

Distributed Quantum Computing across an Optical Network Link

Dougal Main University of Oxford Oxford Ion Trap Group

 \bigcirc

Problem: Scaling up comes with major technical challenges

M

Problem: Scaling up comes with major technical challenges

Solution: Distributed quantum computing architecture

Quantum teleportation protocols are characterised by the resources:

- shared entanglement
- local operations and classical communication (LOCC)

Quantum Gate Teleportation

Quantum gate teleportation enables the mediation of **logical gates** between qubits that **cannot directly interact**

Quantum Gate Teleportation

Quantum gate teleportation enables the mediation of **logical gates** between qubits that **cannot directly interact**

Quantum Gate Teleportation

Quantum gate teleportation enables the mediation of **logical gates** between qubits that **cannot directly interact**

Purely photonic demonstrations

Fidelity: 84%

Experimental Teleportation of a Quantum Controlled-NOT Gate

 Yun-Feng Huang,¹ Xi-Feng Ren,¹ Yong-Sheng Zhang,¹ Lu-Ming Duan,^{2,1} and Guang-Can Guo¹
 ¹Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, Peoples Republic of China
 ²Department of Physics and FOCUS Center, University of Michigan, Ann Arbor, Michigan 48109, USA (Received 2 August 2004; published 6 December 2004)

Teleportation-based realization of an optical quantum two-qubit entangling gate

Wei-Bo Gao^{a,1}, Alexander M. Goebel^{b,1}, Chao-Yang Lu^{a,1}, Han-Ning Dai^a, Claudia Wagenknecht^b, Qiang Zhang^a, Bo Zhao^a, Cheng-Zhi Peng^a, Zeng-Bing Chen^a, Yu-Ao Chen^{a,2}, and Jian-Wei Pan^{a,b,2}

Purely photonic demonstrations

Fidelity: 84%

Non-deterministic 🗡

No memory for output states

Experimental Teleportation of a Quantum Controlled-NOT Gate

 Yun-Feng Huang,¹ Xi-Feng Ren,¹ Yong-Sheng Zhang,¹ Lu-Ming Duan,^{2,1} and Guang-Can Guo¹
 ¹Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, Peoples Republic of China
 ²Department of Physics and FOCUS Center, University of Michigan, Ann Arbor, Michigan 48109, USA (Received 2 August 2004; published 6 December 2004)

Teleportation-based realization of an optical quantum two-qubit entangling gate

Wei-Bo Gao^{a,1}, Alexander M. Goebel^{b,1}, Chao-Yang Lu^{a,1}, Han-Ning Dai^a, Claudia Wagenknecht^b, Qiang Zhang^a, Bo Zhao^a, Cheng-Zhi Peng^a, Zeng-Bing Chen^a, Yu-Ao Chen^{a,2}, and Jian-Wei Pan^{a,b,2}

Superconducting cavities

Kevin S. Chou^{1,2}*, Jacob Z. Blumoff^{1,2,3}, Christopher S. Wang^{1,2}, Philip C. Reinhold^{1,2}, Christopher J. Axline^{1,2}, Yvonne Y. Gao^{1,2}, L. Frunzio^{1,2}, M. H. Devoret^{1,2}, Liang Jiang^{1,2} & R. J. Schoelkopf^{1,2}*

between two logical qubits

Deterministic teleportation of a quantum gate

Circuit qubit separation: ~ 2 cm

Circuit qubits within the **same device**

Deterministic 🗸

Limited to a **single** teleported gate

Photonic Quantum Networks

Photons make **natural carriers** of quantum information

Photonic Quantum Networks

Photons make **natural carriers** of quantum information

Photonic networks provide a **versatile** and **reconfigurable** interconnect layer for DQC

Photonic Quantum Networks

Photons make **natural carriers** of quantum information

Photonic networks provide a **versatile** and **reconfigurable** interconnect layer for DQC

State-of-the-art quantum network

nted-7 July 2022

Experime certified b	ntal quantum key y Bell's theorem	distribution				
https://doi.org/10.1038/s41586- Received: 29 September 2021 Accepted: 7 June 2022	An elementary entangled opti	quantum network of ical atomic clocks				
	https://doi.org/10.1038/s41586-022-05088-z	B. C. Nichol ^{1,2} , R. Srinivas ¹² , D. P. Nadlinger ¹ , P. Drmota ¹ , D. Main ¹ , G. Araneda ¹ ,				
	Received: 30 November 2021	C. J. Ballance ¹ & D. M. Lucas ¹				

State-of-the-art quantum network

Alice

Robust quantum memory

State-of-the-art quantum network

Alice

Robust quantum memory

State-of-the-art quantum network

Robust quantum memory

Quantum Gate Teleportation: Results

Ideal Process

 $|\psi_{\mathrm{C}}^{\mathrm{AB}}\rangle \to CZ |\psi_{\mathrm{C}}^{\mathrm{AB}}\rangle \in \mathcal{Q}_{\mathrm{C}}^{\otimes 2}$

