Novel Ion Trap for Fibre Cavity integration Zhenghan Yuan et al.

07 08, 2024

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

lon trap

• A device to hold charge particles in space with electromagnetic forces

Motivation

 Ion Trap: potential quantum computer with a built-in quantum memory function

• Photonic Interface: Composite of data readout function and networking function

However, EFFICIENCY is problematic

Entanglement rate = 4.5 Hz Hucul et al. Nat. Phys. 11, 37 (2015)

Entanglement rate = 182 Hz Stephenson et al. Phys. Rev. Lett. 124, 110501 (2020)

Typical Telecommunication speed

Thus, essential to build an efficient photonic interface

Cavity enhanced interaction and collection becomes a strong candidate

Takahashi et al., PRL 124, 013602 (2020).

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

Goal

Short-term:

- Stable trapping with the existence of fibre cavity
- Coherent control on trapped ions
- Strong coupling regime on homemade 3D linear ion trap

Why Fibre Cavity

• Small mode volume

- Low clipping loss
- Less loss than having external fibre coupling

$$g = \sqrt{\frac{3c\lambda^2\gamma}{4\pi V_{\text{mode}}}} \propto \frac{1}{\sqrt{V_{\text{mode}}}}$$
$$C = \frac{g^2}{2\kappa\gamma} \propto \frac{F}{w^2}$$
$$V_{\text{mode}} = \frac{\pi\omega^2 L}{4}$$
$$L: \text{cavity length}$$
$$F: \text{cavity finesse}$$
$$\omega: \text{ waist size}$$

Challenge from fibre cavity

Fibre Cavity Implementation

Pyramid (cavity substrate)

- Made by SLE and coated by gold
- Fibre inserted by nanopositioner and glued on the v-groove inside
- Mechanical stability
- Shielding the dielectrics close to trapping region

Fibre Cavity Fabrication: CO2 Laser Ablation

• CO2 Laser Wavelength: 10.6/9.3 µm

• Fused Silica Absorption spectrum:

- 1. Illuminate the glass substrate with a **CO2** laser pulse.
- 2. Evaporation (**ablation**) and melting (**smoothing**).
 - Melting temp. at 1,900 K, evaporation at 3,000k.
 - Surface roughness ~ 0.2 nm
- 3. Depression left according to the laser intensity distribution (normally Gaussian).

Sugoi Trap 1st Generation

Dimension:20mm * 20mm

Made by SLE with surface roughness 100-200nm

Electrodes insulated by trenches

Sugoi Trap 1st Generation

Trap Fabrication

- Selective Laser Etching
- Coated by Gold

Possible Improvements

- Congested wires
- Mechanical Stability of fibre cavity substrate
- DC compensation
- Oven collimation

Model of Sugoi Trap 2nd Generation

- Optically Heated Oven
- Monolithic Oven Collimator
- Ceramic PCB connected by wire bonding
- 4 RF blades + 4 DC compensation blades
- Dimension:10mm * 10mm

Simulation Result from 2nd GEN

Compensation on the effects by fibre cavity

Trapping by 1st Generation Trap

with different endcap voltage

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

Secular Frequency Characterisation

Technique:

Excite the ions by a scanning tickling signal

Secular Frequency Characterisation

- Trapping position is not at the point due to stray charge, fabrication imperfection etc.
- Homemade micromotion detector by PMT and FPGA and two 397 laser beams to monitor the micromotion of trapped ions

397nm Spectrum

 Somehow broader than the natural transition linewidth

Conclusion and Outlook

Things Done:

- Trapped with miniaturized monolithic 3-D linear trap
- Fabricated our own fibre cavity mirrors
- Designed the further miniaturized 2 GEN trap

Things to be done:

- Couple the fibre cavity to ions in linear trap
- Cavity-enhanced communication between distant nodes
- Interface between superconducting and ion trap system

Thanks for your audience

