Phase-sensitive modified cyclotron Frequency Measurements with a single trapped Antiproton

P. Geißler⁰, B. P. Arndt^{2,4}, F. Abbass¹, I. Ahrens¹, J. Devlin^{0,3}, S. Erlewein^{0,2,3}, T. Imamura⁷, J. Jaeger^{2,3}, B. M. Latacz³ M. Leonhardt¹, P. Micke^{0,2,4}, D. Popper^{1,8}, F. Völksen¹, C. Will², E. Wursten⁰, H. Yildiz⁸, K. Blaum², Y. Matsuda⁶ A. Mooser^{0,2}, C. Ospelkaus^{5,7}, W. Quint⁴, A. Soter¹⁰, J. Walz^{8,9}, Y. Yamazaki⁰, C. Smorra^{0,1} and S. Ulmer^{0,1}

⁰Ulmer Fundamental Symmetries Laboratory, RIKEN, Japan, ¹Heinrich Heine University, Düsseldorf, Germany, ²Max Planck Institute for Nuclear Physics, Heidelberg, Germany, ³CERN, Geneva, Switzerland, ⁴GSI Darmstadt, Germany, ¹ ⁵Leibniz Univeristät Hannover, Germany, ⁶University of Tokyo, Japan, ⁷PTB Braunschweig, Germany, ⁸Johannes Gutenberg Universität, Mainz, Germany, ⁹Helmholtz Institute Mainz, Germany, ¹⁰ETH Zürich, Switzerland

Motivation

- **Measurements at BASE CERN [1]**
- p and \bar{p} charge-to-mass ratio relative to each other to remove *B* dependence $(H^{-} \text{ used instead of } p \text{ due to opposite charge})$

• p and \bar{p} magnetic moment relative to the (anti-)nuclear magnetron

Determining $\omega_{c,\overline{p}}$

• BASE uses Penning traps to confine particles [5]

- $\Delta g_{\overline{p}} \gtrsim \Delta \omega_{c,\overline{p}} \gg \Delta \omega_{L,\overline{p}}$
- $\Delta \omega_{L,\overline{p}} \approx ???$ (coherence limited)
- $\Delta \omega_{c,\overline{p}} \approx ???$

$\frac{g_p}{2} =$	2.792	847	344	62(82)	0.3ppb	[3]
$\left(\frac{g_{\overline{p}}}{2}=\right)$	2.792	847	344	1(42)	1.5ppb	[4]

- Custom built high-Q resonators allow precise determination of ω_z and sidebands of ω_- and ω_+
- resonators at ω_+ only at much lower Q
- ω_{-} sufficiently precisely measured with SB method

 $\sigma(\omega_c) \approx \sigma(\omega_+)!$

	Sideband Method ω_+	Peak Method ω_+	Phase Method [8] ω_+	
periment	 Single Dip low energy particle thermally coupled to a parallel RCL resonator Johnson noise in resonator causes LSD ~ √4k_BT Re[Z(ω)] noise around the particles axial resonance frequency ω_z, the particle shorts the noise, acting as a serial RCL resonator with a greater Q no energy transfer due to random phase, but thermalization Double Dip using prior knowledge of ω_{+/-}, radiating ω_{RF} ≈ ω_{+/-} ∓ ω_z Rabi-couples axial with other mode then ω_{+/-} can be determined via ω_{+/-} = ω_{RF} ± ω_l ± ω_r ∓ ω_z 	 Cyclotron resonator limited in Q-value, potential dip too thin to detect at Δω_{+,dip} ~ 20 mHz, and SNR lower (10 dB) than axial (20 dB) Induce peak in LSD by exciting particle on ω₊ resonator U_{Res} = RI_p → stronger signal at resonator resonance frequency advantage: direct measurement problem: inhomogeneous B(r) high E₊ → high r₊ → systematic shifts in ω₊ high E₊ → high σ(E₊) → high σ(r₊) → increased scatter in ω₊ recording requires particle energy loss (energy decay exponential) upper limit in single shot FFT timespan 	 Δφ = ω₊Δt, allowing frequency fit of ω₊ from Δφ information Excite particle with from ω₊ detuned resonator, knowing inital phase Rabi coupling for ¹/₂T_{Rabi} ~ √P_{RF} imprints ω₊ phase onto ω_z phase Axial phases are able to be determined via FFT of decaying axial peak Advantages: method allows long particle evolution at constant E₊ Problems / limits: inital phase scatter from cyclotron excitation procedure systematic frequency shifts from high energy cyclotron mode frequency drifts due to magnetic field drift frequency aliasing due to limited sampling frequency span f_S 	
netry EX	- 80 () - 85 - 90 - 90 - 95 - 95 - 95 - 100 V _I V _r	-110 () -115 Pige -120 Figure -125 -130 H -125 -130	bhase (rad) π bhase (rad) π bhase (rad) π bhase (rad)	

