Probing the nuclear magnetic octupole moment of trapped Sr ions

<u>Pierre Lassègues</u>, Julien Grondin, Philip Imgram, Stefanos Pelonis, and Ruben de Groote

Department of Physics and Astronomy, Instituut voor Kern-en Stralingsfysica, KU Leuven, Belgium

Nuclear magnetic octupole moment

Exemple of electric field :

Electromagnetic multipole moments

Magnetic moment operators

 g_L, g_S : gyromagnetic ratios Y_j^0 : spherical harmonic of rank j g_L neutron = 0 g_L proton = 1

$$\mu = \widehat{M_1} = \sum_{j=1}^{A} \frac{\mu_N}{\hbar} \left(g_L^{(j)} \widehat{L_Z} + g_S^{(j)} \widehat{S_Z} \right)$$

Operator

$$\mathbf{Q} = \widehat{Q_2} = \sum_{j=1}^{A} g_L^{(j)} r_j^2 P_j(\theta_j) \text{ No } g_S^{(j)}, \text{ Proton only}$$

$$\Omega = \widehat{M_3} = \sum_{j=1}^{A} \frac{\mu_N}{\hbar} \left(\frac{1}{2} g_L^{(j)} \widehat{L_Z} + g_S^{(j)} \widehat{S_Z} \right) \cdot \vec{\nabla} \left(r_j^3 \sqrt{\frac{7}{4\pi}} Y_3^0(\theta_j, \varphi_j) \right)$$

Same g-factors!

Spatial wf information

Shell model

Atomic Shell Model

https://byjus.com/physics/shell-model/

Magic quantum numbers of nucleons (2, 8, 20, 28, 50, 82...) that are more tightly bound.

Nuclear Shell Model

Krane, Kenneth S. *Introductory nuclear physics*. Rev. ed. of *Introductory nuclear physics*/David Halliday. 2nd. ed. 1955.

6

⁷⁸Ni revealed as a doubly magic stronghold against nuclear deformation

R. Taniuchi,^{1,2} C. Santamaria,^{3,2} P. Doornenbal,²,^{*} A. Obertelli,^{3,2,4} K. Yoneda,² G. Authelet,³ H. Baba,² D. Calvet,³ F. Château,³ A. Corsi,³ A. Delbart,³ J.-M. Gheller,³ A. Gillibert,³ J.D. Holt,⁵ T. Isobe,²
V. Lapoux,³ M. Matsushita,⁶ J. Menéndez,⁶ S. Momiyama,^{1,2} T. Motobayashi,² M. Niikura,¹ F. Nowacki,⁷ K. Ogata,^{8,9} H. Otsu,² T. Otsuka,^{6,1,2} C. Péron,³ S. Péru,¹⁰ A. Peyaud,³ E.C. Pollacco,³ A. Poves,¹¹ J.-Y. Roussé,³ H. Sakurai,^{1,2} A. Schwenk,^{4,12,13} Y. Shiga,^{2,14} J. Simonis,^{15,4,12} S.R. Stroberg,^{5,16} S. Takeuchi,² Y. Tsunoda,⁶ T. Uesaka,² H. Wang,² F. Browne,¹⁷ L.X. Chung,¹⁸ Zs. Dombradi,¹⁹ S. Franchoo,²⁰ F. Giacoppo,²¹ A. Gottardo,²⁰ K. Hadyńska-Klęk,²¹ Z. Korkulu,¹⁹ S. Koyama,^{1,2} Y. Kubota,^{2,6} J. Lee,²² M. Lettmann,⁴ C. Louchart,⁴ R. Lozeva,^{7,23} K. Matsui,^{1,2} T. Miyazaki,^{1,2} S. Nishimura,² L. Olivier,²⁰ S. Ota,⁶ Z. Patel,²⁴ E. Şahin,²¹ C. Shand,²⁴ P.-A. Söderström,² I. Stefan,²⁰ D. Steppenbeck,⁶ T. Sumikama,²⁵ D. Suzuki,²⁰ Zs. Vajta,¹⁹ V. Werner,⁴ J. Wu,^{2,26} and Z.Y. Xu²²

Magnetic Octupole moment give information about **Nuclear shape** and **Nucleons distribution**

Magic quantum numbers of nucleons (**2**, **8**, **20**, **28**, **50**, **82**...) that are more tightly bound.

Magnetic octupole moments: sensitive probe

- Theoretical work based on density functional theory (DFT) calculations, for the Indium (Z=49) isotopic chain
- μ only drops 15% away from the closed N=82 (¹³¹In) shell, Ω drops by 70%

DFT calculations for In isotopic chain between *N*=50-82 [*J. Dobacewski*]

11

Neutron number

Measure the magnetic octupole moment of ⁸³⁻⁹³**Sr.** In doing so, probing the nuclear wavefunctions and magnetization of single-nucleon systems at the neutron shell N=50 (Sr).

