Multi-Channel Scattering Calculation for Ultracold Ion-Atom Collisions

Competing excitation quenching and charge exchange in ultracold Li-Ba⁺ collisions

Tibor Jónás

Xiaodong Xing, Romain Vexiau, Ting Xie, Eliane Luc-Koenig, Nadia Bouloufa-Maafa, Andrea Orbán and Olivier Dulieu

collaboration with University of Freiburg

<u>Ultracold quantum</u> gases (e.g. atoms, molecules, ions, ...)

1 µK – 1 nK

<u>Ultracold quantum</u> gases (e.g. atoms, molecules, ions, ...)

1 µK – 1 nK

• atom – ion mixed system in hybrid traps

<u>Ultracold quantum</u> gases (e.g. atoms, molecules, ions, ...)

1 µK – 1 nK

- atom ion mixed system in hybrid traps
- dilute gases \longrightarrow long-range interactions relevant: atom-ion $\sim \frac{1}{R^4}$ (10⁸ 10¹³ atom/cm³)

<u>Ultracold quantum</u> gases (e.g. atoms, molecules, ions, ...)

1 µK – 1 nK

- atom ion mixed system in hybrid traps
- dilute gases \longrightarrow long-range interactions relevant: atom-ion $\sim \frac{1}{R^4}$ (10⁸ 10¹³ atom/cm³)
- application: precision measurements, quantum controlled chemistry, quantum technology, ...

- The project focuses on the theoretical modelling of the dynamics of ion-neutral systems at ultracold temperatures in order to design ways for their full quantum control
- Our aims are connected to **ongoing** cutting-edge experimental investigations with hybrid traps (Uni. Freiburg, Weizmann Inst., Uni. Basel, Uni. Ulm, Uni. Osaka, Uni. Hannover)
- Understanding ion-neutral ultracold collisions

- Understanding such ultracold collisions relies on the combination of various expertise:
 - perform detailed atomic and molecular structure calculations
 - determine electronically excited molecular states generated by lasers in experiments
 - perform dynamical calculations based on the quantum coupled-channel description of the collision including both long-range (electrostatic) and short-range (chemical) interactions
- These methodologies will be applied to two species of atom-ion pairs of relevance for ongoing experiments:

⁶Li - ¹³⁸Ba⁺, in collab. with Uni. Freiburg
⁸⁷Rb - ⁸⁸Sr⁺, in collab. with Weizmann Inst.

Experiment: Uni. Freiburg

P. Weckesser et. al, Nature, 600:429, 2021

Experiment: Uni. Freiburg

¹³⁸Ba⁺: single ion

 \sim 365 μK in the lab

metastable $5D_{5/2,3/2}$ excited state (lifetime 32 s, 80 s)

P. Weckesser et. al, Nature, 600:429, 2021

Experiment: Uni. Freiburg

Tibor Jónás Early Career Conference in Trapped Ions, 7-12 July 2024.

Experiment: Uni. Freiburg

Tibor Jónás Early Career Conference in Trapped Ions, 7-12 July 2024.

Observed processes

Purpose: theoretical description

of the observed processes

Molecular structure calculated by THEOMOL group

Tibor Jónás Early Career Conference in Trapped Ions, 7-12 July 2024.

Observed processes

Tibor Jónás Early Career Conference in Trapped Ions, 7-12 July 2024.

Observed processes

Hund's case a)

Tibor Jónás Early Career Conference in Trapped Ions, 7-12 July 2024.

Potential energy in the molecular frame

Potential energy in the molecular frame

V(...) – Hund's case a) potential energy curves

 $A_{i j}$ $G_{2 3}$

- spin orbit coupling matrix element
- non-adiabatic coupling at the avoided crossing
- A_{57} indirect spin orbit coupling at the crossing

Potential energy in the molecular frame

Tibor JónásEarly Career Conference in Trapped Ions, 7-12 July 2024.

Frame transformation

coordinate system transformation

Molecular frame

 $\{ |\Lambda, S, \Sigma, \Omega = \Lambda + \Sigma, J, parity \} \}$

Laboratory frame $\{ |j_A, j_B, j, l, J, parity \} \}$

Molecular frame

Tibor Jónás Early Career Conference in Trapped Ions, 7-12 July 2024.

Molecular frame

Tibor Jónás Early Career Conference in Trapped Ions, 7-12 July 2024.

Molecular frame

Tibor Jónás Early Career Conference in Trapped Ions, 7-12 July 2024.

