oxford lonics

All-Electronic Control for Scalable, High-Fidelity Ion-Qubits

MARIUS WEBER

8 JULY 2024

Innsbruck, Austria

Quantum Computing: Two key ingredients

©️ 2024 Oxford Ionics Limited, all rights reserved

Why All-Electronic Control?

Great quantum-logic performance

- Ions are great qubits
- No photon scattering errors $\cdot \cdot \cdot$
- Stable, low noise sources readily available

Scaling to many qubits

- Easily integrated into trap \cdots
- Well established gates eije
- \cdots

A crash course of our electronic control

1-qubit logic gates, addressing, and 2-qubit logic gates

Our system

Near-field microwaves

- **Trap integrated antenna** *High field gradient (>100 T/m per A)*
- **EDIE:** Control signals near qubit frequency

Cryogenic traps

- **Wery low heating rates**
	- (~ 1 quanta / s in radial com modes)
- **Reduced resistance** *Larger current for given input power*

Road to selective operations

Partial nulling in the near field

Position dependent Rabi-frequency

Controlling 1-Qubit rotations through DC electrodes

Selective 1Q logic operations

Addressing logic operations

Measured 1Q logic performance

Running 1QRB in 7 zones

©️ 2024 Oxford Ionics Limited, all rights reserved

We can parallelise & address individual qubits…

But we also need two-qubit gates!

How do we do two-qubit gates

Near field microwave & spin dependent forces

Position along y-axis (μm)

SEE E.G. C. Ospelkaus et al., Phys. Rev. Lett. 101, 090502 (2008)

99.97% Fidelity

The best Bell-state ever measured?

99.97% Fidelity

The best Bell-state ever measured?

- Limited by qubit frequency $\dddot{\mathbf{r}}$ instability
- $\frac{1}{2}$ No fundamental limitations at the 10-4 level
- \cdots Ongoing work to measure fidelity via randomised benchmarking

So we have world class logic operations…

But does it scale to truly large devices?

Unit Cells in a QCCD

Global parallel control

Challenge of unit cell in QCCD architecture

- Power consumption
- Footprint
- IO count

Challenging per unit cell logic control

No per-cell Modulator footprints \cdots : (optical or microwave)

Challenge of scaling slow-down

 \cdots No need to serialise gates on different ions

Challenge of power consumption

Few high current sources/integrated modulators \ddots ;

QUANTUM PROCESSOR

UNIT CELL

R

Trapped ion qubits Local tuning electrodes

DC E-fields

R

Quantum Computing: Two key ingredients

©️ 2024 Oxford Ionics Limited, all rights reserved

Thanks for listening Where can you find the team this week?

Grab us for a chat:

Clemens Matthiesen Science Team Lead

Marius Weber Quantum Scientist info@oxionics.com

 2 Department of Physics, University of Oxford, Ox_1 and Ox_1 and Ox_2 and Ox_1 and Ox_2 and Ox_1 and Ox_2 and Ox_1 and Ox_2 and Ox_1

careers@oxionics.com

Website: oxionics.com

muitore immira

1 Qubit logic measurements

Fast entangling gates

- **"[#] Two-loop Mølmer–Sørensen gate**
- \therefore Walsh-1 modulation to reduce sensitivity to changes in motional frequency
- **Pulse shaping to reduce residual excitation** from off-resonant coupling
- Duration 120 μs $\dddot{\mathbf{r}}$

SEE E.G.

D. Hayes et al., Phys. Rev. Lett. 109, 020503 (2012) G. Zarantonello et al., Phys. Rev. Lett. 123, 260503 (2019)

2 Qubit gate addressing

99.97% Fidelity

Mw-driven two-qubit gates (lower bound of CI)

- Oxford 2016
- Sussex 2016
- Hannover 2019a
- Hannover 2019b
- NIST 2021a
- NIST 2021b
- Siegen 2023
- Oxford 2023
- Siegen 2024
- Oxford Ionics 2024