

The Inverse Compton Scattering X-ray source of the ELSA accelerator at CEA-DAM

Abel PIRES (CEA DAM, LMCE)

A.-S. CHAUCHAT - M. COLLET - V. LE FLANCHEC - J. RIFFAUD - R. ROSCH (CEA DAM, LMCE) N. DELERUE (IJCLab, CNRS)

23/11/2023

- **1.** Introduction
- 2. The Inverse Compton X-ray Source at ELSA
- **3. 4. 5. 6. 7. 8.** Strategy for Source Optimization
- 9. Conclusion

Compton Scattering and Inverse Compton Scattering

Compton Scattering

> Transfer of energy from the photon to the electron

Inverse Compton Scattering

Transfer of energy from the electron to the photon \geq

Inverse Compton Scattering

Inverse Compton X-ray Source

Inverse Compton X-ray Source : (laser + electron bunch \rightarrow X-ray)

Monochromatic and directional radiation sources with high temporal resolution

- Compton scattering cross section is very small
 - \rightarrow need lot of efforts to increase yield

- Compact X-ray source for diagnostic characterization (for Laser Mega Joule)
- versatile : single shot (primary use) recurrent

> 532 or 1064 nm laser ($E_p = 2,3$ or 1,1 eV) + relativistic electrons ($E_e = 17 - 30 MeV$)

$$\rightarrow$$
 X-ray photons $E_X = 5 - 33 \ keV$

$$\mathbf{E}_X(\mathbf{\theta}_2=\mathbf{0})=4\gamma^2 E_p$$

ELSA Accelerator (CEA DAM, France)

Typical bunch charge : 0.1 - 3 nCBunch duration : 15 - 100 ps1 - 10000 bunches per train (1 - 5 Hz)Emittance : 2 - 30 µm

Important parameters

For the electron beam, need at the same time : > High bunch charge (0,1-2 nC) > Short bunch (0,1-30 ps) > Good emittance (0,1 – 5 µm.rad) > High energy (> 10s MeV - GeV) + Small energy dispersion, Compactness, High repetition rate, Versatility (energy range, rep. rate..)...

Hard to optimize all of this on an existing machine More room for optimization on new design (compact storage ring, ERL, X-band linac..,)

Comparisons of different kind of ICS sources

- Higher energy X-ray for nuclear physics (~MeV X-rays/γ) eg., HlγS (FEL storage ring)
 > 175 nm FEL (E_p = 7,1 eV) + relativistic electrons (E_e = 1,11 GeV) → X-ray photons E_X = 130 MeV
- Very high-energy X-ray sources for high-energy physics (~GeV X-rays/γ) eg., Laser Electron Photon beamline at SPring-8 (LEPS, synchrotron)
 > 351 nm laser (E_p = 3,5 eV) + relativistic electrons (E_e = 8 GeV) → X-ray photons E_X = 2,9 GeV
 ✓ For high energy electrons, E_X < 4γ²E_p/(1+γ²θ₂²+α²/4} due to recoil

$$E_X(\theta_2 = 0) = 4\gamma^2 E_p$$

10

Introduction

Introduction Comparisons of different kind of ICS sources

eg., ELSA (linac, versatile : pulsed single shot or recurrent) > 532 or 1064 nm laser ($E_p = 2,3$ or 1,1 eV) + relativistic electrons ($E_e = 17 - 30 MeV$) \rightarrow X-ray photons $E_X = 5 - 33 keV$

eg., HIγS (FEL storage ring)

> 175 nm FEL ($E_p = 7,1 eV$) + relativistic electrons ($E_e = 1,11 \text{ GeV}$) $\rightarrow X$ -ray photons $E_X = 130 \text{ MeV}$

eg., THOMX (compact storage ring : recurrent) > 1030 nm laser ($E_p = 1 \ eV$) + relativistic electrons ($E_e = 50 \ MeV$) \rightarrow X-ray photons $E_X = 45 \ keV$