Molecular frame

Tibor Jónás Early Career Conference in Trapped Ions, 7-12 July 2024.

8/15

Laboratory frame

Multi-Channel Quantum Scattering (MCQS)

Cross section

$$\overline{\boldsymbol{\sigma}_{i \to f}(E)} = \frac{\pi}{k_0^2} \sum_{J} (2J+1) \sum_{\substack{l_i, j_i, m_i \\ l_f, j_f, m_f}} \left| \boldsymbol{\mathcal{S}}(J, l_f, j_f, m_f, p \leftarrow J, l_i, j_i, m_i, p) \right|^2$$
where, $\boldsymbol{\mathcal{S}}$ -S-matrix
J-total angular momentum quantum number
 l -partial wave
j-electronic angular momentum quantum number
 m -projectile of the electronic angular momentum
 p -parity

Multi-Channel Quantum Scattering (MCQS)

Cross section

$$\overline{\boldsymbol{\sigma}_{i \to f}(E)} = \frac{\pi}{k_0^2} \sum_{J} (2J+1) \sum_{\substack{l_i, j_i, m_i \\ l_f, j_f, m_f}} \left| \underbrace{\boldsymbol{\mathcal{S}}(J, l_f, j_f, m_f, p \leftarrow J, l_i, j_i, m_i, p)}_{l_f, j_f, m_f} \right|^2 \xrightarrow{\text{where, } \mathcal{S} - S - \text{matrix}}_{J - \text{total angular momentum quantum number}} \\ Rate K(E) = \left(\frac{2E}{\mu}\right)^{\frac{1}{2}} \overline{\boldsymbol{\sigma}_{i \to f}(E)}$$

Multi-Channel Quantum Scattering (MCQS)

Cross section

$$\boldsymbol{\sigma}_{i \to f}(E) = \frac{\pi}{k_0^2} \sum_{J} (2J+1) \sum_{\substack{l_i, j_i, m_i \\ l_f, j_f, m_f}} \left| \boldsymbol{\mathcal{S}} \left(J, l_f, j_f, m_f, p \leftarrow J, l_i, j_i, m_i, p \right) \right|^2 \text{ where, } \boldsymbol{\mathcal{S}}_{J-t} = \frac{1}{k_0^2} \sum_{\substack{l_i, j_i, m_i \\ l_f, j_f, m_f}} \left| \boldsymbol{\mathcal{S}} \left(J, l_f, j_f, m_f, p \leftarrow J, l_i, j_i, m_i, p \right) \right|^2 \right|^2 = \frac{1}{k_0^2} \sum_{\substack{l_i, j_i, m_i \\ l_f, j_f, m_f}} \left| \boldsymbol{\mathcal{S}} \left(J, l_f, j_f, m_f, p \leftarrow J, l_i, j_i, m_i, p \right) \right|^2 \right|^2 = \frac{1}{k_0^2} \sum_{\substack{l_i, j_i, m_i \\ l_f, j_f, m_f}} \left| \boldsymbol{\mathcal{S}} \left(J, l_f, j_f, m_f, p \leftarrow J, l_i, j_i, m_i, p \right) \right|^2 \right|^2 = \frac{1}{k_0^2} \sum_{\substack{l_i, j_i, m_i \\ l_f, j_f, m_f}} \left| \boldsymbol{\mathcal{S}} \left(J, l_f, j_f, m_f, p \leftarrow J, l_i, j_i, m_i, p \right) \right|^2 \right|^2 = \frac{1}{k_0^2} \sum_{\substack{l_f, j_f, m_f \\ p \leftarrow m_f}} \left| \boldsymbol{\mathcal{S}} \left(J, l_f, j_f, m_f, p \leftarrow J, l_i, j_i, m_i, p \right) \right|^2 = \frac{1}{k_0^2} \sum_{\substack{l_f, j_f, m_f \\ p \leftarrow m_f}} \left| \boldsymbol{\mathcal{S}} \left(J, l_f, p \leftarrow J, l_i, p \leftarrow J,$$

Hamiltonian

$$\boldsymbol{H}_{l}(R) = -\frac{\hbar^{2}}{2\mu} \frac{d^{2}}{dR^{2}} \boldsymbol{I} + \frac{\hbar^{2}(l(l+1))}{2\mu R^{2}} \boldsymbol{I} + \boldsymbol{V}(R) + \boldsymbol{V}_{SOC}(R)$$

