Experiments in DIY TCAD

Andrei Taropa

project supervised by Dr. Dan Weatherill

About me

* Andrei Taropa

e 3rdyear Physics undergraduate

* University of Oxford, Lincoln College
 Interested in Computer Science and Physics
* andrei-nicolae.taropa@lincoln.ox.ac.uk

mailto:andrei-nicolae.taropa@lincoln.ox.ac.uk

Agenda

Motivation
Development
Theory
mplementation
~urther work

o Uk wh e

ntegration with other software

Computational Project

* |t is worth 17% of the 3 year grade
* There are around 10 computational projects allocated each year

* This project was supervised by Dr. Dan Weatherill and Prof. lan
Shipsey from the OPMD group

* The aim: implement a simulation to calculate the shape of a stored
cloud of electrons confined in a CCD potential well

Motivation

*Develop a fully open source TCAD-like simulator
*Drift-diffusion equations model

*Use the 3D Finite Volume Method

*Calculating the E-field structure from doping & geometry

Approximate

Semiclassical approaches

Quantum approaches

Exact

Model

Improvements

Compact models

Appropriate for circuit
design

Drift-diffusion

Good for devices down to

equations 0.5 pm, include p(E)
Hydrodynamic Velocity overshoot effect can
equations be treated properly

Boltzmann transport
equation
Monte Carlo/CA methods

Accurate up to the classical
limits

Quantum

hydrodynamics

Quantum
Monte Carlo/CA methods
Quantum-kinetic equation
(Liouville, Wigner—Boltzmann)

Green'’s functions method

Direct solution of the n-body
Schrédinger equation

Keep all classical
hydrodynamic features +
quantum corrections

Keep all classical
features + quantum corrections

Accurate up to single particle
description
Includes correlations in both
space and time domain

Can be solved only for small
number of particles

Easy, fast

SPICE is here

We are here

From “Computational Electronics” by
Vasileska, Goodnick, Klimeck
Chapter 5

Difficult

Development

* (2019/20) — Guo-Zheng “Theo” Yoong & Taavet Kalda first
implementations of pn junction

* (2020/21) — Mac Zhou & Xihan Deng — performance improvements,
addition of mobility & recombination models

* (2021/22) — Megan Evans —first “CCD charge packet” simulation

* (2022/23) — Tevz Lotric — comparisons against commercial and
analytic models from 1D simulator

* (2023/24) — Andrei Taropa — rewrite in c++ using the DUNE numerics
framework. Our first inherently 2D devices simulated!

Voltage (V)

Results on pn junction simulation

4 . . -
1D PN Junction & %10 . . . PN |ulnct|un IElEGtrIll: field . . .
'| = T T T T T T
mes Biased -3 . : F —
08 F — Equilbrium | | x10™ Prl junction ’fotal charge;z density [1 — Equilbrium
p e Biased
e Biased 5
061 | 151 = Equilibrium ||
04F | < T 1 ab
S
0.2+ 1 2 o5t | —
=" 5
B S af
0r - 5 >
o 0 ©
© i
0.2F - o 2
£-051 - B 2r
04+ 4 = w
o
06} 1 = ni
-0.8F . 15+ e j} &
1 1 1 1 1 1 0
:‘ 4’5 5 5'5 S 5'5 4 45 5 5.5 6 6.5
Distance (um)
1 1 1 1 | L 1 1 L L
0 1 2 3 4 5 6 7 8 9

Distance (um)

Images from Mac Zhou (2020)

Charge Packet Shapes

lel6

Top: A(1D) charge packet shape 10| Max. voltage
simulation in a CCD buried channel — Eﬂ
with an insulator on top 7 081|— 13.0v
g —_— 140V

50.6-

< 0.4

w 0.2

0.0
49.0 49.2

Images from Tevz Lotric (2022/23)

49.4 49.6
Distance (um)

49.8

50.0

11

C++ simulations of diodes

Voltage (V)

At this point, we can simulate diode
structures routinely!

But this is the first time we had it working
in the new C++ code!

0.4 R e T ——
------ |E 1.0 4 eqn :'...................... 0.6 weene o fiwd b!as ¢n
0.2 7) — eqp r ----- fwd bias g,
2z 081 fwd bias n . 0.4 4 —-== rev bias ¢,
.0 -] u -2 - i
0.0 §06q fwd bias p o 0o- rev bias o
| N -=- rev bias n: o
—0.2 w 0 4 .] o | el
— eq = -== rev bias p: g.04 0 TTrrrmeeees e ———
-0.4 RTIT fwd bias S oo [".I,-'
] --- revbias & ——-..Q\ ‘ -0.2 A gy
_0.6 |----|____T- T T T E 0-0 - |-- |____T_ T T T
0 10 20 30 40 50 U o5 o3 o4 95 o6 27 og 0 10 20 30 40 50
x Position (um) x Position (um) x Position (um)
2.0 1
§ Experiment g 10° -
]
& -2
107 A
~1.5- . ~
£ ; £ 107
< . =
<1.04 _-' < 1076 -
- - -8 -
3 0.5 1 o'.. > 0
O 0. S “ Jo-10.
f —— Shockley eq. fit
=12 i
0.0 10 ¢ Experiment
-0.8 —-0.6 -0.4 -0.2 0.0 0.2 0.4 —CI).E —6.4 —CI).Z 0:0 U:Z 0:4
Voltage (V) Voltage (V)