Introduction Comparisons of different laser interaction system

eg., THOMX (compact storage ring : recurrent)Fabry-Perot Cavity

Ravons X

eg., SLEGSRotating laser optical system

23/11/2023

2 The Inverse Compton X-ray Source at ELSA

The Inverse Compton X-ray Source at ELSA

Top view of the interaction point

The Inverse Compton X-ray Source at ELSA First Experimental results in 2010 (without SMILE)

<u>"Instrumentation developments for production and</u> <u>characterisation of Inverse Compton Scattering X-rays</u> <u>and first results with a 17 MeV electron beam,</u>" Nucl. Instrum. Meth. A, vol. 622, pp. 129-135, 2010, Author : Anne-Sophie Chauchat https://doi.org/10.1016/j.nima.2010.07.034

<u>Étude de la production de ayonnement X par</u> <u>diffusion Compton sur l'installation ELSA</u> Author : Anne-Sophie Chauchat

https://theses.hal.science/tel-00652588

2011 experiments	17 MeV			
Electron beam				
Kinetic Energy (MeV)	17			
Bunch Charge (pC)	200			
Emittance (µm H-V)				
rms spot size (µm H-V)	100 - 80			
Bunch duration (ps)	30			
Laser beam				
Wavelength (nm)	532			
Pulse energy (mJ)	0,2			
rms spot size (µm H-V)	40 - 65			
Pulse duration (ps)	30			
X-rays				
Energy (keV)	11			
Half angle of radiation (mrad)	10 (30)			
Nb of photons per bunch	2,3 (3,7)			
Peak photon flux (ph/s)	7,6 10 ¹⁰ (1,2 10 ¹¹)			
Average flux (ph/s)	3,4 10 ³ (5,4 10 ³)			

The Inverse Compton X-ray Source at ELSA

Experimental results in 2016

With 17,7 MeV and 30 MeV electrons

2016 experiments	17.7 MeV		30 MeV	
Electron beam				
Kinetic Energy (MeV)	17.7		30	
Bunch Charge (pC)	400		400	
Emittance (µm H-V)	7.8 - 18.9		21 - 45	
rms spot size (µm H-V)	105 - 73		125 - 180	
Bunch duration FWHM (ps)	34		25	
Laser beam				
Wavelength (nm)	532		532	
Pulse energy (mJ)	2 (0,25 without SMILE)		2 (0,25 without SMILE)	
rms spot size (µm H-V)	84 - 64		79-101	
Pulse duration FWHM (ps)	34		25	
X-rays				
Energy (keV)	12		33	
Half angle of radiation (mrad)	10	(24)	10	(13)
Nb of photons per bunch	110	(340)	293	(908)
Peak photon flux (ph/s)	3,2 10 ¹²	(1 10 ¹³)	1,2 10 ¹³	(3,6 10 ¹³)
Average flux (ph/s)	2,9 10 ⁴	(8,8 104)	2,0 10 ⁴	(6,2 104)

"Inverse Compton scattering X-ray source yield optimization with a laser path folding system inserted in a pre-existent RF linac," Nucl. Instrum. Meth. A, vol. 840, pp. 113-120, 2016, Author : Annaïg Chaleil

bel Pires

https://doi.org/10.1016/j.nima.2016.10.008

Développement d'une source de rayonnement X par diffusion Compton inverse sur l'accélérateur ELSA et optimisation à l'aide d'un système d'empilement de Photons

Author : Annaïg Chaleil

https://hal.science/tel-01435076/

The Inverse Compton X-ray Source at ELSA

Pitfalls:

Strategy for Source Optimization

Solutions :

Beams alignment Interaction **Re-design** the interaction **Mechanical stability** area (SMILE 2) area Using the laser at 1064nm **Efficiency of frequency doubling** instead of 532nm with a remote alignment method Laser **Laser Induced Damage Threshold** (LIDT) Temporal stretching by CPA **Non-linear effects** (Chirped Pulse Amplification) Twiss parameters and charge **Space charge effects** that maximize X-ray yield **Bunch duration** Using a decelerating 1.3 GHz cavity to **Electrons** achieve linear chirp before compression **Bunch energy** Upgrading the 1.3 GHz cavity and Klystron system Abel Pires

