Realization of a phononic network with collective modes in trapped ion system

Kihwan Kim's group, Tsinghua university

Wentao Chen

- Bosonic System: Advantage, Limitation and Application
- Phonon: A New Candidate of Realizing Bosonic System
- Trapped Ions: Programmable and Scalable Platforms
- Demonstration: Tomography with Minimum Resources
- Conclusion and Future Plans

Bosonic System: Advantage, Limitation and Application

Why we choose Bosons?

FERMIONS

Fermionic System

- For a system with M two-level fermions(qubits), the Hilbert space of the system is 2^{M}
- Evolution of fermionic system follows the matrix determinants (P problem)

BOSONS

Bosonic System

- For an N mode system with M bosons(N can be much larger than 2), the Hilbert space of the system is N^M
- Evolution of Bosonic system follow the matrix permanents (#Phard problem)

Department of Physics, Tsinghua

ECCTI 2024

Wednesday July 10, 2024 3/28

Partially Programmable Bosonic Systems (Photonic Platforms)

Boson sampler with 60 modes^[1] (2019)

Gaussian boson sampler with 100 modes^[2] (2020)

Gaussian boson sampler with 144 modes with programmable phase^[3] (2021)

- Dimension of Hilbert space of Boson Sampler develop fast with a speed of 10^{14} per year
- Have already realized quantum advantage over the simulation capability of classical computers
- Only input states are programmable for generating different sampling tasks
- Photon loss inside interferometers and the state preparation & detection are non-deterministic

Wang H, Qin J, Ding X, et al. Physical review letters, 2019, 123(25): 250503.
Zhong H S, Wang H, Deng Y H, et al. Science, 2020, 370(6523): 1460-1463.
Zhong H S, Deng Y H, Qin J, et al. arXiv preprint arXiv:2106.15534, 2021.

ECCTI 2024

Wednesday July 10, 2024 4/28

Fully Programmable Bosonic Systems (Photonic Platforms)

Programmable nanophotonic chip with 8 modes^[2] (2020)

- Input states & interferometers are programmable
- Have already demonstrated some quantum algorithms with linear optics
- Still have non-deterministic state preparation & detection with a photon loss

[1] Carolan J, Harrold C, Sparrow C, et al. Science, 2015, 349(6249): 711-716.
[2] Arrazola J M, Bergholm V, Brádler K, et al. Nature, 2021, 591(7848): 54-60.
[3] Hoch F, Piacentini S, Giordani T, et al. arXiv preprint arXiv:2106.08260, 2021.

Applications

Quantum Chemistry^{[1][2]}

Quantum Machine Learning^{[3][4]}

Graph Optimization ^{[5] [6]}

- With additional squeezed input states, a Gaussian boson sampler with more applications can be realized
- How to avoid Boson loss?
- [1] J. Huh, G. G. Guerreschi, B. Peropadre, J. R. McClean, and A. Aspuru-Guzik, Nat. Photonics 9, 615 (2015).
- [2] J. Huh and M.-H. Yung, Sci. Rep. 7, 1 (2017).
- [3] M. Schuld and N. Killoran, Phys. Rev. Lett. 122, 040504 (2019).
- [4] U. Chabaud, D. Markham, and A. Sohbi, arXiv:2102.04579 (2021).
- [5] Bromley T R, Arrazola J M, Jahangiri S, et al. Quantum Science and Technology, 2020, 5(3): 034010.
- [6] Arrazola J M, Bromley T R. Physical review letters, 2018, 121(3): 030503.

ECCTI 2024

Wednesday July 10, 2024 6/28

- Bosonic System : Advantage, Limitation and Application
- Phonon: A New Candidate of Realizing Bosonic System
- Trapped Ions: Programmable and Scalable Platforms
- Demonstration: Tomography with Minimum Resources
- Conclusion and Future Plans

Phonon: Quantized Energy of Harmonic Oscillators

lons trapped in an electric field

- Paul Trap: with DC electric field in z (axial) direction, and RF electric field in x and y (transverse) direction
- With transverse electric field fairly stronger than the axial field, ions will line up along z direction
- The vibration of ions in all directions can be approximately considered as harmonic oscillations^[1], the quantized energy of which is phonons
- Depend on the distance between ions, the Coulomb interaction will affect the vibrational mode of the ion chain
- Local vibration (far and weak); Collective vibration (near and strong)
- Most of the collective modes have an extremely low heating rate (<1 quanta/s) that can provide a good conservation of phonon numbers

Harmonic Oscillators Energy Level

[1] Leibfried D, Blatt R, Monroe C, et al. Reviews of Modern Physics, 2003, 75(1): 281.