ETTA Züri () 2 Leibniz () 2 Universität () 2 Hannover

B

東京大学 Het Uwwasmrofe Toxoo

JG

RAIKEN

Considerations in Phase Method Implementation

Timing Sequence

- excite ω_+ , *evolve*, couple at $\omega_+ \omega_z$, acquire, cool • $\phi(t_{evo}) = \omega_+ t_{evo} + \phi_0$ (ϕ_0 unknown, but constant)
- locked phases -> $1/T_{pulse} | f_{LO}, 1/T_{pulse} | f_{S,FFT}$

Implementation Diagram

all instruments referenced to high precision Rb clock to avoid phase drifts • drive outputs both gated *and* externally switched, minimizing crosstalk

FFT Acquisition

- axial signal decays exponentially, noise const. • $\tau_A = 180 \text{ ms} \rightarrow t_{opt} = 225 \text{ ms} \approx 256 \text{ ms}$
- expected maximum SNR of approximately 5
- unwindowed FFT minimzes NENBW
- axial peak centered in one bin for maximum SNR
- SNR proportional to $\sqrt{f_S}$

Phase Unwrapping

- $\phi \in \mathbb{R}/2\pi\mathbb{Z} \simeq \mathbb{R} \rightarrow$ phase jumps
- remove jumps by *unwrapping* • unstable at low phase SNR

Optimizations

- in optimized 5-pole penning trap, TR determined in advance and $V_r = V_r(f_{z,resonator}, TR)$
- scan TR around canonical point to minimize phase scatter
- $X(z) = X_0 + X_1 z + X_2 z^2 + X_3 z^3 \dots$ compensated B_1, B_2, \dots and Φ_1 , Φ_3, Φ_4, \dots minimizes phase scatter FFT acquisition start, length and f_{S} decreasing particle cool drive time increases phase measurement rate

Limits

- systematic ω_+ shifts from $B_1, B_2, ... \neq 0$ • increases at higher E_+
- phase scatter after excitation $\sigma(E_+) \approx \sqrt{2E_{+,0}E_{+,exc}}$ • increases with initial T_+ and $B_1, B_2, \dots \neq 0$
- acquisition noise phase scatter
- decreases at higher E₊ and increases for $\Phi_1, \Phi_3, \Phi_4, \dots \neq 0$ due to axial peak broadening • Magnetic Field Drift $\sim 40 \text{ ppb/day}$ • AD magnet ramping $\sim 400 \text{ ppb/min when on!}$ • repeating variations in measured phase currently limiting phase meas. to $\approx 3 \text{ ppb}$

- Solution: treat phases in \mathbb{C}
- Direct helix fit is susceptible to convergence into local minima
- FFT for init. ω_+ estimation

Outlook

- upper SB coupling at $\omega_+ + \omega_z$ for increased SNR at the cost of even larger systematics (PnA [7])
- systematic corrections to reach consistency with sideband and peak methods
- subsequent improved measurements of $g \& q_{\overline{p}}/m_{\overline{p}}$
- direct axial phase methods in high-B₂ analysis trap

TC FS

References

[1] C. Smorra et al., EPJ ST **224**, 3055 (2015) [2] M. Borchert et al., Nature **601**, 53 (2022) [3] G. Schneider *et al.*, Science **358**, 1081 (2017) [4] C. Smorra *et al.*, Nature **239**, 47 (2017)

[5] L. S. Brown et al., RMP **58**, 233 (1986) [6] M. Borchert, PhD Thesis (2021) [7] S. Sturm et al., PRL **107**, 143003 (2011) [8] E. A. Cornell et al., PRA **41**, 312 (1990)

Acknowledgements

Financial support by RIKEN, the Max Planck Society, CERN, Mainz, Hannover, Heidelberg, HHU Düsseldorf, PTB Braunschweig, DFG, and the Max-Planck/RIKEN/PTB Center for Time, Constants and Fundamental Symmetries