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Physics Analysis

 Two main types of physics analysis at LHC

— Searching for new particles
— Making precision measurements

e Searches statistically limited

— More data is the way of improving the search” "
— If don’t see anything new set limits on what ... «fuee wlaeee

you have excluded

Precision measurements

— Precision often limited by the systematic
uncertainties

— Precision measurements of Standard Model
parameters allows important tests of the
consistency of the theory
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2 Data Quality

* Particle physics detectors are very complex [etEtaandphi |
instruments — often there can be small g B

-

problems
— Noise in the detectors
— Regions of the detector that are not working

* These effect the physics object
reconstruction and the physics analysis

e Can exclude events with problems from the

analysis
 Orinclude them, but take into account the A dead region in the
problem calorimeterin ATLAS

 Need a thorough system to check that the
data is of good quality for physics analysis

— Lots of people, checking lots of histograms...

* Data Quality very important to get correct
physics results ;



Physics Analysis Steps

e Start with the output of reconstruction

* Apply an event selection based on the reconstructed object
guantities

— Often calculate new information e.g masses of combinations of
particles

— Event selection designed to improve the ‘signal’ to ‘background’ in
your event sample

* Estimate
— Efficiency of selection
— Background after selection

— Can use simulation for these — but have to use data-driven techniques
to understand the uncertainties
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ATLAS Preliminary

* Make final plot ocfee ] v

— Comparing data to theory . Tl i
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Measuring efficiencies from the data

e (Can use simulation to get reconstruction efficiency

e But difficult to know how well the simulation describes
the detector

* Need to try to use real data to estimate the efficiency too

* Example: Tag & Probe 5 ¢ R ERnnsssaas aanas e
idea: use Z->pu decays to give us % - .
a pure sample of muon to use to = 0.95 =5=:6:=5=:%:=" A $ —
measure the efficiency. 0 g?_‘= E
recipe: Can be appliedto other particlesthan justZ’s. | I
1. select events with 1 But often difficult to extract the real efficiency | 7

reconstructed muon and 1 and need to make some corrections based on —;
high momentum track 0 ‘s;imulatiorl. E
2. require that the mass of the F L=T‘2Pb | | | *ID*““ E
track and the muon is 0 ]-8% S S
consistent with Z mass BN S =
3. testif trackis also ngg o e
reconstructed as a muon 2030 40 S0 €0 /0 80 P?CEGEV }l']:’o




JET production at hadron colliders

hi, h2:p,p Ecm =7 TeV

L

d,c : quarks/gluons

hip

Goal

¥ measure probability that quarks/gluons are produced
with a certain energy, at a certain angle

® Problem : do not observe quarks and gluons directly,
only hadrons, which appear collimated into jets

@® Reconstruct from energy clusters in the calorimeter

® Unfortunately don’t have time to go into details of jet
reconstruction
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What do we have to measure?

O D@ Data Injdl < 0.5

== JETRAD
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¥ count number of events, N, in this bin

¥ for a certain range in rapidity (angle) An

Goal
¥ measure cross section (probability)
that jets are produced with a
certain transverse energy Erv,

within a certain rapidity range

® Test of perturbative QCD,
over many orders of magnitude!

® |ook at very high energy tail,
new physics could show up there in
form of excess
(eg. sub-structure of quarks?)

can be calculated
in pert. QCD

f
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efficiency to reconstruct jets

integrated accelerator luminosity



Problem : Energy scale

€ Question : how well do we know the energy calibration?

@ Critical because of very steeply falling spectrum!
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so beware:
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Jet cross-section at the LHC

CMS preliminary, 34 plra1 \s=7 Tev
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Data agrees with theoretical
prediction over many orders of
magnitude!

Multi Jet Event at 7 TeV




@ Example — search for a new heavy Z’

Many new physics models have a new heavy gauge boson which can decay to leptons.
Like a Z but heavier- called Z'.
Important to search for such new particles at the LHC.



Example — search for a new heavy 7’

Like Z->ee but at higher mass.
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Example — search for a new heavy 7’

Like Z->ee but at higher mass.
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Example — search for a new heavy 7’

Like Z->ee but at higher mass.

Select 2 electron
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Example — search for a new heavy Z’

Like Z->ee but at higher mass.

Select 2 electron
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Example — search for a new heavy Z’

Like Z->ee but at higher mass.
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invariant mass for

1. Data

2. Simulated
backgrounds events

3. Simulated signal (Z’)
with different masses
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Example — search for a new heavy Z’

Like Z->ee but at higher mass.

