

TCAD & Monte Carlo simulations of 3D pixel sensors

Jixing Ye, Håkan Wennlöf, Simon Spannagel, Ingrid-Maria Gregor, Gian-Franco Dalla Betta

*The 5th Allpix*² *workshop* 22/05/2024 – 24/05.2024

Contents

1. Introduction

- 2. TCAD simulations of 3D pixel sensors
- 3. Monte-carlo simulations
- 4. Future work

Introduction - From planar to 3D

Schematic cross-sections 3D sensors

ADVANTAGES:

- Low depletion voltage;
- High Radiation tolerance. **DISADVANTAGES:**
- High capacitance;
- Complicated fabrication technology.

Introduction – 3D Detectors for HL-LHC

ITk requirements:

- Ionizing/NIEL dose tolerant up to 250 Mrad, 2x10¹⁶ n_{eq} cm⁻²
- Hit efficiency in active region after full dose > 97%

Large Hadron Collider (LHC)	HL-LHC

Run 1			LS1		Run 2			LS2			Run 3		LS3			📗 🛛 Run 4 - 5	
7 TeV ——	8 TeV ——			13 TeV						13/14 TeV							
2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2038	

Timeline of the ATLAS experiment

Introduction – small pitch 3D pixel sensors

Istituto Nazionale di Fisica Nucleare

Introduction – 3D trench-electrode pixel sensors

Continuous tre(Gap = 0)

Features:

1). Ultra high radiation tolerance (> $2*10^{16} n_{eq}/cm^2$);

```
2). High temporal resolution (~10 ps);
```

3). Low power dissipation.

Potential application: 4D tracking for post-LHC

TCAD Simulations – small pitch 3D pixel sensors

TCAD Simulations –3D trench-electrode pixel sensors

6

Istituto Nazionale di Fisica Nucleare

TIFPA Tren Func and

Monte Carlo Simulations – small-pitch 3D pixel sensors

Monte Carlo Simulations – small-pitch 3D pixel sensors

Trento Institute for **Fundamental Physics** and Applications

Istituto Nazionale di Fisica Nucleare

Monte Carlo Simulations – small-pitch 3D pixel sensors

Istituto Nazionale di Fisica Nucleare

Monte Carlo Simulations – 3D trench-electrode pixel sensors

Istituto Nazionale di Fisica Nucleare

Charges are collected as indicated by the drift lines from TCAD simulations.

A clear hole drift path bending can be seen on the line graph.

Monte Carlo Simulations – 3D trench-electrode pixel sensors

Monte Carlo Simulations – 3D trench-electrode pixel sensors

TIFPA Trento Institute for Fundamental Physics and Applications

Istituto Nazionale di Fisica Nucleare

Future work

Allpix² is a very powerful platform for full chain simulation in sensor R&D. Preliminary simulation results in good agreement with the experiments, proving the approach to be viable.

Future work will mainly focus on:

1). Evaluating the performance (of different 3D sensors) after bulk damage;

2). Simulation of new structures.

Thank you!