Phonon: A New Candidate of Realizing Bosonic System

Exploring Phononic System with Local Vibrational Modes

Hong-Ou-Mandel effect with 2 local vibration^[1] (2015)

Quantum optical emulation with 2 local vibration^[3] (2018)

- Phonons in trapped ion system are indistinguishable, the interference between phonons is a purely quantum effect, the initial state can be deterministically prepared and detected through a sideband transition
- With Coulomb interaction (far and weak) and phonon blockade, we can control the naturally hopping of phonons between two nearest neighbor local vibrational modes
- Limited by nearest neighbor interaction, it takes much longer time to build a fully connected phononic network with local vibrational modes

 [1] Toyoda K, Hiji R, Noguchi A, et al. Nature, 2015, 527(7576): 74-77.
[2] Debnath S, Linke N M, Wang S T, et al. Physical review letters, 2018, 120(7): 073001.
[3] Shen Y, Lu Y, Zhang K, et al. Chemical science, 2018, 9(4): 836-840.

Department of Physics, Tsinghua

Building Phononic System with Collective Vibrational Modes

Collective vibrational modes in axial direction (From Univ. Innsbruck)

- Two Raman beams (blue and red) are used to control the state of ions
- By preparing one ion in an uncontrollable initial state, only the other ion can be addressed by Raman beams to realize a SWAP gate between collective vibrational modes
- Through a full connection between all the ions and modes, a more efficient phonon network is possible
- When the number of ions increase, it's not easy to prepare such an initial state
- How to construct a scalable and programmable system with collective vibrational modes?

Phonon SWAP gate between 2 collective vibrational modes^[1] (2021)

[1] Nguyen C H, Tseng K W, Maslennikov G, et al. arXiv preprint arXiv:2104.04168, 2021.

- Bosonic System : Advantage, Limitation and Application
- Phonon: A New Candidate of Realizing Bosonic System
- Trapped Ions: Scalable and Programmable Platforms
- Demonstration: Tomography with Minimum Resources
- Conclusion and Future Plans

Control Yb⁺ Ions with Lasers

- Our qubit states are encoded in $S_{1/2}$ level with an energy splitting of 12.6GHz
- A 369nm CW laser is used for state detection to get fluorescence from spin up state
- Two 375nm pulsed lasers from different directions are used to realized a two photon Raman transition to drive our qubits.
- The vibrational modes of the ions can be driven in the Raman process with a coupling to our qubits (Jaynes-Cumming model)

Department of Physics, Tsinghua

Department of Physics, Tsinghua

Individual Laser System for Raman Transition

Zhang, S., Lu, Y., Zhang, K. et al. Nat Commun 11, 587 (2020).

• Our Jaynes-Cummings Hamiltonian for interactions between ions and Raman Lasers takes the form:

$$H_{\rm I} \approx \frac{\Omega}{2} \left[\sigma_+ \left(1 + i\eta a {\rm e}^{-i\nu t} + i\eta a^{\dagger} {\rm e}^{i\nu t} \right) {\rm e}^{-i\mu t + i\phi} + {\rm h.c.} \right]$$

• Which can be divided into three parts:

$$\begin{split} H_{\rm car} &= \frac{\Omega}{2} (\sigma_+ {\rm e}^{{\rm i}\phi} + {\rm h.c.}), & {\rm Carrier: \ Rotate \ qubit \ states} \\ H_{\rm rsb} &= \frac{{\rm i}\eta\Omega}{2} (\sigma_+ a {\rm e}^{{\rm i}\phi} - {\rm h.c.}), & {\rm Red \ Sideband: \ Rotate \ qubit \ with \ phonons(-1)} \\ H_{\rm bsb} &= \frac{{\rm i}\eta\Omega}{2} (\sigma_+ a^{\dagger} {\rm e}^{{\rm i}\phi} - {\rm h.c.}), & {\rm Blue \ Sideband: \ Rotate \ qubit \ with \ phonons(+1)} \end{split}$$

Collective Vibrational Modes in Transevers Direction

- By adjusting the detuning of Raman lasers, different transitions will be resonantly driven with different frequency
- Collective vibrational modes offer a full connection between almost all the modes and ions, principally, we can choose one ion to drive almost all the modes

Department of Physics, Tsinghua

Wednesday July 10, 2024 14/28

Realizing a Scalable and Programmable Phononic Network

[1] W Chen, et al. Nature Physics, 2023, 19(6): 877-883.

Department of Physics, Tsinghua

Realizing a Scalable and Programmable Phononic Network

- In this network, phonons (energy) will evolving through different vibrational modes, in fact, it is an energy exchange between modes driven by laser-ion interactions
- All the parts can be programmed including initial state and interferometer through coupling between qubits and modes
- Beam splitters between every two modes can be realized regardless of orders, which means the circuit can be much simpler
- The number of modes increasing with the number of ions, the only thing is to keep the frequency distance between vibrational modes (> 0.05MHz) to reduce off-resonant coupling
- Both Squeezing and Displacement operations can be added to any part of this system^[1], performing a more advanced system such as a Gaussian Boson Sampler

[1] Shen Y, Lu Y, Zhang K, et al. Chemical science, 2018, 9(4): 836-840.