Scattered wave function for the α - channel

 $\psi_{\alpha}(R) = R^{-1} \sum_{i} \phi_{i}(\tau) F_{i\alpha}(R)$

Coupled equations for $F_{i\alpha}(R)$

$$\frac{d^2 F_{j\alpha}(R)}{dr^2} = \sum_i [W_{ij} - E\delta_{ij}]F_{i\alpha}(R)$$

here, *S* – S – matrix

J – total angular momentum quantum number

- l partial wave
- j electronic angular momentum quantum number
- m projectile of the electronic angular momentum

p – parity

where, μ reduced mass I – identity matrix V(R) - electronic potential energy matrix $V_{SOC}(R)$ – spin – orbit matrix l – partial wave

where, $\phi_i(\tau)$ – orthonormal basis τ – atom/ion all quantum number configuration $F_{i\alpha}(R)$ – radial channel function

where,
$$W_{ij} = \frac{2\mu}{\hbar^2} \int \phi_j^*(\tau) \left[V_{SOC} + V(R) + \frac{\hbar^2(l(l+1))}{2\mu R^2} \right] \phi_i(\tau) d\tau$$

Tibor Jónás Early Career Conference in Trapped Ions, 7-12 July 2024.

- FSQ (Fine Structure Quenching)

- NRCE (Non-Radiative Charge Exchange)

- NRQ (Non-Radiative Quenching)

Incoming channel

Cross section

https://arxiv.org/abs/2406.16017

Tibor JónásEarly Career Conference in Trapped Ions, 7-12 July 2024.

 $Li(2S_{1/2}) + Ba^{+}(5D_{3/2})$

Incoming channel

 $Li(2S_{1/2}) + Ba^{+}(5D_{5/2})$

Cross section

- NRCE (Non-Radiative Charge Exchange)

10/15

- NRQ (Non-Radiative Quenching)

https://arxiv.org/abs/2406.16017

⁻ FSQ (Fine Structure Quenching)

 $Li(2S_{1/2}) + Ba^{+}(5D_{3/2})$

- FSQ (Fine Structure Quenching)

- NRCE (Non-Radiative Charge Exchange)

- NRQ (Non-Radiative Quenching)

Incoming channel

 $Li(2S_{1/2}) + Ba^{+}(5D_{5/2})$

Cross section

 $Li(2S_{1/2}) + Ba^{+}(5D_{3/2})$

- FSQ (Fine Structure Quenching)

- NRCE (Non-Radiative Charge Exchange)

- NRQ (Non-Radiative Quenching)

Partial cross section

Tibor Jónás Early Career Conference in Trapped Ions, 7-12 July 2024.

Incoming channel

Cross section

 $Li(2S_{1/2}) + Ba^{+}(5D_{5/2})$

Cross sections and reaction rates

- FSQ (Fine Structure Quenching)

- NRCE (Non-Radiative Charge Exchange)

- NRQ (Non-Radiative Quenching)

https://arxiv.org/abs/2406.16017

Tibor Jónás Early Career Conference in Trapped Ions, 7-12 July 2024.

Cross sections and reaction rates

- FSQ (Fine Structure Quenching)

- NRCE (Non-Radiative Charge Exchange)

- NRQ (Non-Radiative Quenching)

https://arxiv.org/abs/2406.16017

Tibor Jónás Early Career Conference in Trapped Ions, 7-12 July 2024.

Cross sections and reaction rates

- FSQ (Fine Structure Quenching)

- NRCE (Non-Radiative Charge Exchange)

- NRQ (Non-Radiative Quenching)

THEO. $D_{3/2}$: Rate_{NRCE} < Rate_{NRQ} $D_{5/2}$: Dete

Rate_{NRCE} > Rate_{NRQ}

https://arxiv.org/abs/2406.16017

11/15

- FSQ (Fine Structure Quenching)

- NRCE (Non-Radiative Charge Exchange)

- NRQ (Non-Radiative Quenching)

Cross section

https://arxiv.org/abs/2406.16017

11/15

- FSQ (Fine Structure Quenching)

- NRCE (Non-Radiative Charge Exchange)

- NRQ (Non-Radiative Quenching)

THEO.

Rate_{FSO} > Rate_{NRCE}

https://arxiv.org/abs/2406.16017

11/15

https://arxiv.org/abs/2406.16017

11/15

Tibor Jónás Early Career Conference in Trapped Ions, 7-12 July 2024.

