electronCT Simulations with Allpix Squared electronCT

Malinda de Silva, K. Dojan, P. Schütze, S. Spannagel, H. Wennlöf *5th Allpix Squared User Workshop 23rd May 2024*

HEI MHOI TZ

Multiple Coulomb Scattering

Introduction

- High energy charged particles undergo multiple coulomb scattering (MCS)
	- Due to electric fields of nuclei in matter
	- Particles are deflected stochastically producing a scattering angle distribution
- Highland's formula describes how the scattering angle varies with material budget

$$
\theta = \left(\frac{13.6 \text{ MeV}}{\beta cp}\right) \times \sqrt{\varepsilon} \times \left[1 + 0.038 \log\left(\varepsilon\right)\right]
$$

- where ε = material budget (thickness/radiation length) $p =$ momentum = velocity *βc*
- The scattering angle distribution will contain information about the traversed material
- **electronCT: Perform imaging of macroscopic objects using the deflection distribution of electrons**

DESY. eCT Simulations with Allpix Squared Malinda de Silva

Methodology

Introduction to electronCT

• Use pencil beam to scan the sample and perform beam profile measurement downstream of the sample

- Measured quantity from projections: from Gaussian fit
	- **width of beam profile** for given beam position

$$
w = \frac{1}{2} (\sigma_x + \sigma_y)
$$

DESY. eCT Simulations with Allpix Squared Malinda de Silva

Motivation

Introduction to electronCT

- **Imaging for Radiotherapy:**
	- Radiotherapy using Very-High Energy Electrons (VHEE, 100 250 MeV) is under wide investigation powerful tool when combined with FLASH therapy
	- Conventional CT or MRI used currently for imaging which requires a change in reference system
	- With electronCT :
		- Use the same accelerator for imaging and treatment
		- no change of reference system or patient relocation needed
		- Can be used to locate the tumor immediately before treatment
- **Industrial Imaging:**
	- Scattering angle distribution due to MCS depends on material budget $(ε)$
	- electronCT can be used:
		- to determine material properties of unknown materials
		- to image microelectronic components

Proof of Principle

electronCT

- Proof of principle of electronCT was established at the ARES accelerator facility at DESY
- **Test beam Setup:**
	- 155 MeV electron beam with width of \sim 300um at origin
	- Timepix3 sensor placed 150mm away from origin
	- Titanium beam window separated the vacuum beam pipe from the rest of the setup
	- Medical rat phantom on x-y-φ motion/rotation stage
		- "Berta": solid (resin), detailed skeleton
	- Katherine readout module used for DAQ
- Around 3000-8000 electrons produced per bunch at 10 Hz rate
- Typical scan currently takes a few hours to complete

Proof of Principle

electronCT

- Proof of principle of electronCT was established at the ARES accelerator facility at DESY
- **Test beam Setup:**
	- 155 MeV electron beam with width of \sim 300um at origin
	- Timepix3 sensor placed 150mm away from origin
	- Titanium beam window separated the vacuum beam pipe from the rest of the setup
	- Medical rat phantom on x-y-φ motion/rotation stage
		- "Berta": solid (resin), detailed skeleton
	- Katherine readout module used for DAQ
- Around 3000-8000 electrons produced per bunch at 10 Hz rate
- Typical scan currently takes a few hours to complete

DESY. eCT Simulations with Allpix Squared Malinda de Silva

Page 6 5th Allpix Squared User Workshop, Oxford, UK | 23th May 2024

Proof of Principle

electronCT

- Proof of principle of electronCT was established at the ARES test beam facility at DESY
- **Test beam Setup:**
	- 155 MeV electron beam with width of \sim 300um at origin
	- Timepix3 sensor placed 150mm away from origin
	- Titanium beam window separated the vacuum beam pipe from the rest of the setup
	- Medical rat phantom on x-y-φ motion/rotation stage
		- "Berta": solid (resin), detailed skeleton
	- Katherine readout module used for DAQ

- Around 3000-8000 electrons produced per bunch at 10 Hz rate
- Typical scan currently takes a few hours to complete

