms

P𝑒𝑥𝑐 in dBm P𝑒𝑥𝑐 in dBm

Outlook
• upper SB coupling at 𝜔+ + 𝜔𝑧 for increased SNR

at the cost of even larger systematics (PnA [7])
• systematic corrections to reach consistency

with sideband and peak methods
• subsequent improved measurements of 𝑔 & 𝑞𝑝 𝑚𝑝⁄
• direct axial phase methods in high-B2 analysis trap
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