

New Physics Searches with Highly Charged Ions Precision isotope shift measurements of Ca¹⁴⁺

Alexander Wilzewski

QUEST Institute for Experimental Quantum Metrology German Metrology Institute - PTB, Germany

ECCTI, Innsbruck, 11.07.2024

Why HCI?

- Highly charged ions (HCI) promising optical clock candidates ٠
- Properties useful for fundamental physics: ٠
 - strongly relativistic (QED tests)

H atom	H-like ion		
Linear Stark shift	Z^{-1}		
Second order Stark shift	Z^{-4}		
Linear Zeeman shift	Z^0		
Second order Zeeman shift	Z^{-34}		
Electric quadrupole shift	Z^{-2}		
Intrinsically less sensitive to external perturbations			

Kozlov et al., Rev. Mod. Phys 90, 045005 (2018)

Optical transitions in HCI

Level crossing transitions

FIG. 1. Dirac-Fock energies of the $6p_{1/2}$ (diamonds, dashed line), $6p_{3/2}$ (crosses, dot-dashed line), and 5f (circles, solid line) levels in the thallium isoelectronic sequence with increasing nuclear charge. The inset shows an enlarged view of the crossing region.

J. Berengut *et al.*, Phys. Rev. Lett. **109**, 070802 (2012)

(Hyper-)Fine structure transitions

HCI spectroscopy

HCI lab at PTB

Cryo cooler

Paul trap

Paul trap

Electron beam ion trap

HCI lab at PTB

 Dipole-allowed optical transitions for
laser cooling / electron shelving
→ Sympathetic cooling and quantum logic spectroscopy

[Schmidt et al., Science 309 (2005)]

Clock comparison

[Matei *et al.*, Phys. Rev. Lett. **118**, 263202 (2017)] [Filzinger *et al.*, Phys. Rev. Lett. **130**, 253001 (2023)]

- Yb⁺ absolute frequency is known with a fractional uncertainty of 1.3×10^{-16}
- Measurements to $\sim 1 \times 10^{-16}$ statistical uncertainty
- Systematic uncertainty at $\sim 5 \times 10^{-17}$

[S.A. King & L.J. Spieß et al., Nature 611, 43-47 (2022)]

Summary of systematic shifts

Shift source	Mitigation	$\begin{array}{c} \text{Shift} \\ (10^{-18}) \end{array}$	$\begin{matrix} \text{Uncertainty} \\ (10^{-18}) \end{matrix}$	
Micromotion	Real-time measurement	-605	< 50	ר
Probe-laser- induced shift	Calibration at much higher powers and extrapolation	0	2	no fundamental limitations
First-order Doppler	Counter-propagating beams	0	< 1	
Linear Zeeman	Averaging over multiple Zeeman components	0	< 1	Systematic uncertainty $\sim 5 \times 10^{-17}$
Quadratic Zeeman	Small coefficient, small field	< 1	≪ 1	
Electric quadrupole	Small coefficient, Averaging over multiple Zeeman components	0	< 1	
2 nd order Doppler	Algorithmic cooling	-1	< 1	

Isotope shifts in calcium

King plot including Ca¹⁴⁺ transition

For King plot analysis we combine our data with:

- Nuclear masses by group of Klaus Blaum at MPIK
- Isotope shift of ${}^2S_{1/2} \rightarrow {}^2D_{5/2}$ in Ca⁺ by group of Jonathan Home at ETH Zürich
- Find large nonlinearity of King plot
- Can still improve new physics constraints, analysis ongoing

Nonlinearity decomposition

Relate pattern of residuals to source of nonlinearity

- Relate patter of NL to its source **if factorizable**:
 - $\lambda_+ \propto$ zig-zag pattern
 - $\lambda_{-} \propto$ U-shape pattern
- Known SM nonlinearities in Ca:
 - Second-order recoil shift
 - Nuclear polarization Calculations for Ca¹⁴⁺ missing! [A. Viatkina *et al.*, PRL **108**, 022802 (2023)]

Summary and outlook

Summary

- Optical clock comparison between Ca¹⁴⁺ and Yb⁺ with statistical uncertainty of $\sim\!\!1\times10^{-16}$ and systematic uncertainty of $\sim\!\!5\times10^{-17}$
- Combination of Ca¹⁴⁺ IS data with new Ca⁺ IS data and nuclear masses reveal large nonlinearity

Outlook

- Decompose nonlinearity and see whether it can be fully explained by higher-order Standard Model terms
- Reduce systematic uncertainties, new Paul trap
- HCI optical clock based on Ni¹²⁺ which has a long-lived clock state
- HCI with high sensitivity to variations in fine-structure constant like Cf¹⁷⁺

[S. Chen et al., arXiv:2406.04015 (2024)

Acknowledgements

HCI Experiment

PTB: Piet O. Schmidt, Tobias Leopold, Peter Micke, Steven A. King, Lukas J. Spieß, AW, Malte Wehrheim, Shuying Chen

MPIK: José R. Crespo López-Urrutia, M.K. Rosner, N.H. Rehbehn

Yb⁺ Experiment

- Richard Lange
- Nils Huntemann
- Melina Filzinger
- Martin Steinel

Frequency comb

Erik Benkler

Nuclear masses

- Menno Door
- Klaus Blaum
- Diana CraikJeremy Flannery

Ca⁺ isotop shift

Luca Huber

- Roland Matt
- Jonathan Home

Theory

- Elina Fuchs
- Agnese Mariotti
- Jan Richter
- Julian Berengut
- Andrey Surzhykov
- Anna Viatkina
- Vladimir Yerokhin

Alexander von Humboldt Stiftung/Foundation

European Research Council Established by the European Commission