Department of Physics, Tsinghua

Phonon State Preparation with Mode-Ion Coupling

- Modes & ions are mapped by choosing the largest coupling strength (Lamb-Dicke Parameter)
- Individual sideband operations generated from diffractive optics element (DOE) and multi-channel AOM are used to control different modes separately
- With a combination of carrier and sideband operations, preparation of any Fock States can be realized

Phonon State Detection with Mode-Ion Coupling

- The mapping between modes & ions keeps the same with state preparation part
- Adiabatic red sideband transition is used to project different phonon states into each ions' bright or dark state
- With detection beam, different phonon states can be distinguished through ions' fluorescence
- A multi-channel PMT is used to individually ٠ collect each ions' fluorescence

Average detection fidelity: 98.2% Detection Time: 250 us

Trapped Ions: Scalable and Programmable Platforms

Phonon Beam Splitter with Mode-Ion Coupling

By applying two Raman Transitions at the same time,
we realize a spin-dependent^[1] beam splitting
operation

$$U = e^{i\frac{\eta_2\eta_3\Omega^2}{4\Delta}t\sigma_z(a_2a_3^{\dagger}e^{-i\Delta\phi} + a_2^{\dagger}a_3e^{i\Delta\phi})}$$

• The rotating angle and phase are controllable by changing Raman lasers' power and phase

$$\theta(t) = \frac{\eta_2 \eta_3 \Omega^2}{4\Delta} t$$

$$\Delta \phi = \phi_2 - \phi_3$$

- By changing the frequencies of two Raman transitions, any ion can drive the beam splitting operation between two chosen vibrational modes
- The frequency distance between vibrational modes should be large enough (> 0.05MHz) to avoid off-resonant coupling

Department of Physics, Tsinghua

ECCTI 2024

Wednesday July 10, 2024 19/28

Numerical Simulation of the Influence of

Numerical Simulation of the Influence of Systematic Induced Error

Department of Physics, Tsinghua

- Bosonic System : Advantage, Limitation and Application
- Phonon: A New Candidate of Realizing Bosonic System
- Trapped Ions: Programmable and Scalable Platforms
- Demonstration: Tomography with Minimum Resources
- Conclusion and Future Plans

Phonon State Tomography with Ancillary Modes

PHYSICAL REVIEW LETTERS 121, 250402 (2018)

Multiphoton Tomography with Linear Optics and Photon Counting

Leonardo Banchi, W. Steven Kolthammer, and M. S. Kim QOLS, Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom

- With 2 vacuum modes used as ancillary modes, for a 2-mode input system, we can realize a <u>one-time reconstruction</u> of the input state from output probabilities regardless of phonon numbers
- The Hilbert space of the system can be easily extended with the same interferometer without any change, which reduce the need of quantum resources to a minimum level
- Based on the pre-knowledge of total input phonon number, only possible output state will be considered
- Phononic system can provide a good conservation of total phonon number

Demonstration: Tomography with Minimum Resources

Reconstruction Fidelity: 94.5%

[1] W Chen, et al. Nature Physics, 2023, 19(6): 877-883.

Demonstration: Tomography with Minimum Resources

[1] W Chen, et al. Nature Physics, 2023, 19(6): 877-883.

- Bosonic System : Advantage, Limitation and Application
- Phonon: A New Candidate of Realizing Bosonic System
- Trapped Ions: Programmable and Scalable Platforms
- Demonstration: Tomography with Minimum Resources
- Conclusion and Future Plans

Frequency Spectrum of 32 ions in a linear chain^[1]

- Using phonons which provide a good total number conservation for a bosonic system
- Our sideband transition provides a deterministic state preparation and detection of phonon states
- Realized a scalable and programmable phononic network to demonstrate a tomography experiment
- We can Further Scaling up the network by increasing number of ions, now the most advanced system of trapped ion can have a 32 linear ion chain (IonQ)
- Our system also have capability of performing Gaussian Boson Sampling^[2] with Phonon-numberresolving detection^[3] for more applications

[1] Rev. Mod. Phys. 93, 025001 (2021)
[2] Huh J., et al., Nature Photon 9, 615–620 (2015).
[3] S. An, et al., Nature Phys. 11, 193 (2015).

Department of Physics, Tsinghua

Acknowledgement

Acknowledgement

Department of Physics, Tsinghua University

On Photo: -Jialiang Zhang -Jingfan Yu -Mu Qiao -Zinan Zhou

-Xiaolu Su -Kihwan Kim (Prof.) -Zhengyang Cai -Pengfei Wang -Chunyang Luan -Tianhui Wang -Wentao Chen -Haonan Tian

Yao Lu

Shuaining Zhang

Department of Physics, Imperial College London

M.S. Kim (Prof.)

Leonardo Banchi

c_wentao@163.com

http://info.phys.tsinghua.edu.cn/kimkihwan/