

Distributed Quantum Computing across an Optical Network Link

Dougal Main University of Oxford Oxford Ion Trap Group

 \bigcup

Problem: Scaling up comes with major technical challenges

Distributed Quantum Computing M₁

Problem: Scaling up comes with major technical challenges

Solution: Distributed quantum computing architecture

Interfacing Modules

Quantum teleportation protocols are characterised by the resources:

- **• shared entanglement**
- **• local operations** and **classical communication** (LOCC)

Quantum Gate Teleportation

Quantum gate teleportation enables the mediation of **logical gates** between qubits that **cannot directly interact**

Quantum gate teleportation enables the mediation of **logical gates** between qubits that **cannot directly interact**

Quantum gate teleportation enables the mediation of **logical gates** between qubits that **cannot directly interact**

Purely photonic demonstrations

Fidelity: 84%

Experimental Teleportation of a Quantum Controlled-NOT Gate

Yun-Feng Huang, X_i -Feng Ren, Yong-Sheng Zhang, Lu-Ming Duan, 2,1 and Guang-Can Guo 1 Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, Peoples Republic of China ²Department of Physics and FOCUS Center, University of Michigan, Ann Arbor, Michigan 48109, USA (Received 2 August 2004; published 6 December 2004)

Teleportation-based realization of an optical quantum two-qubit entangling gate

Wei-Bo Gao^{a,1}, Alexander M. Goebel^{b,1}, Chao-Yang Lu^{a,1}, Han-Ning Dai^a, Claudia Wagenknecht^b, Qiang Zhang^a, Bo Zhao^a, Cheng-Zhi Peng^a, Zeng-Bing Chen^a, Yu-Ao Chen^{a, 2}, and Jian-Wei Pan^{a,b,2}

Purely photonic demonstrations

Fidelity: 84%

Non-deterministic

No memory for output states

Experimental Teleportation of a Quantum Controlled-NOT Gate

Yun-Feng Huang, X_i -Feng Ren, Yong-Sheng Zhang, Lu-Ming Duan, 2,1 and Guang-Can Guo 1 Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, Peoples Republic of China ²Department of Physics and FOCUS Center, University of Michigan, Ann Arbor, Michigan 48109, USA (Received 2 August 2004; published 6 December 2004)

Teleportation-based realization of an optical quantum two-qubit entangling gate

Wei-Bo Gao^{a,1}, Alexander M. Goebel^{b,1}, Chao-Yang Lu^{a,1}, Han-Ning Dai^a, Claudia Wagenknecht^b, Qiang Zhang^a, Bo Zhao^a, Cheng-Zhi Peng^a, Zeng-Bing Chen^a, Yu-Ao Chen^{a, 2}, and Jian-Wei Pan^{a,b,2}

Superconducting cavities

Deterministic teleportation of a quantum gate between two logical qubits

Kevin S. Chou^{1,2*}, Jacob Z. Blumoff^{1,2,3}, Christopher S. Wang^{1,2}, Philip C. Reinhold^{1,2}, Christopher J. Axline^{1,2}, Yvonne Y. Gao^{1,2}, L. Frunzio^{1,2}, M. H. Devoret^{1,2}, Liang Jiang^{1,2} & R. J. Schoelkopf^{1,2}

Circuit qubit separation: ~ 2 cm

Circuit qubits within the **same device**

Deterministic

Limited to a **single** teleported gate X

Photonic Quantum Networks

Photons make **natural carriers** of quantum information

Photonic Quantum Networks

Photons make **natural carriers** of quantum information

Photonic networks provide a **versatile** and **reconfigurable** interconnect layer for DQC

Photonic Quantum Networks

Photons make **natural carriers** of quantum information

Photonic networks provide a **versatile** and **reconfigurable** interconnect layer for DQC