Barea (SMILE 2) Re-design the interaction

Strategy for Source Optimization

Summary

Solutions : **Pitfalls**: **Beams alignment** Interaction **Re-design the interaction Mechanical stability** area (SMILE 2) area Using the laser at 1064nm **Efficiency of frequency doubling** instead of 532nm with a remote alignment method Laser **Laser Induced Damage Threshold** (LIDT) **Temporal stretching by CPA Non-linear effects** (Chirped Pulse Amplification) Twiss parameters and charge **Space charge effects** that maximize X-ray yield Using a decelerating 1.3 GHz cavity to **Electrons** Upgrading the 1.3 GHz cavity **Bunch energy** Abel Pires 23/11/2023

Re-design the interaction area (SMILE 2) 3D view of the interaction point and SMILE device

SMILE :

View of the laser impacting the mirrors surfaces

Re-design the interaction area (SMILE 2) Schematic of SMILE

View of the laser impacting the mirrors surfaces

Counterintuitiveto use a multipass system for a single shot interaction,but efficient (primary use of ELSA Compton source)23/11/202322

cea

Re-design the interaction area (SMILE 2) Optomechanical design for high angular precision

25 cm

Re-design the interaction area (SMILE 2) Optomechanical design for high angular precision

Re-design of the interaction area (SMILE 2) Release constraints due to tightening and pumping

Re-design of the interaction area (SMILE 2) Motorization and new laser entrance

SMILE 2 :

- motorization with piezo actuator = fine thread screw driven by a piezo or manually
- new design of the laser entrance mirror system :
 - →<u>No mechanical link</u> with the external structure

Re-design of the interaction area (SMILE 2)

Photos of the system evolution

SMILE

SMILE 2 : operational

Strategy for Source Optimization

Summary

Using the laser at 1064nm with a remote alignment method

Using the laser at 1064nm with a remote alignment method

Schematic of SMILE

Using the laser at 1064nm with a remote alignment method Imaging beam alignment with cameras

Using the laser at 1064nm with a remote alignment method Image of the SMILE mirors

Without laser beam

Camera 1 looking at mirrors of plate 1

Camera 2 looking at mirrors of plate 2

Using the laser at 1064nm with a remote alignment method Laser positions on the mirors

With laser beam

Camera 1 looking at mirrors of plate 1

Camera 2 looking at mirrors of plate 2

Using the laser at 1064nm with a remote alignment method

Remote method, possibility to automatize

Strategy for Source Optimization

Summary

5 Temporal stretching by CPA (Chirped Pulse Amplification)

Temporal stretching by CPA (Chirped Pulse Amplification)

CPA system overview

- Non-linear effects

Specificity :

- Nd:YAG at 1.064 µm, bandwidth: 250 pm
- (very narrow bandwidth for CPA)
- high line density (1850 l/mm),
- high laser resistance
- high efficiency (> 96%)
- angle of incidence = 78°
- 2° apart from the Littrow angle to enhance dispersion
- distance between gratings = 1.7 m

Status :

System designed and delivered properly, started alignement

Temporal stretching by CPA (Chirped Pulse Amplification)

Gratings efficiency map

Temporal stretching by CPA (Chirped Pulse Amplification) SEM imaging of the gratings

(credit : Plymouth Grating Laboratory)

Strategy for Source Optimization

Pitfalls:

Summary

Solutions

Mesured emittances

Double alpha magnet compressor

Simulations codes

Some simulation codes that consider space charge

CST PS (Dassault System)

- + Electrodynamic
- + Field maps
- In the laboratory frame
- Slow
- Static mesh, need a lot of meshcells
- Not specific to accelerator physic
- Can't perform optimization task easily
- Can't simulate Compton interaction
 - \rightarrow Already in use in the lab for RF simulation

TraceWin (CEA Saclay)

- + Transfer Matrix or field maps
- + Specific to accelerator physic
- + Fast
- + Can perform optimization task easily
- + Adapt mesh at each time step
- In the reference particle frame
- Electrostatic
- Can't simulate Compton interaction
 - \rightarrow Already in use in the lab

RF-Track (CERN)

- + Field maps
- + Electrodynamic
- + Specific to accelerator physic
- + Fast
- + Can perform optimization task easily
- + Can simulate Compton interaction
- + Adapt mesh at each time step
- In the laboratory frame
 - → Starting to use it now, thanks Andrea Latina !

