

Investigating interference with phononic bright and dark states in a trapped ion

Robin Thomm

What makes stuff interfere?

System

System

System

5

Theory

EDight 1

 $H = g \left(a_x + a_y \right) \sigma^+ + g \left(a_x^{\dagger} + a_y^{\dagger} \right) \sigma^-$

Reference

 $|\Psi,0\rangle$

 $|1,0\rangle$

Time evolution

 $\begin{array}{l} \mathsf{H}|\downarrow\rangle|n,0\rangle = g\sqrt{n}|\uparrow\rangle|n-1,0\rangle \\ \hline \Rightarrow \mathsf{Rabi oscillations} \end{array}$

Coherent state

 $|lpha,0
angle = \sum c_n |n,0
angle$

Constr. Interference $\left| \psi_{+}^{1} \right\rangle = \frac{1}{\sqrt{2}} \left(\left| 1, 0 \right\rangle + \left| 0, 1 \right\rangle \right)$ **Time evolution** $| \mathbf{H} | \downarrow
angle \left| \psi_{+}^{n}
ight
angle = g \sqrt{2n} | \uparrow
angle \left| \psi_{+}^{n-1}
ight
angle$ $\rightarrow \sqrt{2}$ faster **Coherent state** $|\psi^{lpha}_{+}
angle = |lpha, lpha
angle = \sum c_n |\psi^n_{+}
angle$

Destr. Interference $\begin{vmatrix} \psi^{1}_{-} \end{pmatrix} = \frac{1}{\sqrt{2}} (|1, 0\rangle - |0, 1\rangle)$ **Time evolution** $H|\downarrow\rangle|\psi^{n}_{-}\rangle = 0$ $\Rightarrow \text{ No population transfer}$ **Coherent state** $|\psi^{\alpha}_{-}\rangle = |\alpha, -\alpha\rangle = \sum c_{n}|\psi^{n}_{-}\rangle$

Experimental setup Stockholm University qubit transition Doppler cooling & fluorescence detection 5P3/2 repumpers 5P1/2 033 nm spontaneous decay • A single ⁸⁸Sr⁺ ion The ion 1092 nm $4D_{5/2} = |\uparrow\rangle$ • Qubit: $|S\rangle$ and $|D\rangle$, initially in $|S\rangle$ 4D_{3/2} 422 nm • Linear Paul trap The trap 674 nm • Use both radial modes State • Ground state preparation ($\bar{n} < 0.1$) BSB BSB carrier preparation • Tickling or BSB & RSB pulses Ground state **Bichromatic** Qubit Bichromatic tickling preparation detection pulse Driving both RSBs simultaneously BSB/RSB/CAR pulses Coupling • Bichromatic laser with 45° overlapp with both modes

Conclusions

- Observed constructive and destructive interference
- Two mode basis:
 - Intuitive description of the interference
- What makes stuff interfere?
 - Not just expectation values and variances

The Team https://qtech.fysik.su.se

Theory

André

Cidrim

Alan C. Santos

Funding

Romain Bachelard

Vetenskapsrådet

Pulse sequence

Creation of the weird state

 $|\downarrow,0,0\rangle$ $\pi/3$ pulse on BSB₁ $\frac{3}{4}|\downarrow,0,0\rangle + \frac{1}{4}|\uparrow,1,0\rangle$ $\pi/2.55$ pulse on BSB₂ with phase φ_2 $\frac{1}{2} \left| \downarrow, 0, 0 \right\rangle + \frac{1}{4} \left| \uparrow, 1, 0 \right\rangle + e^{i\varphi_2} \frac{1}{4} \left| \uparrow, 0, 1 \right\rangle$ π pulse on CAR_A $\frac{1}{2}\left|\uparrow,0,0\right\rangle+\frac{1}{4}\left|\downarrow,1,0\right\rangle+e^{i\varphi_{2}}\frac{1}{4}\left|\downarrow,0,1\right\rangle$ π pulse on CAR_B $\frac{1}{2}|\uparrow,0,0\rangle + \frac{1}{4}|\uparrow',1,0\rangle + e^{i\varphi_2}\frac{1}{4}|\uparrow',0,1\rangle$