⁸³ Sr	⁸⁴ Sr	⁸⁵ Sr	⁸⁶ Sr	⁸⁷ Sr	⁸⁸ Sr	⁸⁹ Sr	⁹⁰ Sr	⁹¹ Sr	⁹² Sr	⁹³ Sr
32,41h		64d				50d	28y	9,6h	2,6h	7,4m

Measure the magnetic octupole moment of ⁸³⁻⁹³**Sr.** In doing so, probing the nuclear wavefunctions and magnetization of single-nucleon systems at the neutron shell N=50 (Sr).

First Setup : Measurement on neutral Sr

Second Setup: Measurement on radioactive Sr

How to access it ?

How ? : Spectroscopy

How ? : Spectroscopy

17

To resolve magnetic Octupole moment contribution we need a **sub kHz resolution**

Spectroscopy of trapped ions

- Placing ions inside of a trap naturally yields longer interaction times (compared to Beamlines)
 - << kHz linewidths!
 - Eu: nontrivial atomic structure!
 - ⁴³Ca **g-factor!** (@ ~ 150 gauss) g and A at ppm level in one experiment!

O. Becker et al, PRA 48, 5 1993

Measurement scheme

Step 1 : Ionisation

Step 2 : Cooling

Step 3 : Preparation

An experimental precision of the order of 1-10 Hz is sufficient for a measurement of Ω with an experimental precision of 10%.

Step 5 : Detection

Magnetic Octupole moment give information about Nuclear shape and Nucleus distribution

Sub kHz resolution spectroscopy of Hyperfine structure to resolve it

Ideal measurement platform : Laser cooled ions in a linear Paul trap

Experimental setup

Experimental setup

DISCLAMER : Early Stage

Neutral Sr Trap

Linear Paul trap

- Testbench for spectroscopy methodology with stable atoms
- Design from quantum group @Weizman Institute

Laser systems

Vacuum chamber + imaging system

Laser systems

Vacuum chamber + imaging system

Laser systems

Vacuum chamber + imaging system

Fluorescence of atoms (not yet ions)

= test of atom source, lasers, detection and realtime imaging setup

The ionizing laser set is tested to ensure we make ion to trap. For this we put an ion detector (magneTOF) inside the vacuum chamber

- IP

405 nm

461 nm

► 5s, 5p

 $5s^2$

Fast-ions trap

Lead: P. Imgram→

Faraday cup

Lead:

39

MR-ToF

Lead: P. Imgram→

Faraday cup

40

Faraday cup

Ion Source

Lead: P. Imgram→

41

MR-ToF

MR-ToF

Faraday cup

Segmented trap

PhD Student : S. Pelonis

Final design of the Decelerator and Trap :

- •2 injection deceleration segments
- •An Einzel lens for additional focusing
- •The trap made of 8 pairs of segmented electrodes
- •A set of extraction optics

Segmented linear Paul trap with an increasing DC field along its z-axis

	-	_	_	_	_	_		-
-								
_	۲			and the second se			Contesisions	and and the local diversion of the
					and the second	A Second		

Final design of the Trap

Segmented linear Paul trap with an increasing DC field along its z-axis

Segmented linear Paul trap with an increasing DC field along its z-axis

Final design of the Trap

Simulation: laser cooling in <100 ms with 10 kV initial beam energy

⁹³Sr

7,4m

- Objective is to provide data on unexplored properties of radioactive isotopes, to probe the distribution of neutrons within the nucleus, to study fundamental properties of nucleons within the nuclear medium, and their internucleon forces.
- New methodology which relies on the measurement of magnetic octupole moments, never measured before for any radioactive species
- Experimental setups are in construction and progressing fast

Thank you

J.Grondin

S. Pelonis

P. Imgram

R. De Groote

Questions?

Supp material

Shell model

Atomic Shell Model

https://byjus.com/physics/shell-model/

magic quantum numbers of nucleons (2, 8, 20, 28, 50, 82, and 126) that are more tightly bound.

Krane, Kenneth S. *Introductory nuclear physics*. Rev. ed. of *Introductory nuclear physics*/David Halliday. 2nd. ed. 1955. 55

Nuclear Shell Model

- Magnetic dipole moments
- Electrical quadrupole moments and charge radii
 - provides a measure of the deformation and shape of the proton distribution of the nucleus
- Hyperfine anomaly
 - Relates to the distribution of magnetization inside nuclear volume
- Higher-order moments
 - Magnetic octupole, electric hexadecapole, ...

