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• Mass Measurement: either measure 𝝎𝒄

OR measure 𝝎+ and 𝝎−

• Magnetic (B) field calibrated with 

measurement of well known mass 

𝜔𝑐 ≈ 𝜔− + 𝜔+

L. Brown et al.,  Phys. Rev. A, 25:2423-2425, (1982)



Facility for Rare Isotope Beams
U.S. Department of Energy Office of Science | Michigan State University
640 South Shaw Lane • East Lansing, MI 48824, USA
frib.msu.edu

An Overview of the Low Energy and Beam Ion Trapping 
(LEBIT) Facility

H. Erington, July 2024 ECCTI, Slide 5



Facility for Rare Isotope Beams
U.S. Department of Energy Office of Science | Michigan State University
640 South Shaw Lane • East Lansing, MI 48824, USA
frib.msu.edu

An Overview of the Low Energy and Beam Ion Trapping 
(LEBIT) Facility

H. Erington, July 2024 ECCTI, Slide 5

30 kV potential

Rare 

isotope 

beam

Off-line

Ion sources

Plasma Source

Laser Ablation RFQ cooler 

buncher

Switchyard 9.4 T magnet

TOF-ICR

PI-ICR

Cryocooler

Laser Ablation: C. Izzo et al., NIM B 376, 60 (2016)

Cooler/Buncher: Schwarz et al., NIM A 816, 131-141 (2016)

9.4 T Magnet: R. Ringle et al., Int. J. Mass Spec 349-350 (2013)

SIPT: A. Hamaker et al., Hyperfine Interact. 240, 34 (2019)



Facility for Rare Isotope Beams
U.S. Department of Energy Office of Science | Michigan State University
640 South Shaw Lane • East Lansing, MI 48824, USA
frib.msu.edu

An Overview of the Low Energy and Beam Ion Trapping 
(LEBIT) Facility

H. Erington, July 2024 ECCTI, Slide 5

30 kV potential

Rare 

isotope 

beam

Off-line

Ion sources

Plasma Source

Laser Ablation RFQ cooler 

buncher

Switchyard 9.4 T magnet

TOF-ICR

PI-ICR

Cryocooler

Laser Ablation: C. Izzo et al., NIM B 376, 60 (2016)

Cooler/Buncher: Schwarz et al., NIM A 816, 131-141 (2016)

9.4 T Magnet: R. Ringle et al., Int. J. Mass Spec 349-350 (2013)

SIPT: A. Hamaker et al., Hyperfine Interact. 240, 34 (2019)



Facility for Rare Isotope Beams
U.S. Department of Energy Office of Science | Michigan State University
640 South Shaw Lane • East Lansing, MI 48824, USA
frib.msu.edu

An Overview of the Low Energy and Beam Ion Trapping 
(LEBIT) Facility

H. Erington, July 2024 ECCTI, Slide 5

30 kV potential

Rare 

isotope 

beam

Off-line

Ion sources

Plasma Source

Laser Ablation RFQ cooler 

buncher

Switchyard 9.4 T magnet

TOF-ICR

PI-ICR

Cryocooler

Laser Ablation: C. Izzo et al., NIM B 376, 60 (2016)

Cooler/Buncher: Schwarz et al., NIM A 816, 131-141 (2016)

9.4 T Magnet: R. Ringle et al., Int. J. Mass Spec 349-350 (2013)

SIPT: A. Hamaker et al., Hyperfine Interact. 240, 34 (2019)



Facility for Rare Isotope Beams
U.S. Department of Energy Office of Science | Michigan State University
640 South Shaw Lane • East Lansing, MI 48824, USA
frib.msu.edu

Current Techniques at LEBIT: TOF-ICR and PI-ICR

H. Erington, July 2024 ECCTI, Slide 6

 Time-of-Flight Ion Cyclotron Resonance Phase-Image Ion Cyclotron Resonance



Facility for Rare Isotope Beams
U.S. Department of Energy Office of Science | Michigan State University
640 South Shaw Lane • East Lansing, MI 48824, USA
frib.msu.edu

Current Techniques at LEBIT: TOF-ICR and PI-ICR

H. Erington, July 2024 ECCTI, Slide 6

 Time-of-Flight Ion Cyclotron Resonance
• Measurement of 𝜔𝑐

Phase-Image Ion Cyclotron Resonance

G. Bollen et al., Journal Appl. Phys. 89, 4355-4374 (1990)
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 Time-of-Flight Ion Cyclotron Resonance
• Measurement of 𝜔𝑐

• Scan of quadrupolar radiofrequency (RF) 
excitation 

Current Techniques at LEBIT: TOF-ICR and PI-ICR

Both of these techniques are destructive  require tens to hundreds of ions

Phase-Image Ion Cyclotron Resonance
• Measure 𝜔+ and 𝜔− independently

• Allow each motion to accumulate phase (rotate) 
for set time 𝑡𝑎𝑐𝑐
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Systematics study

Complete a measurement with SIPT in the FRIB era
• 100Sn, 78Ni, 80Zr for nuclear structure studies

• Other regions of interest

Future Work
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Work will resume on SIPT in late 

July!

Minitrap



Facility for Rare Isotope Beams
U.S. Department of Energy Office of Science | Michigan State University
640 South Shaw Lane • East Lansing, MI 48824, USA
frib.msu.edu

Thank You!
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 LEBIT Group
• G. Bollen, S. Campbell, H. Erington, C. Ireland, F. Maier, R. Ringle

http://groups.nscl.msu.edu/lebit/
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Low Energy “Stopped” Beams from Projectile Fragmentation

Advanced Cryogenic Gas Stopper 

Low Energy Beam Ion Trap (LEBIT) Facility
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Ions

MCP in Daly 

Configuration

for TOF-ICR

7-T SIPT Magnet

Penning 

Trap

Cryogenic 

Cooling 

System

Major SIPT Components: Overview

Cryogenic

Detection 

Electronics

for FT-ICR

Injection 

Optics
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Main Components of SIPT

Filter Board and Cryogenic Amplifier

Penning Trap

600 μH NbTi Inductor

Superconducting ⪅ 6K

Injection Optics and Lorentz Steerers
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Investigating the Sensitivity Limits of SIPT

How do we determine the sensitivity of SIPT?
• SIPT only useful if single ions are resolvable

• Single ion signals expected very near noise level

• No means of knowing ion count going into trap

 Idea: aggregate simulated dataset
• Better account for statistical variations in each signal 

» >100k signals per set

• Use same properties except number of ions in trap

Poisson mean:
Ion number dist.

Signal

Amplitude
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