Simulations with Allpix Squared

electronCT

- It is important to simulate the beam setup in order to understand the strengths and limitations of this novel method => Using Allpix Squared
- **Simulation with Allpix Squared:**
	- One event with 10,000 electrons
	- Only MCParticle object used for analysis, detector response not used
		- Reason: Some properties of the Timepix3 assembly used were unknown at the time of the initial studies (eg: electronic noise, threshold smearing, QDC parameters)
- **First Goals:**
	- Replicate the exact beam conditions using Allpix Squared including beam profile in z direction
	- Reproduce the width of the beam with simulations under different conditions measured during test beam
	- **DESY.** eCT Simulations with Allpix Squared Malinda de Silva
		-

Config Files

Using Allpix Squared

random seed = 12345 number of events = 1

[GeometryBuilderGeant4] world material = "air" [DepositionGeant4] physics list = FTFP BERT LIV particle type = $"e-"$

number of particles = 10000 source energy = 155 MeV source position = 0 mm 0 mm - 200um

source type = "beam" $focus point = 0mm 0mm 220mm$ beam $size = 300$ um beam direction = 0 0 1 max step length = 5um $record$ all tracks = true

[ROOTObjectWriter] $file$ name = "data.root" include = "MCParticle" "MCTrack"

Main Config file **Example 20** is a contract of the Detector geometry file

[vacuum]

 $type = "cylinder"$ $length = 300$ um $outer$ radius = 3mm $position = 0$ mm 0mm - 150um orientation = 0 deg 0 deg 0 deg $material = "vacuum"$ $role = "passive"$

[beamwindow] $type = "cylinder"$ $length = 45$ um $outer$ radius = $3mm$ $position = 0cm$ 0cm 127.5um orientation = 0deg 0deg 0deg $material = "t15"$ $role = "passive"$ mother volume = "vacuum"

[timepix]

 $type = "timepix"$ sensor thickness = 100 um $position = 0$ um 0um 200mm orientation mode = " xyz " orientation = 0 deg 0 deg 0 deg

[DetectorLayer] position = 0 0 75mm

DESY. eCT Simulations with Allpix Squared Malinda de Silva

Modeling the ARES Beam Profile

HELMHOLTZ

Beam Profile in Z Direction: Test Beam Data

Data from April 2024 Test Beam in ARES

- Beam profile was measured by changing distance between beam window and stage holding the timepix3
	- No sample placed in between
- Observation:
	- Beam converges until \sim 75 mm and diverges from that point onward

- **Challenge:**
- **Allpix Squared did not contain a method to focus a Gaussian beam to a point**

Focused Beam Implementation

Allpix Squared : Merge Request !1104

- Following changes were made to GeneratorActionG4.cpp
	- Added new variable "focus point" to source type="beam"
	- Usage in config file:

[DepositionGeant4] source type = "beam" focus point = 0 mm 0 mm 220mm

● focus point and beam divergence are mutually exclusive. Only one of the two should be defined and not both.

Merged with Master branch

DESY. eCT Simulations with Allpix Squared Malinda de Silva

Simulating the Beam Profile in Z-Direction

Allpix Squared Simulation

• **Geometry Implemented on Allpix Squared**

- World volume : Air
- Particle gun at $z = -200$ um (placed in a vacuum)
- With Ti5 beam window placed at origin (varying sizes)
- Focused beam at point z=220mm

• **Results:**

- Beam can be modeled assuming a window of $~15$ um.
- Titanium beam window used at ARES claims to be $(50 +/- 5)$ um thick.

Mathematical Modeling the Beam Profile in Z-Direction

Parametrization of Beam Profile

- Beam can be further mathematically modeled by using two linear functions
- Function 1: Effect due to focused beam
	- $f(z)=$ *beamwidth at origin* ×*z*+*beamwidth at origin focal point*
- Function 2: Effect due to 45um titanium window
	- $q(z)$ = *gradient at tail* $\times z$
- **Quadratic sum of two functions models the beam profile in z direction in the range 0<z<300mm**
	- $P(z) = \sqrt{f(z)^2 + g(z)^2}$

Variation of Width with Material Thickness

HEI MHOI T7

Material Thickness vs Beam Width:

Test Beam Data

- Two metals of different thicknesses were used as samples to further characterize the beam width
	- Nickel sheets of thicknesses ranging between 0.025 mm and 3 mm
	- Aluminum sheets of thicknesses ranging between 0.025 mm and 4 mm

• Nickel and Aluminum sheets were placed on a mechanical holder such that there are overlaps to produce more thicknesses.