13

2D Device Simulation

An NPN BJT cannot be
properly simulated in 1D
because the base
contact needs to be in
the 2"d dimension.

nt type p' type n type
Nd = 10! ¢m3 Na = 10'% em™ Nd = 10 e¢m3

Collector

Voltage Recombination rate

\—4’ . »
. @.4e+00
Saturation
[

0.1
. 0.01 C
Forward-active =

0.001

| o L 0.0001

Cut-off o

-3.0e+01

2D Device simulation #2

n density p density

9.1e+05

Saturation
800000

— 700000

600000

. 500000
Forward-active
400000
300000
200000
100000

Cut-off ——

0.7 10 Extracted transistor

O 1072 characteristics (note we
T o4 T o can't yet set constant
203 2 currents at boundaries, so
~ 02 10 these don’t look “quite”

o1 1078 - textbook

v 10 -05 00 05 1.0 15 2.0 -10 -05 00 05 1.0 15 2.0

Ve (V) Vs (V) 15

Theory #1 - Poisson’s equation

e We start with Poisson’s equation, where we assume that the medium has a
uniform permittivity € :

vy = -1 (p—n+ N5 —Ny)
Er&

p = hole density

n = electron density
Ny = donor doping
N, = acceptor doping
V = Voltage

g = electron charge

16

Theory #2 — System of equations

* Poisson’s equation:

V2V = 1 (p—n—l—Ng—N;)
Er&Q

e Charge continuity equations:

on

G, 1
o P 0=-"V 3,40,

1
q " ot q

* Current given by the drift diffusion equation:

Jn = qnu,E +qD,Vn Jp = qpupE — qDpVp

p = hole density

n = electron density
Ny = donor doping
N, = acceptor doping
V = Voltage

g = electron charge

J = current density
U = recombination rate

1 = mobility
D = diffusivity
E = electric field

17

Theory #3 — Boltzmann approximation

 We can write the electron and hole number densities in terms of Quasi-Fermi
levels ¢, and ¢:

kT

g(V — %)) e

q(¢p — V))

n:néexp(p:néexp(

* N.B. these are the Boltzmann approximated densities. You can use Fermi-
Dirac instead, which changes the exponential to a more complicated integral,
but conceptually similar

18

Theory #4 — Scale factors

* It is also useful to scale voltage quantities:

— qV - qPn
V_]CBT qbn_kBT

* We also scale the lengths:

19

Theory #5 — Solving Poisson’s equation

* Solving Poisson’s equation:

o n; _ _ C
V4V = ~ : (exp (V —¢n) —exp(pp—V) — —)
1max n’&
* We use “Gummel’s method”: Taylor expand:
Vaew = 0V + Vold exp +0V ~ 1+ 6V
» After substituting into Poisson’s equation:
dgl?new Uz — n i = C n; .= ¥ = - -
72 — ﬂrnl (EXP (V::uld - @ﬂ) — €xp (Op — 1‘-")fr_'nld) — ;) + f\rn ' C‘V&EXP (Vold - {_,.5”) + exp (¢’p - 1['fulu:i)l

T

B

L. -

A

20

Theory #6 - Solving Poisson’s equation

e ... substituting into Poisson’s equation:

dgl?new Uz — n i = C n; -+ — - - —
. (E‘XP (V::uld - @ﬂ) — exp (Qp — 1‘-"’fr_'nld) - _) + - -n oV (E}{p (Vold - {_,.5”) + exp (QD;J — and))

L. o) >

g B
A

dx? N max

* And after some rearrangement:

(@2 — B) Vnew = A NC VoldB

* This solves the voltage

21

Theory #7 — Einstein approximation

* For current we use the Einstein approximation:
pkpl = Dq

e ... to obtain a simplified form for current density:

Jp = —annVQﬁn

* However, we are interested in the current at the cell’s boundary and since
we already use a linear approximation for V, using another linear
approximation to interpolate n at the cell boundaries is going to lead to a
very rapid numerical instability. This is because n depends on V exponentially.
The optimal solution for the interpolation problem is given by the
Scharfetter-Gummel Discretization

22

Theory #8 - Scharfetter-Gummel Discretization

e Scharfetter-Gummel Discretization for electrons:

Dmidq
dLp

ngid _ (Ber(VOUt . Vin)nout . Ber(‘?in . Vout)nin)

3.0 A

* Where we use the Bernoulli function:

2.5 1

2.0 1

€T 215+

Ber(z) = =

ex _ 1 1.0 +
0.5 A \

0.0

Theory #9 - Finite volume method

e Using the divergence theorem:

/Vf(r)dV:/VV-fI)dV:/S{)-dS =) Z@-S:Vf(r)

faces

 We discretize the equation for voltage:

. g . C _
SV - Vin) G - VB, =V (A - VauB)

faces

e and for current continuity:

ZJgid,S:_ nqv ZJgﬂd'S:quV

faces faces
24

Implementation - Gummel Iteration scheme

 For the initial guess we assume charge neutrality, which gives an analytical
solution for the voltage.

