Multi-Channel Scattering Calculation for Ultracold Ion-Atom Collisions

Competing excitation quenching and charge exchange in ultracold Li-Ba⁺ collisions

Tibor Jónás

Xiaodong Xing, Romain Vexiau, Ting Xie, Eliane Luc-Koenig, Nadia Bouloufa-Maafa, **Andrea Orbán** and **Olivier Dulieu**

collaboration with University of Freiburg

• Ultracold quantum gases (e.g. atoms, molecules, ions, ...)

 $1 \mu K - 1 \nk$

• Ultracold quantum gases (e.g. atoms, molecules, ions, ...)

 $1 \mu K - 1 \nk$

• atom – ion mixed system in hybrid traps

• <u>Ultracold quantum</u> gases (e.g. atoms, molecules, ions, ...)

 $1 \mu K - 1 \nk$

- atom ion mixed system in hybrid traps
- long-range interactions relevant: \quad atom-ion $\sim \frac{1}{R^2}$ $R⁴$ • dilute gases $(10^8 - 10^{13}$ atom/cm³)

• <u>Ultracold quantum</u> gases (e.g. atoms, molecules, ions, ...)

 $1 \mu K - 1 \n nK$

- atom ion mixed system in hybrid traps
- long-range interactions relevant: \quad atom-ion $\sim \frac{1}{R^2}$ $R⁴$ • dilute gases $(10^8 - 10^{13}$ atom/cm³)
- application: precision measurements, quantum controlled chemistry, quantum technology, ...

- The project focuses on the **theoretical modelling** of the dynamics of **ion-neutral systems at ultracold temperatures** in order to design ways for their full quantum control
- Our aims are connected to **ongoing** cutting-edge experimental investigations with hybrid traps (Uni. Freiburg, Weizmann Inst., Uni. Basel, Uni. Ulm, Uni. Osaka, Uni. Hannover)
- Understanding ion-neutral ultracold collisions

- Understanding such ultracold collisions relies on the combination of various expertise:
	- perform detailed atomic and molecular structure calculations
	- determine electronically excited molecular states generated by lasers in experiments
	- perform dynamical calculations based on the quantum coupled-channel description of the collision including both long-range (electrostatic) and short-range (chemical) interactions
- These methodologies will be applied to two species of atom-ion pairs of relevance for ongoing experiments:

⁶Li - ¹³⁸Ba⁺ , in collab. with Uni. Freiburg **⁸⁷Rb - ⁸⁸Sr⁺** , in collab. with Weizmann Inst.

Experiment: Uni. Freiburg

P. Weckesser et. al, Nature, 600:429, 2021

Experiment: Uni. Freiburg

 138 Ba⁺: single ion

 \sim 365 μ K in the lab

metastable $5D_{5/2,3/2}$ excited state (lifetime 32 s, 80 s)

P. Weckesser et. al, Nature, 600:429, 2021

Experiment: Uni. Freiburg

Experiment: Uni. Freiburg

Observed processes

Purpose: theoretical description

of the observed processes

Molecular structure calculated by THEOMOL group

Observed processes

Observed processes

Hund's case a)

Potential energy in the molecular frame

Potential energy in the molecular frame

 $V(...)$ – Hund's case a) potential energy curves

 A_i , j

 $G'_{2,3}$

- spin orbit coupling matrix element
- non-adiabatic coupling at the avoided crossing
- $A_{5,7}$ – indirect spin – orbit coupling at the crossing

Potential energy in the molecular frame

Frame transformation

coordinate system transformation

 $\{ |A, S, \Sigma, \Omega = \Lambda + \Sigma, J, parity \}$ $\{ |j_A, j_B, j, l, J, parity \}$

Molecular frame Laboratory frame

Molecular frame

Molecular frame

Molecular frame

Molecular frame

Tibor Jónás Early Career Conference in Trapped Ions, 7-12 July 2024.

8/15

Laboratory frame

Multi-Channel Quantum Scattering (MCQS)

Cross section

$$
\sigma_{i\to f}(E) = \frac{\pi}{k_0^2} \sum_{j} (2j+1) \sum_{\substack{l_i, j_i, m_i \\ l_f, j_f, m_f}} \left| \mathcal{S}(j, l_f, j_f, m_f, p \leftarrow j, l_i, j_i, m_i, p) \right|^2 \text{ where, } S-\text{S-matrix}
$$
\n
$$
I-\text{total angular momentum quantum number}
$$
\n
$$
I-\text{partial wave}
$$
\n

Multi-Channel Quantum Scattering (MCQS)

Cross section

$$
\sigma_{i\to f}(E) = \frac{\pi}{k_0^2} \sum_{j} (2j+1) \sum_{\substack{l_i, j_i, m_i \\ l_f, j_f, m_f}} \left| \bigotimes_{j \neq j} (j, l_f, j_f, m_f, p \leftarrow j, l_i, j_i, m_i, p) \right|^2 \text{ where } \sum_{l-\text{total angular momentum quantum number } l-\text{partial wave}} \text{ momentum number}
$$
\n
$$
\text{Rate } K(E) = \left(\frac{2E}{\mu}\right)^{\frac{1}{2}} \sigma_{i\to f}(E)
$$
\nRate $K(E) = \left(\frac{2E}{\mu}\right)^{\frac{1}{2}} \sigma_{i\to f}(E)$