Our Work

State-of-the-art quantum network

B. C. Nichol^{1,212}, R. Srinivas^{1,212}, D. P. Nadlinger¹, P. Drmota¹, D. Main¹, G. Araneda¹, https://doi.org/10.1038/s41586-022-05088-z C. J. Ballance¹ & D. M. Lucas¹ Received: 30 November 2021

cented: 7 July 2022

State-of-the-art quantum network

Our Work Alice Bob

Robust quantum memory

State-of-the-art quantum network

Our Work Alice Bob

Robust quantum memory

Our Work

State-of-the-art quantum network

Robust quantum memory

P. Drmota[®], D. Main[®], D. P. Nadlinger[®], B. C. Nichol[®], M. A. Weber[®], E. M. Ainley[®], A. Agrawal[®],

R. Srini Department of Physics, University

Verifiable blind quantum computing with trapped ions and single photons

P. Drmota,¹ D. P. Nadlinger,¹ D. Main,¹ B. C. Nichol,¹ E. M. Ainley,¹ D. Leichtle,² A. Mantri,³ E. Kashefi,^{4,2,5} R. Srinivas,¹ G. Araneda,¹ C. J. Ballance,¹ and D. M. Lucas¹

Input: $|\psi_{\mathrm{C}}^{\mathrm{AB}}\rangle\in\mathcal{Q}_{\mathrm{C}}^{\otimes 2}$

 $D_{5/2}$

39

Quantum Gate Teleportation: Results

Ideal Process

 $|\psi_{\text{C}}^{\text{AB}}\rangle \rightarrow CZ |\psi_{\text{C}}^{\text{AB}}\rangle \in \mathcal{Q}_{\text{C}}^{\otimes 2}$

Quantum Gate Teleportation: Results

Process Tomography

 $\rho \to \mathcal{E}_{CZ}(\rho) \in L\left(\mathcal{Q}_C^{\otimes 2}\right)$

41

Quantum Gate Teleportation: Results

Process Tomography

 $\rho \to \mathcal{E}_{CZ}(\rho) \in L\left(\mathcal{Q}_C^{\otimes 2}\right)$

Average gate fidelity to controlled-Z gate: **86.1(9)%**

Circuit qubits in **separate devices**, separated by **~ 2 m**

Deterministic

Robust quantum memory enables **multiple instances** of QGT

Fidelity to $\Psi^{\text{+}}$: 97.15(9)%

Rate: \sim 10 s⁻¹

44

Dynamical decoupling of the **circuit qubits** during **entaglement generation**

Alice storage error: 1.9(4) % **Bob storage error**: 1.8(5) %

Coherent transfer between circuit and auxiliary qubits

Alice: 0.38(1) % error per transfer

Bob: 0.26(1) % error per transfer

$$
U_{\rm A} = \begin{cases} S^{\dagger} & \text{if } m_{\rm A} \oplus m_{\rm B} = 0, \\ S & \text{otherwise,} \end{cases}
$$

$$
U_{\rm B} = \begin{cases} S & \text{if } m_{\rm A} \oplus m_{\rm B} = 0, \\ S^{\dagger} & \text{otherwise,} \end{cases}
$$

Mid-circuit measurement errors result in the wrong conditional unitaries applied

Alice measurement error: 0.091(3)% **Bob measurement error**: 0.122(3)%

iSWAP gate

Ideal process

Process Tomography

Average gate fidelity to iSWAP gate: **70(2)%**

SWAP gate

Ideal process

Process Tomography

Average gate fidelity to SWAP gate: **64(2)%**

Grover's algorithm executed on a distributed quantum computer

For each **marked state**, we obtain the correct result with an average success rate of **71.4%**

People

Pictured (left to right)

Bethan Nichol David Nadlinger Raghu Srinivas David Lucas (PI) Gabriel Araneda Ellis Ainley Dougal Main Ayush Agrawal Peter Drmota

Not pictured

Péter Juhász Chris Ballance

Our paper is now on arXiv!

Quantum interconnects will be **noisy** and **lossy**

Quantum interconnects will be **noisy** and **lossy**

Entanglement distillation would enable distribution of **high-fidelity entanglement**

Trapped-Ion Module

 $F = 4$ 59

 $\vert \overline{0_C} \rangle$

Mixed-Species Gates

Hyperfine Transfer

Sr-Sr "Raw" Remote Entanglement

Fidelity to nearest Bell-state: 97.15(9) %

Sr-Ca Mixed-Species Remote Entanglement

Fidelity to nearest Bell-state: 94.0(5)%

Ca-Ca Remote Entanglement

Fidelity to nearest Bell-state: 92.9(7)%

Ca memory performance

Sr-Sr-Ca Mixed-Species GHZ State

Fidelity to GHZ state: 92.9(8)%

Sr-Sr-Ca-Ca Mixed-Species GHZ State

Fidelity to GHZ state: 91.6(8)%