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Quantum Computing: Two key ingredients



©️ 2024 Oxford Ionics Limited, all rights reserved

            

  
  

  

Why All-Electronic Control?

Great quantum-logic performance

Ions are great qubits

No photon scattering errors

Stable, low noise sources readily available

Scaling to many qubits

Easily integrated into trap

Well established gates

Global parallel control I0 cosωt

B

LASER



A crash course of our 
electronic control
1-qubit logic gates, addressing, 
and 2-qubit logic gates
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Near-field microwaves
Trap integrated antenna
High field gradient (>100 T/m per A)

Control signals near qubit frequency

Cryogenic traps
Very low heating rates

(~ 1 quanta / s in radial com modes)

Reduced resistance
Larger current for given input power

SHELVING
729 nm

QUBIT
240 MHz

ADDITIONAL LOW-POWER LASERS FOR 
COOLING AND REPUMPING

Our system
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Partial nulling in the near field
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Road to selective operations
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Position dependent Rabi-frequency
Controlling 1-Qubit rotations through DC electrodes
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Selective 1Q logic operations
Addressing logic operations
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Measured 1Q logic performance
Running 1QRB in 7 zones

PClifford ≥99.999% Pcross-talk ≤0.0003%

7 ACTIVE, 0 HIDDEN

1 2 3 4 5 6 7
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0 ACTIVE, 7 HIDDEN
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But we also need 
two-qubit gates!

We can parallelise & address individual qubits…
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How do we do two-qubit gates
Near field microwave & spin dependent forces

SEE E.G.
C. Ospelkaus et al., Phys. Rev. Lett. 101, 090502 (2008)
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99.97% Fidelity
The best Bell-state ever measured?
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99.97% Fidelity
The best Bell-state ever measured?

Limited by qubit frequency 
instability

No fundamental limitations at 
the 10-4 level

Ongoing work to measure 
fidelity via randomised 
benchmarking
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But does it scale to truly 
large devices?

So we have world class logic operations…
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Unit Cells in a QCCD

Challenge of unit cell in QCCD architecture
Power consumption

Footprint

IO count

Challenging per unit cell logic control
No per-cell Modulator footprints 
(optical or microwave)

Challenge of scaling slow-down
No need to serialise gates on different ions

Challenge of power consumption
Few high current sources/integrated modulators

Global parallel control
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Quantum Computing: Two key ingredients
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Thanks for listening
Where can you find the team this week?

Website: 
oxionics.com

Get in touch:
info@oxionics.com

careers@oxionics.com

Grab us for a chat:

Clemens Matthiesen
Science Team Lead

Marius Weber
Quantum Scientist
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1 Qubit logic measurements
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Two-loop Mølmer–Sørensen gate

Walsh-1 modulation to reduce sensitivity 
to changes in motional frequency

Pulse shaping to reduce residual excitation 
from off-resonant coupling

Duration 120 μs

Time (μs)

Phase difference 
between tones

Rabi 
frequency

Fast entangling gates

SEE E.G.
D. Hayes et al., Phys. Rev. Lett. 109, 020503 (2012)
G. Zarantonello et al., Phys. Rev. Lett. 123, 260503 (2019)
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2 Qubit gate addressing
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Mw-driven two-qubit gates
(lower bound of CI)

99.97% Fidelity


