oxford oncs

All-Electronic Control for Scalable, High-Fidelity Ion-Qubits

MARIUS WEBER

8 JULY 2024 Innsbruck, Austria

Quantum Computing: Two key ingredients

© 2024 Oxford Ionics Limited, all rights reserved

Why All-Electronic Control?

Great quantum-logic performance

- Ions are great qubits
- No photon scattering errors
- Stable, low noise sources readily available

Scaling to many qubits

- Easily integrated into trap
- Well established gates
- 💮 Global parallel control

A crash course of our electronic control

1-qubit logic gates, addressing, and 2-qubit logic gates

Our system

Near-field microwaves

- Trap integrated antenna High field gradient (>100 T/m per A)
- Control signals near qubit frequency

Cryogenic traps

- - (~ 1 quanta / s in radial com modes)
- Reduced resistance Larger current for given input power

Road to selective operations

Partial nulling in the near field

Position dependent Rabi-frequency

Controlling 1-Qubit rotations through DC electrodes

Selective 1Q logic operations

Addressing logic operations

Measured 1Q logic performance

Running 1QRB in 7 zones

P_{Clifford} ≥99.999%

© 2024 Oxford Ionics Limited, all rights reserved

We can parallelise & address individual qubits...

But we also need two-qubit gates!

How do we do two-qubit gates

Near field microwave & spin dependent forces

Position along y-axis (µm)

SEE E.G. C. Ospelkaus et al., Phys. Rev. Lett. 101, 090502 (2008)

99.97% Fidelity

The best Bell-state ever measured?

99.97% Fidelity

The best Bell-state ever measured?

- Limited by qubit frequency instability
- No fundamental limitations at the 10⁻⁴ level
- Ongoing work to measure fidelity via randomised benchmarking

So we have world class logic operations...

But does it scale to truly large devices?

Unit Cells in a QCCD

Global parallel control

Challenge of unit cell in QCCD architecture

- Power consumption
- 👾 Footprint
- 🔅 IO count

Challenging per unit cell logic control

No per-cell Modulator footprints (optical or microwave)

Challenge of scaling slow-down

No need to serialise gates on different ions

Challenge of power consumption

Few high current sources/integrated modulators

QUANTUM PROCESSOR

Quantum Computing: Two key ingredients

© 2024 Oxford Ionics Limited, all rights reserved

C. M. Löschnauer,¹ J. Mosca Toba,¹ A. C. Hughes,¹ S. A. King,¹ M. A. Weber,¹ R. Srinivas,^{1,2} R. Matt,¹ ^D Month 1 D T C Allocal 1.3 C I Rollance 1.2 C Matthiocon 1 M Malinoweli 1, * and T P Hartyl Thanks for listening Where can you find the team this we

Grab us for a chat:

Clemens Matthiesen Science Team Lead

Marius Weber Quantum Scientist info@oxionics.com

Scalable, high-fidelity all-electronic control of trapped-ion qubits

²Department of Physics, University of Oxford, Oxford, OX1 3PU, UK

careers@oxionics.com

Website: oxionics.com

1 Qubit logic measurements

Number of Clifford gates

Fast entangling gates

- 👾 Two-loop Mølmer–Sørensen gate
- Walsh-1 modulation to reduce sensitivity to changes in motional frequency
- Pulse shaping to reduce residual excitation from off-resonant coupling

 \therefore Duration 120 µs

SEE E.G.

D. Hayes et al., Phys. Rev. Lett. 109, 020503 (2012)G. Zarantonello et al., Phys. Rev. Lett. 123, 260503 (2019)

2 Qubit gate addressing

99.97% Fidelity

Mw-driven two-qubit gates (lower bound of CI)

- Oxford 2016
- Sussex 2016
- Hannover 2019a
- Hannover 2019b
- NIST 2021a
- VIST 2021b
- Siegen 2023
- Oxford 2023
- Siegen 2024
- ★ Oxford Ionics 2024