Initial guess Poisson Electron and hole Add bias
equation step Update < continuity Update < Adjust =

——3> Equation (17) Tolerance Equation (18) Tolerance

assumption I_)

Is desired
bias
voltage at achieved
contacts

Charge
neutrality

Stop

e Solutionis in the form (V, n, p)
* We need to adjust biasing of the simulated device in small steps, otherwise
the solution will no longer converge

25

Implementation — discretization 1D

* 1D — easy: (V= B) Vaew = A — NC Vola B

 \WWe calculate the second order derivative as follows:

1 1 -2 1 0 0 Lj—1

f” (}Ci) = h,_? 0 1 —2 1 [} .’li'j
0 0 1 -2 1 . .’li'j_|_1
e J\ 1)

* The matrix only has non-zero elements next to the diagonal
* Note: we use sparse matrices

26

Implementation — DUNE Numerics

e DUNE, the Distributed and Unified Numerics Environment is a modular
toolbox for solving partial differential equations (PDEs) with grid-based
methods. It supports the easy implementation of methods like Finite
Elements (FE), Finite Volumes (FV), and also Finite Differences (FD).
(https://www.dune-project.org)

27

https://www.dune-project.org/

Implementation — discretization 3D

 Dune provides an easy way to find neighboring cells:

for(const auto& elem: elements(view))

 The index of any element can be easily
retrieved using the mapper concept:

mapper.index(elem)

{
for(const auto& isect: intersections(view,elem))
{
if(isect.boundary())
{
// code goes here
}
if(isect.neighbor())
{
// code goes here
}
¥
}

28

Implementation — benefits of using DUNE

* Implementation is the same for any number of dimensions

* Implementation is independent of grid geometry
* this allows us to use cells of variable sizes in the future

e Data output in the format of the visualization toolkit (vtk)

* BiICGSTABSolver from the Iterative Solvers Template Library
* Can runin parralel

29

ParaView

ParaView 5.12.0-RC2

[2O N J
PRSI BWO O FZ KA DD mmeo 0 : @ @
LT e @ X @M OB RLLBA > B O

° B QPPN ET O &2 ® @ Lt i e @6 {&LO
Open source properis | :
Q0 Pipeline Browser <) I'QJ a0 [Q'.‘c’i o 9\‘\ ton gl @Y B R e A Sy a? 2 e o= i Renderview1 [1 [@

builtin: 94+OO
+ 0 npn final.vtu :

8
7
6
5
4
3
2
1
5.

6e-06

0 @ Information
File Properties

Name npn final.vtu
Path /Users/andynic/c++ projects/sze/build/Debug

Data Grouping

Data Statistics

Type Unstructured Grid
of Cells 101,752
of Points 102,490 (float)

» Andys-MacBook-Alr-2.8987.Iocal: 3.4 GiB/8.0 GiB 42.5%

30

Implementation - summary

e Simulate using the drift-diffusion model
e good tradeoff between performance and accuracy

* Using C++
* alot faster since it is a compiled language
* DUNE library

* Abstract implementation

* we use templated classes that work with different data types

* the implementation is independent from the grid’s geometry and the number
of dimensions

* the mobility and recombination physics models used by the simulation can be
easily changed

31

Further work

* Port mobility & recombination models over to new code
* Implement insulating boundary conditions properly in 2D

* Parallelize (this should be easy due to the DUNE architecture)
* Compare with commercial simulators
* 3D

* Implement Newton iterations, and a “smart” heuristic for when to
switch implementation strategies

32

Further work

There are 3 bits of “physics” we might want to add
into our simulation (before going to more advanced
equations entirely)

Mobility models — allowing mobility to vary with field
and other gquantities adds a lot more realism to drift-
diffusion simulations

Recombination / generation — including SRH
trapping, impact ionization, zener breakdown etc.
Thermodynamics — swap Boltzmann out for Fermi-
Dirac, this is a lot more accurate in some temperature
€9 imes Maxwell-

_ Boltzmann
P 7 approximation

e . Fermi-Dirac
1 T >0 distribution
Iy “\\-._ . T -
F — 0 I T e
0 Er =qu E

PR |

Bn Bn
no
Hn,(E) = Hno |:1 T (uv(r)z)]

sat

— s 150 E Bp
pp(E) = ppo |1+ | 75

=
Bp

sat

Xihan Deng & Yichen “Mac” Zhou
Implemented several mobility and
recombination models

For our 1D python simulation in 2020/2021

33

Integration with other software

e Simulator calculates the E-field structure from doping & geometry
e Can be used to provide field structure for Allpix Squared

34

Thank you!

Dr. Dan Weatherill
Prof. lan Shipsey

andrei-nicolae.taropa@lincoln.ox.ac.uk

35

mailto:andrei-nicolae.taropa@lincoln.ox.ac.uk