Multi-Channel Quantum Scattering (MCQS)

Cross section

$$
\sigma_{i\to f}(E) = \frac{\pi}{k_0^2} \sum_{J} (2J+1) \sum_{\substack{l_i, j_i, m_i \\ l_f, j_f, m_f}} \left| \mathcal{S}(J, l_f, j_f, m_f, p \leftarrow J, l_i, j_i, m_i, p) \right|^2 \text{ where, } \mathcal{S} \text{ where } \mathcal{S} \text{ and } \mathcal{S} \
$$

Hamiltonian

$$
\boldsymbol{H}_{l}(R) = -\frac{\hbar^2}{2\mu} \frac{d^2}{dR^2} \boldsymbol{I} + \frac{\hbar^2 (l(l+1))}{2\mu R^2} \boldsymbol{I} + \boldsymbol{V}(R) + \boldsymbol{V}_{SOC}(R)
$$

Scattered wave function for the α - channel

 $\psi_{\alpha}(R) = R^{-1}$ i $\phi_i(\tau)F_{i\alpha}(R)$

Coupled equations for $F_{i\alpha}(R)$

$$
\frac{d^2F_{j\alpha}(R)}{dr^2} = \sum_i [W_{ij} - E\delta_{ij}]F_{i\alpha}(R)
$$

where, *S* – S – matrix

otal angular momentum quantum number

- l partial wave
- lectronic angular momentum quantum number
- projectile of the electronic angular momentum

parity

where, μ reduced mass I – identity matrix $V(R)$ - electronic potential energy matrix $V_{\text{SOC}}(R)$ – spin – orbit matrix l – partial wave

where, $\phi_i(\tau)$ – orthonormal basis τ – atom/ion all quantum number configuration $F_{i\alpha}(R)$ – radial channel function

where,
$$
W_{ij} = \frac{2\mu}{\hbar^2} \int \phi_j^*(\tau) \left[V_{SOC} + V(R) + \frac{\hbar^2 (l(l+1))}{2\mu R^2} \right] \phi_i(\tau) d\tau
$$

- FSQ (Fine Structure Quenching)

- NRCE (Non-Radiative Charge Exchange)

- NRQ (Non-Radiative Quenching)

Incoming channel

Cross section

https://arxiv.org/abs/2406.16017

Incoming channel

 $Li(2S_{1/2}) + Ba⁺(5D_{5/2})$ $(Li(2S_{1/2}) + Ba⁺(5D_{3/2})$

Cross section

 $\text{Cross section} \left(\text{cm}^2 \right)$

- NRCE (Non-Radiative Charge Exchange)

- NRQ (Non-Radiative Quenching)

https://arxiv.org/abs/2406.16017

⁻ FSQ (Fine Structure Quenching)

- FSQ (Fine Structure Quenching)

- NRCE (Non-Radiative Charge Exchange)

- NRQ (Non-Radiative Quenching)

Incoming channel

 $Li(2S_{1/2}) + Ba⁺(5D_{5/2})$ $(Li(2S_{1/2}) + Ba⁺(5D_{3/2})$

Cross section

 $(Li(2S_{1/2}) + Ba⁺(5D_{3/2})$

- FSQ (Fine Structure Quenching)

- NRCE (Non-Radiative Charge Exchange)

- NRQ (Non-Radiative Quenching)

Partial cross section

Tibor Jónás 10/15 Early Career Conference in Trapped Ions, 7-12 July 2024.

Incoming channel

 $Li(2S_{1/2}) + Ba⁺(5D_{5/2})$

Cross section

Cross sections and reaction rates

- FSQ (Fine Structure Quenching)

- NRCE (Non-Radiative Charge Exchange)

- NRQ (Non-Radiative Quenching)

https://arxiv.org/abs/2406.16017

Cross sections and reaction rates

- FSQ (Fine Structure Quenching)

- NRCE (Non-Radiative Charge Exchange)

- NRQ (Non-Radiative Quenching)

https://arxiv.org/abs/2406.16017

Cross sections and reaction rates

- FSQ (Fine Structure Quenching)

- NRCE (Non-Radiative Charge Exchange)

- NRQ (Non-Radiative Quenching)

