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Electroweak Structure of Nuclei
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𝑯 = 𝑯𝒔 +𝑯𝑬𝑴 +𝑯𝑾

𝓸(𝟏𝟎−𝟔)
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𝑯 = 𝑯𝒔 +𝑯𝑬𝑴 +𝑯𝑾

𝓸(𝟏𝟎−𝟔)

Nuclear Physics
Electroweak effects have been 

measured only in a single system 

(Cesium) with low precision

P-odd forces

Single atomic measurement in 

tension with accelerator 

experiments
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Electroweak Structure of Nuclei
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𝑯 = 𝑯𝒔 +𝑯𝑬𝑴 +𝑯𝑾

𝓸(𝟏𝟎−𝟔)

New Physics Searches
Electroweak forces are critical for 

understanding BSM processes

Nuclear Physics Fundamental Symmetries

𝑯𝑾 = 𝑯𝑷𝑽 +𝑯𝑪𝑷𝑽+?

Electroweak effects have been 

measured only in a single system 

(Cesium) with low precision

𝒂
𝑺

𝑒−

𝑒−

P-odd forces

0𝜈𝛽𝛽-decay 

WIMP Detection

Searches for new sources of CP 

violation

P-odd forces CP-odd forces

𝜐

Single atomic measurement in 

tension with accelerator 

experiments

CP violation is a critical ingredient 

to understand the observed matter 

– antimatter asymmetry 
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Weak Interaction in Atomic System
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• Weak Interaction in atomic/molecular systems arises from two dominant contributions 

𝒁𝟎-exchange   

Nuclear Spin-Dependent (𝑰 ≠ 𝟎)

Short range!
(<1 fm)
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• Weak Interaction in atomic/molecular systems arises from two dominant contributions 

𝒁𝟎-exchange   Nuclear Anapole Moment

Nuclear Spin-Dependent (𝑰 ≠ 𝟎)
Nucleon-nucleon, weak interactions within the nucleus 

give rise to a toroidal magnetic field

Figure from: M. S. Safronova, et. al. Rev. Mod. Phys., 90:025008, Jun 2018.

Short range!
(<1 fm)
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• Weak Interaction in atomic/molecular systems arises from two dominant contributions 

𝒁𝟎-exchange   Nuclear Anapole Moment

Nuclear Spin-Dependent (𝑰 ≠ 𝟎)
Nucleon-nucleon, weak interactions within the nucleus 

give rise to a toroidal magnetic field

𝐻~ 𝜂𝑍 + 𝜂𝑁𝐴𝑀 𝜶 ∙ റ𝑰 𝜹𝟑( Ԧ𝑟)

Figure from: M. S. Safronova, et. al. Rev. Mod. Phys., 90:025008, Jun 2018.

Short range!
(<1 fm)

~𝐴2/3
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Weak-Induced State Mixing
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• Consider any system in the absence of the Weak Interaction

The eigenstates of the Hamiltonian are states of well-defined Parity

ۧȁ+

ۧȁ−

𝐻 =
𝐸− 0
0 𝐸+

𝐸+

𝐸−



08/07/24 MIT Penning Trap— Scott Moroch — ECCTI Conference 08/07/2024

Weak-Induced State Mixing
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Consider this system in the presence of the Weak Force

Weak Force violates parity: 𝐻(റ𝑟) ≠ 𝐻(−റ𝑟)

The eigenstates of the Hamiltonian are not states of well-defined Parity



08/07/24 MIT Penning Trap— Scott Moroch — ECCTI Conference 08/07/2024

Weak-Induced State Mixing

14

Consider this system in the presence of the Weak Force

Weak Force violates parity: 𝐻(റ𝑟) ≠ 𝐻(−റ𝑟)

The eigenstates of the Hamiltonian are not states of well-defined Parity

ۧȁ+

ۧȁ−

𝐸+

𝐸−
𝑊 𝐻 =

𝐸− − 𝐻𝑃𝑉 +

+ 𝐻𝑃𝑉 − 𝐸+
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Weak-Induced State Mixing
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Consider this system in the presence of the Weak Force