Select 2 electron
. . — T candidatesand plot their
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Example — search for a new heavy Z’

Like Z->ee but at higher mass.

Select 2 electron
. . — T candidatesand plot their
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Example — search for a new heavy Z’

Now for muons!

Events
o
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2

/" analysis

Combiningthe electron and muon channel the data exclude Z’ upto mass of 1.4 TeV
Need to take into account the statistical and systematic uncertainties!
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Simulationtellsus thatthe 1TeV Z’ is narrower in electron decay mode than muon decay mode
(Electron momentum resolution better at high energy)
Background composition different in the electron and muon channels.
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@V H->yy

H->yy is the best way of discovering a low mass Higgs at the LHC.

— — +vj expected
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Tiny signal on top of large background. No evidence of a bump in the
Good resol.ution is essential to being able to ATLAS data (now we have 5x
observe this. more data than this to look
at!)

Result with ~1fb-t will be
presented later today at the

EPS conference! 22
httn://anc_han?2N11 a1/



2 Importance of Resolution

Toy example: Signal peak on exponential background.
2 different signal resolutions. Same number of signal events in each peak
Would discover the left hand signal much quicker!

Mass resolution 1 GeV Mass resolution 2 GeV
Signal over background in cut range ~10% Signal over background in cut range ~5%
10

-
w o
yll

73— 7§_
E;— x 5§_
5= 5
4 4
I 3
2= 2
I B O B R S B S Bl e
110 115 120 125 130 135 140 145 150 110 115 120 125 130 135 140 145 150

Myy [GeV] Myy [GeV]

Very important to build the detector to give you the best resolution.
But also to optimize the reconstruction algorithms and calibrationsto give the best
resolution possible for that detector.



2 Another Example: H->Z7

¢ Searching for the Higgs boson in the decay H->ZZ
€ The Z can decay like

¢ Z->qq(quarks seenas jets in the detector)
¢  Z->ll (electrons, muons or taus)
¢ Z->vv (neutrino’s do not interact with the detector and so are only ‘seen' as missing energy)

@ H->ZZ->I*I'I*I" is by far the easiest to detect experimentally (we only
look for | = electron or muon, as the tau decays quickly and so is not
directly seen in the detector)

¢ H->4lis called the ‘golden mode’ as experimentally it is by far the
easiest
¢ Leptons have low background
¢ Leptons reconstruction has high efficiency
¢ Leptons have good momentum resolution



& . .
o) Simple H->ZZ analysis steps
@ 1. Select events which contain reconstructed: e* e u*

@ 2. make sure mass of the lepton pairs is consistent with the Z
mass

€ 3. Histogram the mass of the 4 leptons
@ 4. See a peak corresponding to the Higgs (hopefully!)

Simulated data!
L I A I I N I IS SR Lepton efficiency very important for

(]
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Bl -—zz =2 ATLAS .
77 - , this mode.
-an | L=30 &'

If we have a 90% efficiency per
lepton that gives 0.90*=66%
efficiency for the Higgs!
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30 times more data than now!



@ Simple H->ZZ analysis steps

e Where we are now:

— Two ZZ events seen in 0.04fb ! of data in ATLAS first analysis

— New analysis with 1fb! to be shown at EPS conference later
today (http://eps-hep2011.eu/)

— Beginning to be very interesting! (depending on if the Higgs
exists and with what mass)

Simulated datal!
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2630 times more data than now!



H->4u event in CMS

N

E

= — —]
| \\\ ,’
: l\\\. l“ ’
= \\J' |
VALY
vy
Ep—

Invariant Masses

po + pp: 92,15 GeV (total( 2) pr 26.5 GeV, ¢ -3.03),
g + gy 92.24 GeV (total(Z) pr 29.4 GeV, ¢ +.06),
o + 19 70.12 GeV (total py 27 GeV),

(3 + jip: 83.1 GeV (total pr 26.1 GeV).

Invariant Mass of 4u: 201 GeV
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Summary from Physics examples

Data Quality very important to not include junk data in the analysis

Jet cross-section

— Energy calibration uncertaintyleadsto a big uncertainty due to the sharply
fallingspectrum

Z:

— use of simulationto see what a new physics signal would look like
H->yy:

— importance of resolution

— Importance of background rejection
H->ZZ->4l:

— importance of high efficiency

Many other types of physics analyses (measuring cross-sections, masses,
lifetimes)

— Require also accurate knowledge of the efficiency, and the resolutionsand the
background rates






