Towards quantum logic spectroscopy of polyatomic molecular ions

University $\sqrt{|\times|}$ of Basel

Mikhail Popov

Cold and Controlled Molecules and Ions Group

Early Career Conference in Trapped Ions 10.07.2024

Ultracold molecular ions

Cold molecules have numerous attractive applications:

- Molecular clocks
- Molecular qubits [1], qudits
- Tests of fundamental theories [2]
	- search of electron EDM
	- parity violation theories
	- drift of fundamental constants
- Verification of ab-initio calculations of molecular energy level structures
- \bullet Ultracold chemistry $^{[3]}$

[1] Yu, Phelan, et al. "A scalable quantum computing platform using symmetric-top molecules." *New Journal of Physics* 21.9 (2019): 093049. [2] Cairncross, William B., et al. "Precision measurement of the electron's electric dipole moment using trapped molecular ions." *Physical review letters* 119.15 (2017): 153001. [3] Hutson, Jeremy M. "Ultracold chemistry." *Science* 327.5967 (2010): 788-789.

Quantum logic spectroscopy

The problem of molecular state control and detection can be solved with a quantum logic spectroscopy $(QLS)^{[1, 2]}$:

Control of molecular quantum state possess a serious challenge due to lack of closed optical cycling transitions.

- Molecular (*spectroscopic*) ion's state is mapped to its motional state
- Co-trapped atomic (*logic*) ion is used to read out joint motional state and therefore, state of the molecule.

[1] Schmidt, P. Oetal, et al. "Spectroscopy using quantum logic." *Science* 309.5735 (2005): 749-752. [2] Sinhal, Mudit, and Stefan Willitsch. "Molecular‐Ion Quantum Technologies." *Photonic Quantum Technologies: Science and Applications* 1 (2023): 305-332. [3] Deiß, Markus, Stefan Willitsch, and Johannes Hecker Denschlag. "Cold trapped molecular ions and hybrid platforms for ions and neutral particles." *Nature Physics* (2024): 1-9.

[3]

Polyatomic molecules

- So far QLS techniques were demonstrated only for diatomic molecules.
- Polyatomic molecules offer a new set of properties:

 $\frac{1}{4}$

- isomerism
- chirality
- parity doublet states

Polyatomic molecules: challenges

Moving to polyatomic molecules possess additional challenges:

- Complex and dense energy level spectrum
- Excitation of rovibrational states by a black body radiation on a timescale of few seconds^[1]
- Polyatomic molecular ions are highly reactive

A cryogenic environment is required to preserve prepared rovibrational state during experimentally relevant times.

Rates of collisions with background gas are strongly reduced due to cryopumping.

[1] Vilas, Nathaniel B., et al. "Blackbody thermalization and vibrational lifetimes of trapped polyatomic molecules." *Physical Review A* 107.6 (2023): 062802.

Experimental sequence

Experiment overview

7

Schematic representation of the previous generation

40Ca + used as an axillary ion for sympathetic cooling of N_2^+ and molecular state readout

Molecular ion state preparation

1 Molecular ions are produced in a chosen 2 state by a resonance enhanced multiphoton photoionisation^[1] (REMPI).

[1] Shlykov, Aleksandr, Mikolaj Roguski, and Stefan Willitsch. "Optimized Strategies for the Quantum-State Preparation of Single Trapped Nitrogen Molecular Ions." *Advanced Quantum Technologies* (2023): 2300268.

University
of Basel

Molecular ions are trapped inside a large Ca⁺ Coulomb crystal (~10s ions) and sympathetically Doppler cooled

A cold beam of molecules (~10K) is resonantly excited through an intermediate electronic state to the desired state of molecular ion with photons of two colors.

Ground-state cooling

1 The ion crystal is reduced to two ions 2 by lowering trap depth

The molecule is sympathetically cooled to the ground state by a resolved sideband cooling on Ca⁺

 $Ca⁺$ ion is shelved into $3D_{5/2}$ with m_1 = -5/2 state, which is less polarizable by the lattice laser.

Quantum logic spectroscopy protocol

10

● A running 1D optical lattice is created along the trap axis

● The lattice exerts an optical dipole force (ODT) on the molecular ion

$$
\vec{F}_{ODT} = -\vec{\nabla}(\Delta E_{AC})
$$

- The lattice is closely detuned from one of a dipole-allowed optical transitions starting from a rovibrational state of interest (a)
- The lattice is further detuned from all other transitions from the electronic ground state of the molecular ion (b)
- Lattice beams have a frequency mismatch equal to a normal mode frequency ω_t of the ion string.
- A motion of ions is coherently excited by ODF.
- An amplitude of the motional excitation is proportional to AC Stark shift induced by lattice beams and therefore is state dependent:

$$
\alpha \sim \Delta E_{AC}(\omega_l)
$$

● Since, lattice is non-resonant with molecular transitions, scattering, changing molecular state, can be minimized

Quantum logic spectroscopy protocol

Motional state readout

- Motional state detection is achieved by driving a blue sideband (BSB) on Ca⁺ clock transition.
- The transition can only occur, if ions were in an excited motional state (the molecule was in a state of interest).
- The state detection technique is general and can be applied to a wide range of molecules, including polyatomic ones.
- The technique doesn't alter state of the molecule during detection, which allows for in situ tracking of molecular collision and reaction dynamics.

Experimental setup

Experimental setup

14

Molecular beam machine

- Creation of molecular beam
- Spectroscopy of molecules in a beam

Science chamber

- Creation and cooling of molecular ions
- QLS
- Collision studies

Experimental setup: science chamber

In-vacuum imaging lens

Gold coated cryogenic ion trap with segmented electrodes

light tubes

Doppler cooling

Helical resonator is designed to provide 1 MHz radial motional frequency

REMPI Optical lattice

Ca ionisation

4K radiation shield

40K radiation shield

Experimental setup: imaging system

16

The imaging system consisting of two custom aspheric lenses was implemented.

The in-vacuum lens is movable by a piezo-positioner.

A pin-hole in an intermediate focus between 4K and 40K radiation shields limits room temperature BBR from outside.

Cryostat

- Cold environment is created by a 3 stage **ColdEdge Stinger** cryostat:
- 2 stage GM cryocooler
- Third stage is closed loop He flow line cooled by a second stage
- Cryocooler induced vibrations < 10 nm comparable with flow cryostats.
- 0.9W of cooling power at 4K stage.

Experimental setup: current progress

- Ion trapping setup is commissioned
- No radiation shields at the moment
- Minimum temperature achieved is 16K (expected below 10K with cryoshields)
- Cooling down time is about 6.5 hours
- First Ca+ ion crystals are trapped and Doppler cooled

Summary

- Quantum logic spectroscopy techniques can be extended to polyatomic molecules.
- Cryogenic environment is required to preserve a state of polyatomic molecules and their chemical identity on experimentally relevant timescales.
- A new cryogenic ion trapping setup for polar and polyatomic molecular ions is currently under development.

Acknowledgements

20

Prof. Dr. Stefan Willitsch

Georg Holderied

Cold and Controlled Molecules and Ions Group

Fine-mechanical workshop Philipp Knöpfel Grischa Martin

Nanditha Sunil Kumar

CryoQuTe team

Dr. Prerna Paliwal

Electronic workshop Laser engineer

Anatoly Johnson

Thank you for attention!