Simulation and measurement of charge transport in the periphery of planar silicon sensors to understand humidity-induced breakdown

Ingo Bloch¹, Ben Brüers¹, Heiko Lacker², **Peilin Li**, Ilona Stefana Ninca¹, Christian Scharf² *lipeilin@hu-berlin.de

[1]. Deutsches Elektronen-Synchrotron (DESY)[2]. Humboldt Universität zu Berlin

5th Allpix Squared Workshop 22.05.2024 Oxford

Humidity Study Background

- ATLAS ITk strip sensors break down earlier in humid environment
 - \rightarrow High leakage current
- Prevention method: dry storage and testing
 → time and money consuming!

• Avalanche breakdown produces photons by bremsstrahlung and band-band transitions

→ Breakdown region visible as bright spot at at the edges of sensors

Humidity Study Background

- Impurities on the surface of SiO_2/Si_3N_4
- SiO₂ attracts ambient H_2O
 - \rightarrow lons become mobile in humid environment
 - \rightarrow Oxide surface sheet resistance decreases drastically \rightarrow Gate potential Vg extends
 - \rightarrow The surface can interact with electrodes and the bulk

- → Schrödinger, E. "Über die Leitung der Elektrizität auf der Oberfläche von Isolatoren an feuchter Luft." 1910
- → M. M. Atalla, A. R. Bray, R. Lindner. "Stability of thermally oxidized silicon junctions in wet atmospheres." 1959
- → W. Shockley, et al. "Mobile electric charges on insulating oxides ..." 1964
- → Y. C. Kao and E. D. Wolley. "High-voltage planar pn junctions." 1967
- → R. Stengl and E. Falck. "Surface breakdown and stability of high-voltage planar junctions." 1991.

- 8 mm x 8 mm n⁺pp⁺ diode
- Active thickness: 295 μ m, bulk doping: 4.2 × 10¹² cm⁻³, full depletion voltage: 274 V
- 0.6 μ m SiO₂ + 0.6 μ m Si₃N₄ passivation
- 10¹¹ cm⁻² fixed oxide charge
- 0.1 μ m polysilicon on passivation with fixed mobilities (\rightarrow 10.1109/NSSMIC.2014.7431261)

TCAD Simulations: Electric Field

TCAD Simulations: Electric Field

- An electron channel is present at the Si-SiO₂ interface
- High density of electrons in the polysilicon layer on top of GR

- High density of electrons in the polysilicon layer on top of GR moving laterally towards the ER
- Free electrons generated by charge multiplication in the high field region at the GR metal edge
- The electron channel connected to the GR implant

High density of holes in the polysilicon layer on top of ER

- High density of holes in the polysilicon layer on top of ER moving laterally towards the GR
- Holes generated by charge multiplication in the high field region at the GR metal edge

Monte Carlo Simulation Framework

From TCAD to Allpix Squared

Electrostatic potential:

- Guard Ring and Pad: grounded (~0 V)
- Edge Ring: -500 V

Electric Field:

- High electric field near the GR metal and ER metal
- Field strength approaches zero within the implant regions

Weighting Potential:

- Determined from a potential difference
- Normalized to 0 to 1 (ER/Backside~1, GR/Pad~0)

SiO₂- Si Interface Properties

| Interface: Imperfections of manufacturing

Excess ionic silicon present in the oxide during oxidation

→ Positive fixed oxide charge at the Si-Si dioxide interface → A field pushing the electrons towards the Si-SiO₂ interface between the edge ring and guard ring

5th Allpix Squared Workshop 22.05.2024

Surface Reflectivity

Propagation: Drift + Diffusion

Signal Generation

- 1. Charges carriers generated by laser pulses
- 2. Drift under the influence of the electric field
- 3. Induction of mirror charges on the electrodes

Transient Current

- Amount of drifting charge
- Charge velocity

Red Laser (660 nm) properties:

- FWHM: 10 μm
- Pulse duration: ~ 50 ps
- Absorption length in Si: 3.5 μm

Simulated Charge Movement & Resulting Induced Currents

Waveforms Comparison

Raw Allpix simulation is convoluted with an estimated transfer function to obtain the final simulation results

Comparison: Simulation and Measurement

5th Allpix Squared Workshop 22.05.2024

Waveforms Comparison

Electric Field Estimation: Prompt Current Profile

TCT y-Scan: Laser injection at various y-positions

Prompt current profile:

- Obtained by integrating the initial rise(0.2 ns) of the transient currents
- $\Delta t \rightarrow 0$: Reflect local electric field

- y < -100 μm (close the ER): A peak in simulation while homogenous in measurement
- y > -100 µm (far away from the ER): In general good agreement between measurement and simulation

GR ER Pad p^+ n⁺ Full charge profile: Measurement Obtained by integrating the full pulses • charge [arb.] 80 80 Simulation Estimation of charge collection ٠ 0.6 Between the ER and GR: 0.4 Good agreement between Simulation and Measurement 0.2 -150 -50 50 -250 -200 -100 0 100 150 y [µm]

That's it! :) Thanks for your attention!

5th Allpix Squared Workshop 22.05.2024

Estimated Transfer Function

estimated response = Gaussian + measured response

Deconvolution

Using convolution theorem:

$$\mathcal{F}(\text{signal}_2) = \mathcal{F}(\text{signal}_1 \star T) = \mathcal{F}(\text{signal}_1) \cdot \mathcal{F}(T)$$

The response T(t) can be extracted by:

$$T(t) = \mathcal{F}^{-1}\left(\frac{\mathcal{F}(\text{signal}_2)}{\mathcal{F}(\text{signal}_1)}\right)$$

5th Allpix Squared Workshop 22.05.2024

with **measured** response

Experiment Set up

Taken from: Nicky Potters. Investigation of Irradiated Silicon Strip Sensors using the Edge Transient Current Technique. Master's thesis, Universität Heidelberg, 2021.

Laser properties:

- FWHM: 10 μm
- Pulse duration: ~ 40 ps
- Absorption length in Si: 3.5 μm

Amplifier:

Bandwidth: 0.01 to 3000 MHz.

Oscilloscope:

- Sampling rate 10¹⁰ s⁻¹, (acquisition time for each data point 100 ps).
- Bandwidth ≥ 2 GHz, corresponds to a rise time and a fall time of 175 ps each.

Conditions:

- Temperatur: 295 k
- Humidity: 55%