Quantum Gate Teleportation: Results

Process Tomography

 $\rho \to \mathcal{E}_{CZ}(\rho) \in L\left(\mathcal{Q}_{C}^{\otimes 2}\right)$

Quantum Gate Teleportation: Results

Process Tomography

 $\rho \to \mathcal{E}_{CZ}(\rho) \in L\left(\mathcal{Q}_{C}^{\otimes 2}\right)$

Average gate fidelity to controlled-Z gate: **86.1(9)%**

Circuit qubits in **separate devices**, separated by ~ 2 m

Deterministic 🗸

Robust quantum memory enables **multiple instances** of QGT

Fidelity to Ψ⁺: 97.15(9)%

Rate: ~ 10 s⁻¹

Dynamical decoupling of the **circuit qubits** during **entaglement generation**

Alice storage error: 1.9(4) % Bob storage error: 1.8(5) %

Coherent transfer between circuit and auxiliary qubits

Alice: 0.38(1) % error per transfer

Bob: 0.26(1) % error per transfer

$$U_{\rm A} = egin{cases} S^{\dagger} & ext{if } m_{
m A} \oplus m_{
m B} = 0, \ S & ext{otherwise}, \ U_{
m B} = egin{cases} S & ext{otherwise}, \ S^{\dagger} & ext{otherwise}, \ S^{\dagger} & ext{otherwise}, \ \end{array}$$

Mid-circuit measurement errors result in the wrong conditional unitaries applied

Alice measurement error: 0.091(3)% Bob measurement error: 0.122(3)%

Source	Error					
	Alice	Bob				
Raw entanglement	2.85(9)%					
Mixed-species gate	2.5(2)%	2.0(2)%				
\mathcal{Q}_C decoherence	1.9(4)%	1.8(5)%				
$\mathcal{Q}_{\mathrm{X}} \leftrightarrow \mathcal{Q}_{\mathrm{C}}$ transfer	0.76(3)%	0.52(1)%				
Mid-circuit measurement	0.091(3)%	0.122(2)%				
\mathcal{Q}_{C} rotations	0.016(1)%	0.015(1)%				
Predicted total error	11.9(6)%					

iSWAP gate

Ideal process

Process Tomography

Average gate fidelity to iSWAP gate: **70(2)%**

SWAP gate

Ideal process

Process Tomography

Average gate fidelity to SWAP gate: **64(2)%**

Grover's algorithm executed on a distributed quantum computer

For each **marked state**, we obtain the correct result with an average success rate of **71.4%**

People

Pictured (left to right)

Bethan Nichol David Nadlinger Raghu Srinivas David Lucas (PI) Gabriel Araneda Ellis Ainley Dougal Main Ayush Agrawal Peter Drmota

Not pictured

Péter Juhász Chris Ballance

Our paper is now on arXiv!

Source	Error					
	Alice	Bob				
Raw entanglement	2.85(9)%					
Mixed-species gate	2.5(2)%	2.0(2)%				
\mathcal{Q}_C decoherence	1.9(4)%	1.8(5)%				
$\mathcal{Q}_{\mathrm{X}} \leftrightarrow \mathcal{Q}_{\mathrm{C}}$ transfer	0.76(3)%	0.52(1)%				
Mid-circuit measurement	0.091(3)%	0.122(2)%				
\mathcal{Q}_{C} rotations	0.016(1)%	0.015(1)%				
Predicted total error	11.9(6)%					

Source	Er	ror	Benchmarking a High-Fidelity Mixed-Species Entangling Gate
	Alice	Bob	A. C. Hughes [®] , [†] V. M. Schäfer [®] , ^{*,†} K. Thirumalai [®] , [†] D. P. Nadlinger [®] , S. R. Woodrow, D. M. Lucas, and C. J. Ballance [®] Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OXI 3PU, United Kingdom
Raw entanglement	2.85((9)%	
Mixed-species gate	0.2(1)%	
\mathcal{Q}_C decoherence	1.9(4)%	1.8(5)%	
$\mathcal{Q}_{\mathrm{X}} \leftrightarrow \mathcal{Q}_{\mathrm{C}}$ transfer	0.76(3)%	0.52(1)%	
Mid-circuit measurement	0.091(3)%	0.122(2)%	
\mathcal{Q}_{C} rotations	0.016(1)%	0.015(1)%	
Predicted total error	11.9	(6)%	

Quantum interconnects will be **noisy** and **lossy**

Quantum interconnects will be **noisy** and **lossy**

Entanglement distillation would enable distribution of high-fidelity entanglement

Trapped-Ion Module

Mixed-Species Gates

61

Hyperfine Transfer

Sr-Sr "Raw" Remote Entanglement

Fidelity to nearest Bell-state: 97.15(9) %

Sr-Ca Mixed-Species Remote Entanglement

Fidelity to nearest Bell-state: 94.0(5)%

Ca-Ca Remote Entanglement

Fidelity to nearest Bell-state: 92.9(7)%

Ca memory performance

Sr-Sr-Ca Mixed-Species GHZ State

Fidelity to GHZ state: 92.9(8)%

Sr-Sr-Ca-Ca Mixed-Species GHZ State

	(0000	(1000	{0100 '	(1100	(0010	(1010	(0110	(1110)	(0001	(1001	(0101	(1101	(0011	(1011	(0111)	(1111
0000) -				×		N			8							
1000) -																
0100) -																
1100) -	N															
0010) -					÷											н
1010) -	1					•										1
0110) -																н
1110) -								•								
0001) -	1				÷			\sim	•							/
1001) -																
0101) -	N															N
1101) -	M															
0011) -																
1011) -																
0111) -	*															
1111) -	_				8	N	н		8				ы			
0.5	0.25	0.1	0.01													

Fidelity to GHZ state: 91.6(8)%