Twiss parameters and charge that maximize X-ray yield Using transfer matrix in TraceWin

🔅 Tra	aceWin								-		×
Project	t Process C	Optimisation Op	otions Char	ts[2]	Help Ex	æ					
	11 m	Auto calculatio	m								
~											
Ø		D:/ELSA/Trace	Win/jules/line	ariseur_	q_1_10№	1/lineariseur	_q_1_10M.	ini			_ N
Main	Matching	Multiparticle	Output	Edit	Data	Charts	Errors	VA			
	🔍 🚳 👌	🍯 🕽 🗶	# 🥏	0	D:/ELSA	/TraceWin/E	LSA_v1_C	ompton.	.dat		
	1.0.00										4
103	drift 13.46 3										
170	aritt 146.54	33									
171	; Entree alpha ALPHA_MAG	1 GNET -40.71 1 3	31								
172	DRIFT 137.5	33000									
	VARIABLE LO	quad 103,2									
	VARIABLE f guad 1-2.1										
	VARIABLE f VARIABLE f	quad_2 2.6 quad_3 -2.15									
173	quad Lquad	f_quad_1 33									
174	DRIFT 112.2	33000									
175	quad Lquad	f_quad_2 33									
176	DRIFT 112.2	33000									
177	quad Lquad	f_quad_3 33									
178	; Entree alpha	33000 a 2									
179	ALPHA_MAG	5NET -40.71 1 3	31								
180	drift 1 33										
181	drift 224 33										
\ 🗋 c		al. results /\ Ad	iv0 /\Partr	an /\{	Beta /						
_											
			51.3	7 mn			Fr	ee mem	ory: 79%	6	

The final matrix of a fraction of a alpha magnet (on which, X_s and θ_s are kept almost constant) :

Twiss parameters and charge that maximize X-ray yield Using fields maps in CST

Twiss parameters and charge that maximize X-ray yield Mesh in CST vs TraceWin

3D mesh cells for PIC algorithm and space charge computation

Twiss parameters and charge that maximize X-ray yield V PIC in CST vs TraceWin

Twiss parameters and charge that maximize X-ray yield Key steps from laboratory frame to reference frame

Twiss parameters and charge that maximize X-ray yield Finally, good agreement between CST and TraceWin

Good agreement between CST and TraceWin even for higher charges

Twiss parameters and charge that maximize X-ray yield Space charge effects maybe not as important as expected

m.mrad]	2.2 × 10 Special PIC Solver Parameters PIC General Waveguide Min. emitted current 0.0 Min. emitted current 0.0 C (per particle) Min. emitted charge 0.0 C (per particle) Neglect space charge effect	\times
<u>∎</u> 10 ² <i>X</i>	Calculate losses Calculate losses Start time: 0.0 End time: 0.0 Multipacting Enable solver stop Intervals: 2	$\begin{bmatrix} \mathbf{v} & 10 \\ \mathbf{v} & 0 \\ -10 \\ \mathbf{v} & \mathbf{s}[m] \end{bmatrix} \begin{bmatrix} \mathbf{v} & 10 \\ \mathbf{v} & 10 \\ \mathbf{v} & 10 \\ \mathbf{v} & \mathbf{s}[m] \end{bmatrix} \begin{bmatrix} \mathbf{v} & 10 \\ \mathbf{v} & \mathbf{v} \\ \mathbf{v} & \mathbf{v} \\ \mathbf{s}[m] \end{bmatrix} \begin{bmatrix} \mathbf{v} & 10 \\ \mathbf{v} & \mathbf{v} \\ \mathbf{v} & \mathbf{v} \\ \mathbf{v} & \mathbf{v} \\ \mathbf{s}[m] \end{bmatrix} \begin{bmatrix} \mathbf{v} & \mathbf{v} \\ \mathbf{v} & \mathbf{v} \\ \mathbf{v} & \mathbf{v} \\ \mathbf{v} & \mathbf{v} \\ \mathbf{s}[m] \end{bmatrix} \begin{bmatrix} \mathbf{v} & \mathbf{v} \\ \mathbf{v} \\ \mathbf{v} & \mathbf{v} \\ \mathbf{v} \\ \mathbf{v} & \mathbf{v} \\ $
101	Exp. base: 1.1 Monte Carlo Collisions Data Input	nc Same input, but space charge is neglected
	OK Cancel	in one simulation (CST q = 0 nC)