Weak Force violates parity: 𝐻(റ𝑟) ≠ 𝐻(−റ𝑟)

The eigenstates of the Hamiltonian are not states of well-defined Parity

ۧȁ+

ۧȁ−

𝐸+

𝐸−
𝑊 𝐻 =

𝐸− − 𝐻𝑃𝑉 +

+ 𝐻𝑃𝑉 − 𝐸+

ۧȁ+′ = ۧȁ+ +
+ 𝐻𝑃𝑉 −
𝐸+−𝐸−

ۧȁ−
Perturbation theory 

Mixing: 
1

∆

We want a system with a small ∆!
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Why Molecules?
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𝐻𝑚𝑜𝑙 = 𝐻𝑒 + 𝐻𝑣 + 𝐻𝑟𝑜𝑡 +⋯+ 𝐻ℎ𝑓𝑠 +𝐻𝑃𝑉 +𝐻𝑃𝑇𝑉

𝐻𝑒 𝐻𝜐 𝐻𝑟𝑜𝑡 𝐻ℎ𝑓𝑠 𝐻𝑃𝑉

• Small energy splitting between rotational levels in a molecule→five order of magnitude 

enhancement to PV effects, relative to atoms 

[eV]   ~ 2 𝟏𝟎−𝟐 𝟏𝟎−𝟓 𝟏𝟎−𝟖 𝟏𝟎−𝟏𝟐 𝟏𝟎−𝟏𝟓
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Nuclear Electroweak Measurements in a Penning Trap Using Near-Degenerate Energy States of Molecules 
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NEPTUNE Project
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Measurements in a Penning Trap 
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Zeeman Shifting Molecular States

ۧȁ+′ = ۧȁ+ +
+ 𝐻𝑃𝑉 −
𝐸+−𝐸−

ۧȁ−

1011 enhancement 

of PV effects in 

Molecules!

Altuntaş, Emine, et al., Phys. Rev. Lett. 120.14, 142501 (2018)

ۧȁ+

ۧȁ−
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Measurements in a Penning Trap 
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Zeeman Shifting Molecular States
Motional Cooling and 

Coherence Time

ۧȁ+′ = ۧȁ+ +
+ 𝐻𝑃𝑉 −
𝐸+−𝐸−

ۧȁ−

1011 enhancement 

of PV effects in 

Molecules!

Altuntaş, Emine, et al., Phys. Rev. Lett. 120.14, 142501 (2018)

Resistive and sympathetic cooling techniques enable low 

motional temperatures (≤4 K)

+

+

- -

Coherence times of ms, compared to 𝜇𝑠 in a neutral 

beam experiment 

ۧȁ+

ۧȁ−
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Experimental Procedure
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Molecule Formation

Ablation

Gas

Supersonic expansion molecular source for 

producing rotationally cold molecules 

(N<20) 

Molecule Formation Ionization Trapping Tuning Counting

𝑒−

W

ۧȁ−

ۧȁ+ ۧȁ+

ۧȁ−
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Experimental Procedure
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Resonant Photoionization 

Ablation

Gas

Resonantly ionize the molecules using a 

multi-step process

Molecule Formation Ionization Trapping Tuning Counting

𝑒−

W

ۧȁ−

ۧȁ+ ۧȁ+

ۧȁ−

Ionization
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Experimental Procedure
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Trapping

Molecule Formation Ionization Trapping Tuning Counting

𝑒−

W

ۧȁ−

ۧȁ+ ۧȁ+

ۧȁ−

+

+

- -

𝐵

Decelerate, trap and cool the molecules
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Experimental Procedure
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Tune Levels to Degeneracy

Molecule Formation Ionization Trapping Tuning Counting

𝑒−

𝑊
ۧȁ−

ۧȁ+ ۧȁ+

ۧȁ−

+

+

- -

𝐵

∆𝐵

ۧȁ−

ۧȁ+
𝑊

Drive ۧȁ− and ۧȁ+ to near degeneracy 
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Experimental Procedure
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Counting