Magnetic octupole moments: sensitive probe

 Magnetic octupole moments display strong shell effects, stronger the dipole moments. calculated in Scandium (Z=21)

 The predicted value of Ω(⁴³Sc) is only about 50% of Ω(^{41,49}Sc), in contrast to a drop of only 20% for μ

Shell model calculations for Sc isotopic chain between *N*=20-28 [*C. Yuan*]

- Recoil temperature: $T_{min} = \frac{\hbar\Gamma}{2k_B}$
- Doppler broadening: $\delta\omega(\theta) = k\sqrt{2(1 - \cos\theta)k_BT/M}$

Measure the magnetic octupole moment of ⁸³⁻⁹³**Sr.** In doing so, probing the nuclear wavefunctions and magnetization of single-nucleon systems at the neutron shell N=50 (Sr).

Short term : Measurement on neutral Sr

Long term : Measurement on radioactive Sr

No Hyperfine structure

Why Strontium ?

Table 1: Transition characteristics for cooling for several Alkaline-earth ions (and Yb+)									
Characteristics	Ca+	Sr+	Ba+	Yb+	Ra+				
	$4S_{1/2} \rightarrow 4P_{1/2}$	$5S_{1/2} \rightarrow 5P_{1/2}$	$6S_{1/2} \rightarrow 6P_{1/2}$	$6S_{1/2} \rightarrow 6P_{1/2}$	$7S_{1/2} \rightarrow 7P_{1/2}$				
Wavelenght λ (nm)	397	422	$493,\!545$	369,5	468,224				
Excited state lifetime τ (ns)	6,9	$7,\!39$	$7,\!855$	8,1	$9,\!4$				
Natural linewidth $\Gamma = \frac{1}{\tau}$ (MHz)	144	135	127	123	106, 1				
Doppler temperature $T_{Dop}(\mu \mathbf{K})$	547	513	482	467	403				
Maximum deceleration $a_{max}(m \cdot s^{-2})$	$1,8\cdot 10^6$	$7,2\cdot 10^5$	$3,7\cdot10^5$	$3,82\cdot10^5$	$1,99\cdot 10^5$				
Optimum cooling velocity $v_c(m \cdot s^{-1})$	189	120	86	$87,\!40$	$63,\!08$				
Saturation intensity I_{sat} (mW.cm ⁻²)	$47,\! 6$	37,2	$21,\!9$	$50,\!6$	$21,\!5$				

Table 2: Transition wavelenght for repumping for several Alkaline-earth ions (and Yb+) previously cooled in an ion trap
CharacteristicsCa+Sr+Ba+Yb+Ra+ $3D_{3/2} \rightarrow 4P_{1/2}$ $4D_{3/2} \rightarrow 5P_{1/2}$ $5D_{3/2} \rightarrow 6P_{1/2}$ $5D_{3/2} \rightarrow {}^{3}D[3/2]_{1/2}$ $6D_{3/2} \rightarrow 7P_{1/2}$ Wavelenght λ (nm)866,2141092649,8699351078,796

Step 1 : Ionisation

Isotopic Abundance : ${}^{88}Sr : 82,6\%$ ${}^{87}Sr : 7\%$ ${}^{86}Sr : 9,6\%$ ${}^{84}Sr : 0,57\%$

Best chance of getting ${}^{87}Sr$ for a shift of Δf =-72.97 MHz with a 59% probability to excite 87SR () for a laser of 300 kHz width.

State detection using coherent Raman repumping and two-color Raman transfers

Boon Leng Chuah, Nick C. Lewty, and Murray D. Barrett

Center for Quantum Technologies and Department of Physics,

National University of Singapore, 3 Science Drive 2, 117543 Singapore

(Dated: October 27, 2018)

We demonstrate state detection based on coherent Raman repumping and a two-color Raman state transfer. The Raman coupling during detection selectively eliminates unwanted dark states in the fluorescence cycle without compromising the immunity of the desired dark state to off-resonant scattering. We demonstrate this technique using ¹³⁷Ba⁺ where a combination of Raman coupling and optical pumping leaves the $D_{3/2} | F'' = 3, m''_F = 3 \rangle$ metastable state optically dark and immune to off-resonant scattering. All other states are strongly coupled to the upper $P_{1/2}$ levels. We achieve a single shot state-detection efficiency of 89.6(3)% in a 1ms integration time, limited almost entirely by technical imperfections. Shelving to the $| F'' = 3, m''_F = 3 \rangle$ state before detection is performed via a two-color Raman transfer with a fidelity of 1.00(3).

