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Ultracold molecular ions
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Cold molecules have numerous attractive applications:

● Molecular clocks

● Molecular qubits [1], qudits

● Tests of fundamental theories [2]

○ search of electron EDM
○ parity violation theories
○ drift of fundamental constants

● Verification of ab-initio calculations of molecular 
energy level structures

● Ultracold chemistry [3]

[1] Yu, Phelan, et al. "A scalable quantum computing platform using symmetric-top molecules." New Journal of Physics 21.9 (2019): 093049.
[2] Cairncross, William B., et al. "Precision measurement of the electron’s electric dipole moment using trapped molecular ions." Physical review letters 119.15 (2017): 153001.
[3] Hutson, Jeremy M. "Ultracold chemistry." Science 327.5967 (2010): 788-789.

[1] [3] 
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Quantum logic spectroscopy
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Control of molecular quantum state possess a serious 
challenge due to lack of closed optical cycling 
transitions.

The problem of molecular state control and detection 
can be solved with a quantum logic spectroscopy 
(QLS)[1, 2]:

● Molecular (spectroscopic) ion’s state is mapped to its 
motional state

● Co-trapped atomic (logic) ion is used to read out joint 
motional state and therefore, state of the molecule.

[1] Schmidt, P. Oetal, et al. "Spectroscopy using quantum logic." Science 309.5735 (2005): 749-752.
[2] Sinhal, Mudit, and Stefan Willitsch. "Molecular‐Ion Quantum Technologies." Photonic Quantum Technologies: Science and Applications 1 (2023): 305-332.
[3] Deiß, Markus, Stefan Willitsch, and Johannes Hecker Denschlag. "Cold trapped molecular ions and hybrid platforms for ions and neutral particles." 
     Nature Physics (2024): 1-9.

[3]



Polyatomic molecules
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So far QLS techniques were demonstrated only for diatomic molecules.

Polyatomic molecules offer a new set of properties:

● isomerism

● chirality

● parity doublet states

Mirror



Polyatomic molecules: challenges
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Moving to polyatomic molecules possess additional 
challenges:

● Complex and dense energy level spectrum

● Excitation of rovibrational states by a black body 
radiation on a timescale of few seconds[1]

● Polyatomic molecular ions are highly reactive

A cryogenic environment is required to preserve 
prepared rovibrational state during experimentally 
relevant times.

Rates of collisions with background gas are strongly 
reduced due to cryopumping. 

[1] Vilas, Nathaniel B., et al. "Blackbody thermalization and vibrational lifetimes of trapped polyatomic molecules." Physical Review A 107.6 (2023): 062802.

[1]



Experimental sequence



Experiment overview
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Schematic representation of the previous generation 
experiment (N2

+)
40Ca+ used as an axillary ion for 
sympathetic cooling of N2

+ and 
molecular state readout



Molecular ion state preparation
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Molecular ions are produced in a chosen 
state by a resonance enhanced 
multiphoton photoionisation[1] (REMPI).

[1] Shlykov, Aleksandr, Mikolaj Roguski, and Stefan Willitsch. "Optimized Strategies for the Quantum‐State Preparation of Single Trapped Nitrogen Molecular Ions." 
Advanced Quantum Technologies (2023): 2300268.

Molecular ions are trapped inside a 
large Ca+ Coulomb crystal (~10s ions) 
and sympathetically Doppler cooled

A cold beam of molecules 
(~10K) is resonantly excited 
through an intermediate 
electronic state to the desired 
state of molecular ion with 
photons of two colors.

1 2
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Ground-state cooling
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The ion crystal is reduced to two ions 
by lowering trap depth

The molecule is 
sympathetically cooled 
to the ground state by a 
resolved sideband 
cooling on Ca+

Ca+ ion is shelved into 3D5/2 with
mJ= -5/2 state, which is less polarizable 
by the lattice laser.

1 2
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Quantum logic spectroscopy protocol
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● A running 1D optical lattice is created along the 
trap axis

● The lattice is closely detuned from one of a 
dipole-allowed optical transitions starting from a 
rovibrational state of interest (a)

● The lattice is further detuned from all other 
transitions from the electronic ground state of the 
molecular ion (b)

● The lattice exerts an optical dipole force (ODT) on 
the molecular ion



● Lattice beams have a frequency mismatch equal to a 
normal mode frequency ωt of the ion string.

● A motion of ions is coherently excited by ODF.

● An amplitude of the motional excitation is 
proportional to AC Stark shift induced by lattice 
beams and therefore is state dependent:

● Since, lattice is non-resonant with molecular 
transitions, scattering, changing molecular state, can 
be minimized

Quantum logic spectroscopy protocol
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Motional state readout
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● Motional state detection is achieved by driving 
a blue sideband (BSB) on Ca+ clock transition.

● The transition can only occur, if ions were in an 
excited motional state (the molecule was in a 
state of interest).

● The state detection technique is general and 
can be applied to a wide range of molecules, 
including polyatomic ones.

● The technique doesn’t alter state of the 
molecule during detection, which allows for in 
situ tracking of molecular collision and reaction 
dynamics.



Experimental setup



Experimental setup
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Molecular beam machine
● Creation of molecular beam
● Spectroscopy of molecules in a beam

Science chamber

● Creation and cooling of molecular ions
● QLS
● Collision studies



Experimental setup: science chamber
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In-vacuum imaging lens

Gold coated cryogenic 
ion trap with segmented 
electrodes

light tubes

Ca+ coherent control Optical lattice

Doppler cooling

REMPI

Helical resonator is 
designed to provide
1 MHz radial motional 
frequency

Optical lattice

Ca ionisation

4K radiation 
shield

40K radiation 
shield

Molecular 
beam



Experimental setup: imaging system
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The imaging system consisting of two custom aspheric lenses 
was implemented.

The in-vacuum lens is movable by a piezo-positioner.

A pin-hole in an intermediate focus between 4K and 40K 
radiation shields limits room temperature BBR from outside.

Parameter Value

Magnification 17.6

Collection NA 0.46

Total collection efficiency ~2%

Field of view (near-diffraction limited) 0.5 mm

Working distance 20 mm



Cryostat
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Cold environment is created by a 3 stage ColdEdge Stinger 
cryostat:

● 2 stage GM cryocooler

● Third stage is closed loop He flow line cooled by a second 
stage

Cryocooler induced vibrations < 10 nm - comparable with flow 
cryostats.

0.9W of cooling power at 4K stage.



Experimental setup: current progress
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● Ion trapping setup is commissioned

● No radiation shields at the moment

● Minimum temperature achieved is 16K (expected 
below 10K with cryoshields)

● Cooling down time is about 6.5 hours

● First Ca+ ion crystals are trapped and Doppler cooled



Summary
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● Quantum logic spectroscopy techniques can be extended to polyatomic 
molecules.

● Cryogenic environment is required to preserve a state of polyatomic 
molecules and their chemical identity on experimentally relevant 
timescales.

● A new cryogenic ion trapping setup for polar and polyatomic molecular 
ions is currently under development.
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