Molecule Formation Ionization Trapping Tuning Counting

𝑒−

𝑊
ۧȁ−

ۧȁ+ ۧȁ+

ۧȁ−

+

+

- -

𝐵

∆𝐵

ۧȁ−

ۧȁ+

Measure population transfer between levels
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Experiment Status
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Molecule Formation Ionization Trapping Tuning Counting

𝑒−

𝑊
ۧȁ−

ۧȁ+ ۧȁ+

ۧȁ−
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Penning Trap Design
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Trap
Ultra low vibration 

cryocooler

Electronics
Thermal busMolecule injection
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Penning Trap
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18 mm

18 mm 7-electrode trap 

for heavier molecules

6 mm

6 mm 7-electrode trap 

for lighter molecules

Microwave Injection for driving 

rotational transitionsOptical Access

Buffer gas injection
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Future Outlook
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Borschevsky, A. et al. PRA 86, 050501(R) (2012).

• To extract nucleon-nucleon electroweak 

interactions – must disentangle different 

contributions

• Rely on the scaling of different effects and 

studying in different nuclei  

• Once demonstrated the experiment can be

implemented at a radioactive ion beam 

facility 

• Generating and cooling single molecular

ions is much simpler than neutral 

molecules

https://doi.org/10.1103/PhysRevA.86.050501
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Summary
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• Electroweak properties of nuclei are poorly understood  

• Molecules are very sensitive to parity-violating electroweak effects 

due to rotational levels

• We propose the use of a single ion in a Penning trap to measure 

these effects by the induced mixing between two states

• Experimental procedure is applicable across the nuclear chart
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EMA Lab @ MIT
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Cesium Anapole Measurement
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Details on Opposite Parity Mixing
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• The QED Lagrangian governing AMO physics commute with P 

• Considering this effect alone atoms conserve parity:

• Easily seen by looking at an electric dipole E1 transition:

𝑇𝑓𝑖
𝐸1 = 𝜓𝑓 𝐷 𝜓𝑖

• Insert the identity: 1 = 𝑃†𝑃

𝑇𝑓𝑖
𝐸1 = 𝜓𝑓 𝑃

†𝑃 𝐷 𝜓𝑖

= −Π𝑓Π𝑖𝑇𝑓𝑖
𝐸1

• If the two states have the same parity then 𝑇𝑓𝑖
𝐸1 = 0
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Level Structure
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New Force Searches

39

Standard Model Effects BSM

• Access to electroweak coupling parameters – few existing measurements with 
large uncertainties

• Constrain Standard Model contributions (Z-boson, Anapole moment, etc) –
experiment provides avenue for 5th-force searches 

New Physics!
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NN Weak Interactions - Macroscopic

40

• The nucleus has excited states and weak interactions will mix these levels

ۧȁ−

ۧȁ+

keV - MeV

• The Anapole moment emerges as a P-odd moment that can exist only in the 

presence of this mixing

Ԧ𝑎 = 𝐽𝑀′ 𝒂 𝐽𝑀

Ԧ𝑎 =
𝐽 𝒂 ∙ റ𝑱 𝐽

𝐽(𝐽 + 1)
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NN Weak Interactions - Macroscopic

41

• In the absence of the weak interaction the ȁ ۧ𝐽𝑀 states are states of definite 

parity and Ԧ𝑎 = 0
• In the presence of the weak interaction these states are mixed:

ห ۧ𝐽 = ȁ ۧ𝐽; 0 +

𝑘≠0

𝐽; 𝑘 𝑊 𝐽; 0

𝐸0 − 𝐸𝑘
ȁ ۧ𝐽; 𝑘

• Now the nucleus can acquire a non-zero anapole moment:

𝑎 = 2 𝑅𝑒

𝑘≠0

𝐽; 0 𝑎 𝐽; 𝑘 𝐽; 𝑘 𝑊 𝐽; 0

𝐸0 − 𝐸𝑘
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NN Weak Interactions - Microscopic

42

• Microscopically electroweak nuclear interactions arise at the individual quark-level