- FSQ (Fine Structure Quenching)

- NRCE (Non-Radiative Charge Exchange)

- NRQ (Non-Radiative Quenching)

- FSQ (Fine Structure Quenching)

- NRCE (Non-Radiative Charge Exchange)

- NRQ (Non-Radiative Quenching)

 10^{-8} 10 -NRCE -NRQ -Langevin D_{5/2} $D_{3/2}$ b) NRCE 10^{-9} 10 Langevir Cross section (cm²) 10⁻¹⁰ 10^{-10} 10⁻¹¹ 10^{-11} 10⁻¹² 10^{-12} 10⁻¹³ 10^{-13} 10^{-14} 10^{-14} Langevin*0.0125 angevin*0.16 gevin*0.0003 10^{-15} 10^{-15} D_{3/2} d) $D_{5/2}$ 10^{-8} 10^{-8} Rate (cm³/s) 10^{-9} 10^{-9} . 10⁻¹⁰ 10⁻¹⁰ thermalized 10^{-11} 10^{-11} thermalize Langev thermalize 10^{-12} 10^{-12} exp 10^{-13} 10^{-13} 10^{-2} 10^{-3} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-4} 10^{-6} $Energy/k_B(K)$ $Energy/k_B(K)$ Rate

Good agreement with the experiment!

https://arxiv.org/abs/2406.16017

11/15

- FSQ (Fine Structure Quenching)

- NRCE (Non-Radiative Charge Exchange)

- NRQ (Non-Radiative Quenching)

https://arxiv.org/abs/2406.16017

Tibor Jónás Early Career Conference in Trapped Ions, 7-12 July 2024.

Rate (cm³/s)

Summary

- Good agreement between the theory and experiment for the NRCE process
- For $D_{3/2}$ incoming channel the theory predicts that the NRQ process has higher probability than the NRCE, which is consistent with the experiment
- For $D_{5/2}$ incoming channel they could not detect NRQ in the experiment, our theory can confirm that, it predicts such a low probability
- For D_{5/2} incoming channel the theory overestimates the FSQ process, which could be explained by unaccurate spin – orbit coupling determination → clarification needed

https://arxiv.org/abs/2406.16017

Tibor Jónás Early Career Conference in Trapped Ions, 7-12 July 2024.

- Similar investigations for the same class of systems (eg. Rb Sr⁺)
 - different observed process (electronic excitation exchange, EEE)

Similar investigations for the same class of systems (eg. Rb - Sr⁺)

- different observed process (electronic excitation exchange, EEE)

13/15

• Similar investigations for the same class of systems (eg. Rb - Sr⁺)

- different observed process (electronic excitation exchange, EEE)

13/15

- Similar investigations for the same class of systems (eg. Rb Sr⁺)
 - different observed process (electronic excitation exchange, EEE)
 - more open channel
 - denser asymptotic limits

13/15

- Similar investigations for the same class of systems (eg. Rb Sr⁺)
 - different observed process (electronic excitation exchange, EEE)
 - more open channel
 - denser asymptotic limits
- Considering spin polarization of colliding partners in the model

13/15

Collaboration

Fundings

- THEOMOL group, Aimé Cotton Lab., Orsay, France Olivier Dulieu, Nadia Bouloufa-Maafa, Eliane Luc, Romain Vexiau, Xiadong Xing, Ting Xie
- Quantum and Atomic Physics group, Uni. Freiburg Pascal Weckesser, Fabian Thielemann, Tobias Schaetz

CNRS International Emerging Action (IEA) – ELKH, 2023-2024 CNIS

Program Hubert Curien "BALATON" (CampusFrance-GrantNO.49848TC)

NKFIH TÉT-FR, 2023-2024 (2021-1.2.4- TÉT-2022-00069)

French Governmental Scholarship

University of Debrecen 🕺

- HUN-REN ATOMKI, Debrecen, Hungary Andrea Orbán
- **Uni. British Columbia, Vancouver, Canada** Kirk W. Madison

FRANCE

&

&

Thank you for your attention!

Rate ratios

https://arxiv.org/abs/2406.16017

Frame transformation

where, $j_{a/b} - A/B$ atom el. angular momentum quantum number

- j total el. angular momentum quantum number
- l partial wave quantum number
- J total angular momentum quantum number
- M projectile of total angular momentum quantum number
- Λ projectile of orbital momentum quantum number

- Σ projectile of spin
- p parity
- $\Omega \Lambda + \Sigma$
- $< \cdots | \cdots > -$ Clebsch Gordan coeffcient
- { … } 9-j symbol