 $Rate_{NRCF}$ > Rate_{NRO}

https://arxiv.org/abs/2406.16017

Cross section Cross sections and reaction rates + experiment

 10^{-8} $10[°]$ -NRCE
-NRQ
-Langevin $D_{5/2}$ $D_{3/2}$ -NRCE
-NRQ 10^{-9} 10^{-9} Langevir Cross section cm^2) $10^{\mbox{-}10}$ 10^{-10} ${\rm 10}^{\text{-11}}$ 10^{-11} 10^{-12} 10^{-12} 10^{-13} 10^{-13} 10^{-14} 10^{-14} Langevin*0.0125 angevin*0.16 ngevin*0.0003 10^{-15} 10^{-15} $D_{3/2}$ d) $D_{5/2}$ 10^{-8} 10^{-8} Rate $\left(\text{cm}^3/\text{s}\right)$ 10^{-9} 10^{-9} **FSO** $10^{\mbox{-}10}$ 10^{-10} - NRCE
- NRQ - Langevin thermalize - thermalized NRCE
NRO 10^{-11} 10^{-11} - thermalize - Langevin exp thermalize 10^{-12} 10^{-12} \bullet exp exp 10^{-13} 10^{-13} 10^{-2} 10^{-3} 10^{-2} 10^{-6} 10^{-4} 10^{-6} 10^{-5} 10^{-4} 10^{-3} Energy/ $k_B(K)$ Energy/ $k_B(K)$ **Rate**

- FSQ (Fine Structure Quenching)

- NRCE (Non-Radiative Charge Exchange)

- NRQ (Non-Radiative Quenching)

https://arxiv.org/abs/2406.16017

Cross sections and reaction rates + experiment

 $Rate_{FSO}$ > Rate_{NRCE}

- FSQ (Fine Structure Quenching)

- NRCE (Non-Radiative Charge Exchange)

- NRQ (Non-Radiative Quenching)

https://arxiv.org/abs/2406.16017

Cross sections and reaction rates + experiment

https://arxiv.org/abs/2406.16017

Tibor Jónás Early Career Conference in Trapped Ions, 7-12 July 2024. 11/15

- FSQ (Fine Structure Quenching)

- NRCE (Non-Radiative Charge Exchange)

- NRQ (Non-Radiative Quenching)

Cross sections and reaction rates + experiment

- FSQ (Fine Structure Quenching)

- NRCE (Non-Radiative Charge Exchange)

- NRQ (Non-Radiative Quenching)

Good agreement with the experiment!

https://arxiv.org/abs/2406.16017

Cross section Cross sections and reaction rates + experiment

- FSQ (Fine Structure Quenching)

- NRCE (Non-Radiative Charge Exchange)

- NRQ (Non-Radiative Quenching)

Summary

- Good agreement between the theory and experiment for the NRCE process
- For $D_{3/2}$ incoming channel the theory predicts that the NRQ process has higher probability than the NRCE, which is consistent with the experiment
- For $D_{5/2}$ incoming channel they could not detect NRQ in the experiment, our theory can confirm that, it predicts such a low probability
- For $D_{5/2}$ incoming channel the theory overestimates the FSQ process, which could be explained by unaccurate spin – orbit coupling determination \rightarrow clarification needed

https://arxiv.org/abs/2406.16017

- Similar investigations for the same class of systems (eg. Rb Sr⁺)
	- different observed process (**electronic excitation exchange, EEE**)

• Similar investigations for the same class of systems (eg. Rb - Sr⁺)

- different observed process (**electronic excitation exchange, EEE**)

• Similar investigations for the same class of systems (eg. Rb - Sr⁺)

- different observed process (**electronic excitation exchange, EEE**)

- Similar investigations for the same class of systems (eg. Rb Sr⁺)
	- different observed process (**electronic excitation exchange, EEE**)
	- more open channel
	- denser asymptotic limits

- Similar investigations for the same class of systems (eg. Rb Sr⁺)
	- different observed process (**electronic excitation exchange, EEE**)
	- more open channel
	- denser asymptotic limits
- Considering spin polarization of colliding partners in the model

Collaboration

Fundings

- **THEOMOL group, Aimé Cotton Lab., Orsay, France & HUN-REN ATOMKI, Debrecen, Hungary** Olivier Dulieu, Nadia Bouloufa-Maafa, Eliane Luc, Andrea Orbán Romain Vexiau, Xiadong Xing, Ting Xie
- **Quantum and Atomic Physics group, Uni. Freiburg & Uni. British Columbia, Vancouver, Canada** Pascal Weckesser, Fabian Thielemann, Tobias Schaetz Kirk W. Madison

CNRS International Emerging Action (IEA) - ELKH, 2023-2024 CNIS

Program Hubert Curien "BALATON" (CampusFrance-GrantNO.49848TC)

NKFIH TÉT-FR, 2023-2024 (2021-1.2.4- TÉT-2022-00069)

French Governmental Scholarship

University of Debrecen

FRANCE

Thank you for your attention!

Rate ratios

https://arxiv.org/abs/2406.16017

Frame transformation

Molecular frame Laboratory frame coordinate system transformation

where, $j_{a/b}$ – A/B atom el. angular momentum quantum number

- j total el. angular momentum quantum number
- l partial wave quantum number
- J total angular momentum quantum number
- M projectile of total angular momentum quantum number
- Λ projectile of orbital momentum quantum number

$$
S - spin
$$

- Σ projectile of spin
- p parity
- $\Omega \Lambda + \Sigma$
- $\langle \cdots | \cdots \rangle$ Clebsch Gordan coeffcient
- $\{ \cdots \}$ 9-j symbol