Twiss parameters and charge that maximize X-ray yield Most important : good matching at the entrance

Abel Pires

Cez

Strategy for Source Optimization

Summary

Pitfalls: **Beams alignment** Interaction **Re-design the interaction Mechanical stability** Using the laser at 1064nm **Efficiency of frequency doubling** instead of 532nm with a remote alignment method Laser **Laser Induced Damage Threshold** (LIDT) **Temporal stretching by CPA Non-linear effects** (Chirped Pulse Amplification) Twiss parameters and charge **Space charge effects** that maximize X-ray yield **Bunch duration** Using a decelerating 1.3 GHz cavity to **Electrons** achieve linear chirp before compression **Bunch energy** Upgrading the 1.3 GHz cavity

23/11/2023

Using a decelerating 1.3 GHz cavity to achieve linear chirp before compression

Decelerating 1.3 GHz cavity to linearize chirp ELSA Accelerator (CEA DAM, France)

- We aim for shorter bunch duration, this contributes to optimize the flux. A way to obtain shorter bunch is to linearize the chirp before magnetic compression
- An alpha magnet induces a linear magnetic compression similar to a chicane which means that a linearly chirped bunch will be correctly compressed (better than a quadratically chirped bunch as we had until then)

Decelerating 1.3 GHz cavity to linearize chirp

Installation of the 1.3 GHz cavity between two 433 MHz cavities

Before and after installation of the 1.3 Ghz cavity (Martin COLLET and Vincent JACOB)

Decelerating 1.3 GHz cavity to linearize chirp Linearize chirp with appropriate phases

Decelerating 1.3 GHz cavity to linearize chirp Compression with and without linearizer

Cez

Abel Pires

Strategy for Source Optimization

Pitfalls:

Summary

Solutions

O Upgrading the 1.3 GHz cavity and Klystron system

Upgrading the 1.3 GHz cavity and Klystron system Third phase of renewal (144 MHz and 433 MHz already done)

- Current 1.3 GHz system
- We can do :
 - 30 MeV, **10 µs**
 - (~1400 bunches per train at 144 MHz)
- Klystron THALES TV2022
 - Pulse duration 10 µs
 - Power 20 MW
 - Constraints : pulse duration and power
- Cavities
 - Standard copper structure (elliptical cells)
 - 2 times 5 cells, coupled
 - Constraints : 13 MV/m maximum accelerating gradient, only 10 cells

- Future 1.3 GHz system
- Need :
 - 40 MeV, **100-200 µs,** 10 Hz
 - (~28500 bunches per train at 144 MHz)
- Klystron :
 - (Two ?) Klystron(s) with longer pulse duration and high power
- Cavities
 - New cavities, to achieve higher number of cells
 - eg. twice 2 times 5 cells = 20 cells
 - or 4 times 3 cells = 12 cells
 - Or higher gradients in the cells (17 MV/m)

Upgrading the 1.3 GHz cavity and Klystron system Possible positions for new cavities