@ Some numbers

@ Examples from ATLAS

Rate of events streaming out from High-Level Trigger farm ~300 Hz
each event has a size of the order of 1.5MB

about 107 events in total per day

will have roughly 150 “physics” days per year

% € € e €

thus about 10° evts/year, a few Pbyte

@  “prompt” processing
¥ Reco time per event on std. CPU: < 15 sec (on Ixplus)
¥ increases with pileup (more combinatorics in the tracking)

¢ simulating a few billions of events
¢ are mostly done at computing centres outside CERN
¥ Simulation very CPU intensive

@ ~4 million lines of code (reconstruction and simulation)

€ ~1000 software developers on ATLAS

30



RECO flow

/ DAQ
\ system

4 Prompt

. Observed Reconstruction
Reconstruction N tracks, etc

Physics Tools Interpreted
eg. jetalgos events

.

Data storage
Various formats:
Full Event info,

. . . . only RECO info,
@ Use special database to handle the calibration and alignment reduced/syelected RECO info

data needed in reconstruction

Individual
Analyses




@ Flow of simulated data

specific Background e
Generators R generator backgrounds
N Background
reaction
Merge
Processin

Geometry Particle °
Simulation paths

Response
Simulation

R o Observed
econstruction . i e
Separate components: /
¥often made by different experts
¥makes it more manageable Physics Tools
¥Product is realistic “data” for analysis eg. jetalgos events
Building a better model: /

q‘”improved details (eg. better detector geometry) Individual
¥real backgrounds Analyses
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@ Partitioning production systems

Geometry
Simulation

| crec
Generators ’
N\__.
Particle
paths )
“-....___.

Response

Simulation ’

Partitioning

qllsthere can be event stores between
individual components

Why this structure

® flexibility,

have different versions of pieces

® cfficient for repeated studies

don’t have to start all over again if some
improvement in later stage

® Manageability

large programs, hard to build, understand,
debug, maintain, ...

Reconstruction I R
el - tracks, etc ,4‘

Physics Tools | Interpreted
eg. jetalgos ~ events /

Individual
Analyses




@N Prompt reconstruction

Data
DAQ = Streams EventReconstruction (Tier0) -

Detector / {1} y L
- [Beress ] % (Prompt Reco )"=" (Merge G0 min)) — (Assessmen)
—»

(Calibmﬁon Calculations ) = ( Conditions DB

Calibration H
A\\\@
€W Ty jet H{—Bﬁgalibmted neco_))z.‘? (Merge Run) ) — (Assessment)

Geason) (G
vw

NS

In ATLAS we reconstruct the data ~36hours after it is recorded.
This time is used to derive updated calibrationsfrom the data, that are needed in the
reconstruction.

Once a year we reprocess all the data with updated software and calibrations.
34
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Conclusions

Reconstruction and Analysis
is how we get from raw data to physics papers

Sophisticated reconstruction algorithms + calibratid
alignments needed
¢ High efficiencies, good resolutions and low fake rates

[©)

¢ |Important to get the best physics out of the experiment
Detailed simulation also plays a key role

Complex software infrastructure needed to be able to obtain
the final physics results

Any discoveries at the LHC will rely on the data-quality,
simulation, reconstruction and analysis chain working well

Even to me it is often a miracle that we can generate wonderful
results from these complicated instruments!
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Final remarks

SR | e
* This is GREAT time to be a CERN summer student
* The experiments have a lot of high quality data
* The LHC is working great
¥ * The experiments all are working very well
! * There could be an exciting physics discovery at any time

* Work hard
* Learn what you can!
.. * And most of all - Enjoy yourself!!!

g
/'16./
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Problem 2 :

Energy resolution

¢ The energy resolution can distorts the spectrum

¢ Again : Critical because of very steeply falling spectrum!

107 ¢ 0
N (ERe®s) = / N (E¥"°) - Resol (EF*, EZ“®) dEF"
i 0
6
10 3 0 D@ Dsltal'r]jﬁlcio.ﬁ
i eg. Gaussian resolution function
& I
O 10°F ¢ JETRAD
€
£ i CTEQ3M, [L=10.5 E{F“
5104:_ (Emeas o Etrue)2
S Resol (E%leas, Egue) X exp | —~—& 5 AL
%H measured spectrum O-E, .
< 107k !
NU F
= [
W0 .
< 102} y so beware:
4 F = “true” spectrum ] .
=0 \ A bad energy resolution can distort the true
10 b ' spectrum
: O have to determine the energy resolution
1 S T - . ST B B |I Ly A\ ”
o e T e s e e e e 0o © have to “unfold” the measured spectrum

E; (GeV)
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© problem is minimized if bin width ~ O,