𝑵

𝑵 𝑵

𝑵

𝝅

𝒈𝝅𝑵𝑵

𝒈𝝅𝑵𝑵

p n

n p
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NN Weak Interactions - Microscopic

43

• Microscopically electroweak nuclear interactions arise at the individual quark-level

𝑵

𝑵

𝑵

𝑵

𝝅

𝒈𝝅𝑵𝑵

𝒉𝝅𝑵𝑵

p

pn

n
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Nuclear Spin Independent PV

44

• Nuclear Spin-Independent Parity 

Violation measurements (Z 

exchange) in atoms provide a low-

energy test of the Standard Model 
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Interference Technique

45

• Consider the case of Cesium: ground state is 6𝑆1/2

• Electric dipole transition to excited state of the same parity is forbidden: 

6𝑆1/2 𝐷 7𝑆1/2 = 0

• Weak interactions lead to small mixing between states of opposite parity giving a non-zero matrix 

element (10−11):

𝐸𝑃𝑉 = ෫6𝑆1/2 𝐷 ෫7𝑆1/2 ≠ 0

• In an interference technique an electric field is added to provide a strong E1 pathway with transition 

amplitude 𝛽ℰ

• The transition rate is proportional to the square of the transition amplitude: 𝐸𝑃𝑉
2 + (𝛽ℰ)2 + (𝛽ℰ𝐸𝑃𝑉)

• By reversing the electric field one can extract 𝐸𝑃𝑉



08/07/24 MIT Penning Trap— Scott Moroch — ECCTI Conference 08/07/2024

Molecular Hamiltonian 

46

• Since the weak interactions are essentially contact interactions we rely on molecular 

states with strong overlap of the electron with the nucleus

• We consider diatomic molecules with a single valence electron in a 2Σ electronic state. 

This is the molecular equivalent of alkali atoms (in particular a Hund’s case b)

• We have one nucleus with non-zero spin (𝐼 =
1

2
) that couples to the electron by NSD-PV 

interaction and a second nucleus with zero spin (𝐼 = 0)

• Lowest energy levels are described by the Hamiltonian: 

𝐻 = 𝐵𝑒𝑵
2 + 𝛾𝑵 ∙ 𝑺 + 𝑏𝑰 ∙ 𝑺 + 𝑐(𝑰 ∙ 𝑛) × (𝑺 ∙ 𝑛)

• 𝐵𝑒 - rotational constant

• 𝛾 – Spin-rotation constant

• 𝑏/𝑐 – Hyperfine constants

• 𝐵𝑒 ≫ 𝛾, 𝑏, 𝑐 so N is a good quantum number and 𝐸𝑁 = 𝐵𝑒𝑁(𝑁 + 1) and 𝑃 = (−1)𝑁
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Molecular Hamiltonian 

47

• The magnetic field needed to bridge the rotational energy:

𝐸1 − 𝐸0 ≈ 2𝐵𝑒

• The magnetic field decouples 𝑆, 𝐼 and 𝑁 such that the molecular states can be considered 

in the decoupled basis:

ȁ ۧ𝜓 = ห ۧ𝑁,𝑚𝑁 ȁ ۧ𝑆, 𝑚𝑠 ȁ ۧ𝐼, 𝑚𝐼

• The Zeeman effect is dominated by the coupling to the electron spin:

𝐻𝑍 ≅ −𝑔𝜇𝐵𝑆 ∙ 𝐵

• The state of opposite of interest are:

ห ൿ𝜓↑
+ = ห ۧ𝑁 = 0,𝑚𝑁 = 0 ȁ ۧ𝑆 = 1/2,𝑚𝑠 = 1/2 ȁ ۧ𝐼 = 1/2,𝑚𝐼

ห ൿ𝜓↓
− = ห ۧ𝑁 = 1,𝑚𝑁 ȁ ۧ𝑆 = 1/2,𝑚𝑠 = −1/2 ȁ ۧ𝐼 = 1/2,𝑚𝐼′
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Rotational Cooling

48

Figure from: Stollenwerk P.R. et al., Phys. Rev. Lett. 125 (2020)
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