9 Conclusion

Strategy for Source Optimization Optimization for single shot and recurrent mode

	2	016	Upgrade	
Electron beam				
Kinetic Energy (MeV)	30		7	\bigcirc
Bunch Charge (pC)	400		7	\bigcirc
Emittance (µm H-V)	21	- 45	Ы	Ō
rms spot size (µm H-V)	125	- 180	Ы	\bigcirc
Bunch duration FWHM (ps)		25	И	Ō
Laser beam				
Wavelength (nm)	532		532 or 1064	\bigcirc
Pulse energy (mJ)	2 (0.25 wit	hout SMILE)	777	
rms spot size (µm H-V)	79	-101	Ы	\mathbf{i}
Pulse duration FWHM (ps)		25	Ы	\bigcirc
X-rays				
Energy (keV)		33	larger range	\bigcirc
Half angle of radiation (mrad)	10	(13)	Ы	\bigcirc
Nb of photons per bunch	293	(908)	7777	$\bigcirc \bigcirc $
Peak photon flux (ph/s)	2.3 10 ¹³	(7.1 10 ¹³)	777777	\mathbf{O}
Peak surface photon flux (ph/s/cm ²) (detector located at 800mm)				
Average flux (ph/s)	2.0 104	(6.2 104)	7777	$\bigcirc \bigcirc $

Expectations :

- Very high yield increase for single shot mode
- Abel Pires High yield increase recurrent mode

	Re-design the interaction area (SMILE 2)
	Using the laser at 1064nm instead of 532nm with a remote alignment method
\bigcirc	Temporal stretching by CPA (Chirped Pulse Amplification)
0	Twiss parameters and charge that maximize X-ray yield
0	Using a decelerating 1.3 GHz cavity to achieve linear chirp before compression
0	Upgrading the 1.3 GHz cavity and Klystron system

Conclusion - Prospect

Work under progress (related to this presentation) :

- CPA System parts received alignment in progress right now.
- Finalization of the installation of SMILE 2
- Relocation of the whole system on ELSA
- Finalization of simulations
 - \rightarrow benchmark TraceWin, CST and RF-Track, compare with experiments
 - \rightarrow optimize transport with realitistic parameters to maximize ICS X-ray flux
 - Compton source experiments on ELSA : dec 2023 Feb 2024
 - \rightarrow Achieve flux as high as possible
 - \rightarrow Characterize the source parameters with appropriate diagnostics

Long term prospect :

- Automatization of SMILE alignment
- Studies under way for the upgrade of the new 1.3 GHz cavity/klystron/modulator system.

THANK YOU

Special thanks to :

Jules AMICO Anne-Sophie CHAUCHAT Martin COLLET Vincent JACOB Vincent LE FLANCHEC Jonathan RIFFAUD Rudolf ROSCH Jérome TOUGUET (CEA DAM, LMCE) Nicolas DELERUE (IJCLab, CNRS)

Abel Pires :

Vincent LE FLANCHEC :

abel.pires@cea.fr

vincent.le-flanchec@cea.fr

History

- 1922: Arthur Holly Compton conducts an experiment demonstrating that electrons and photons are particles.
 - Study of the collision between X-ray photons and electrons at rest

> Observation: decrease in photon energy after the collision (increase in wavelength)

> Note : elastic scattering, kinetic energy is conserved

 $E_{\rm p} = 2, 3 \, {\rm eV}$

Back-scattered Photon

 $\theta_{1/2} =$ 27,6 mrad

69

E.

 $\theta_{1/2} = \frac{1}{\gamma}$

23/11/2023

Incident Laser Photon

BACK-UP SLIDES

Compton Scattering and Inverse Compton Scattering

Compton Scattering

Transfer of energy from the photon to the electron

Inverse Compton Scattering

Transfer of energy from the electron to the photon

BACK UP SLIDES

Thomson Scattering

IN THE REFERENCE FRAME OF THE ELECTRON

IN THE REFERENCE FRAME OF THE ELECTRON

- > Incident photon energy small compared to electron rest mass Ep << $m_e c^2$
- Negligible transfer of energy from the photon to the electron, but photon scattered with an angle
- ➤ Thomson Scattering in the reference frame of the electron ≅ Inverse Compton Scattering in the lab frame

BACK UP SLIDES

Alpha magnets field

BACK UP SLIDES

Simulation of alpha magnet vs analytical model

> We used only the analytical field