Here we perform a round of postselection to discard any results in which imperfect transfer efficiencies cause the ground state $|\downarrow\rangle$ to remain populated. The preparation continues as:

 $\frac{1}{2}\left|\uparrow,0,0\right\rangle+\frac{1}{4}\left|\uparrow',1,0\right\rangle+e^{i\varphi_{2}}\frac{1}{4}\left|\uparrow',0,1\right\rangle$ π pulse on CAR_A $\frac{1}{2} |\downarrow, 0, 0\rangle + \frac{1}{4} |\uparrow', 1, 0\rangle + e^{i\varphi_2} \frac{1}{4} |\uparrow', 0, 1\rangle$ $\pi/2$ pulse on BSB₁ with phase φ_1 $\frac{1}{4}\left\{\left|\downarrow,0,0\right\rangle+e^{i\varphi_{1}}\left|\uparrow,1,0\right\rangle+\left|\uparrow',1,0\right\rangle+e^{i\varphi_{2}}\left|\uparrow',0,1\right\rangle\right\}$ π pulse on RSB₁ $\frac{1}{4}\left\{\left|\downarrow,0,0\right\rangle+e^{i\varphi_{1}}\left|\downarrow,1,1\right\rangle+\left|\uparrow',1,0\right\rangle+e^{i\varphi_{2}}\left|\uparrow',0,1\right\rangle\right\}$ $\pi/2$ pulse on CAR_B $\frac{1}{8} \Big\{ |\downarrow, 0, 0\rangle + |\uparrow', 0, 0\rangle + e^{i\varphi_1} |\downarrow, 1, 1\rangle + e^{i\varphi_1} |\uparrow', 1, 1\rangle$ $+ e^{i\varphi_2} |\uparrow', 0, 1\rangle + e^{i\varphi_2} |\downarrow', 0, 1\rangle + |\uparrow', 1, 0\rangle + |\downarrow', 1, 0\rangle \Big\}$

Here we discard 50% of the population with a second round of postselection and obtain the final state as:

The product state

$$|\Upsilon_{\pi}\rangle = \frac{1}{2}(|0\rangle + |1\rangle)(|0\rangle - |1\rangle)$$

- Decomposition in bright and dark states $|\Upsilon_{\pi}\rangle = \frac{1}{2} \left(|\psi_{-}^{0}\rangle - \sqrt{2}|\psi_{-}^{1}\rangle + \frac{1}{\sqrt{2}} \left[|\psi_{-}^{2}\rangle - |\psi_{+}^{2}\rangle \right] \right)$
- Only one contribution of a bright state
- Transfer rate:

 $g\sqrt{2N} = 2g$

• Transfer amplitude:

$$\left(\frac{1}{2} \cdot \frac{1}{\sqrt{2}}\right)^2 = \frac{1}{8}$$

$$|\Upsilon_{\mathbf{0}}\rangle = \frac{1}{2}(|0\rangle + |1\rangle)(|0\rangle + |1\rangle)$$

- Decomposition in bright and dark states $|\Upsilon_0\rangle = \frac{1}{2} \left(|\psi_-^0\rangle + \sqrt{2} |\psi_+^1\rangle - \frac{1}{\sqrt{2}} \left[|\psi_-^2\rangle - |\psi_+^2\rangle \right] \right)$
- Two bright state contributions
- Transfer rate: $g\sqrt{2N} = \sqrt{2}g$
- Transfer amplitude:

$$\left(\frac{1}{2} \cdot \sqrt{2}\right)^2 = \frac{1}{2}$$

Theory

$$H = g \left(a_x + a_y \right) \sigma^+ + g \left(a_x^{\dagger} + a_y^{\dagger} \right) \sigma^-$$

Villas-Boas, C. J. et al. Bright and dark states of light: The quantum origin of classical interference arxiv 2021