Page 16

Nickel Thickness vs Beam Width

Analysis of Test Beam Data

- Mean width of nickel sheets were calculated by:
	- Selecting data for a given thickness
	- Calculating the mean of measured widths [in px] for a given thickness
	- Converting width to μ m by multiplying by 55 μ m (TPX pitch size)

Comparison of Test Beam Data with Allpix Squared Simulation

Variation of Width vs Nickel Thickness

- In the range give, data and simulation results agree relatively well
	- Up to 5% difference between simulation and data
- Differences could be:
	- Due to the use of MCParticle "truths" instead of the TPX charge map
		- Due to non-linear gain of Timepix3
	- Due to multiple scattering model used in "FTFP_BERT_LIV"
- Further investigations necessary

Aluminum Thickness vs Beam Spread

Comparison of Test Beam Data with Allpix Squared Simulation

- Mean width of aluminum sheets were calculated the same way the width of nickel sheets were calculated.
- In the range give, data and simulation results agree relatively well
	- Up to 10% difference between simulation and data
	- Purity of Aluminum sheets is unknown: Could be the potential reason for the difference
	- Further investigations necessary

• Note: The change in least count observed at 10px is due to a rounding error. Will be fixed in the coming weeks

DESY. eCT Simulations with Allpix Squared Malinda de Silva

Mathematical Description of Multiple Coulomb Scattering

$$
\theta = \left(\frac{13.6 \text{ MeV}}{\beta cp}\right) \times \sqrt{\varepsilon} \times [1 + 0.038 \log{(\varepsilon)}]
$$

where ε = material budget (thickness/radiation length (X_0)) $p =$ momentum βc = velocity

• Mean widths measured in mm at test beam and using MCParticle object was converted to scattering angles θ using:

where \boldsymbol{w}_{total} = beam width measured at detector h_{beam} = beam width of background h_{beam} $\frac{10^{-1}}{9}$ preliminary measured at detector w_{high} = background subtracted beam width at detector

• **Results: With minor fluctuations the test beam and MCParticle data follow Highland's formula**

eCT with Allpix Squared

- electronCT is a novel imaging method with many potential applications in medical and industrial imaging
- With the proof of principle established, a well developed simulation study is required to further characterize and improve the imaging technique
- Implementation of beam focusing on Allpix Squared has helped model the profile of the beam width in z-direction

• **Preliminary Results:**

- Increase in width due to materials: Simulations agree to some extent with test beam data and with theoretical values obtained from Highlands formula
- Mathematical modeling of beam: Quadratic addition of multiple linear functions for different effects model the beam width relatively well

Next Steps...

eCT with Allpix Squared

- Move from "ideal scenario" to an even more realistic scenario:
	- MCParticle object was used in all studies conducted so far.
		- Reason: Properties of the timepix used were unknown at the time on the initial studies (eg: electronic noise, threshold smearing, QDC parameters)
	- Once parameters have been estimated, repeat study with Timepix charge map instead of MCParticle hitmap
- Once this has been implemented successfully, one can do a comprehensive simulation study with "rats"
- **Studies have just begun. Exciting times ahead!**

Thank You for Listening!

HELMHOLTZ

MCParticle Hitmap vs Charge Hitmap

Using Allpix Squared

- **Geometry: 300um beam**
	- World volume : Vacuum
	- TPX3 detector placed at z=0.1 mm from gun
	- No beam window present
- **Results:** (based on timepix charge map)
	- Width = 6.0 px and 6.15 px or 330 um and 338 um
- Beam width is in the correct range at very short distance

• But pixels at the center seem to be saturating

Comparison of Beam Width with Test Beam

Using Allpix Squared : Vacuum

- **Geometry**
	- World volume : Vacuum
	- **Particle gun at z=-50 um**
	- No beam window present
- **Results:**
	- As expected, no interactions with surrounding
	- Width remains same with z distance

Using Allpix Squared

DE 1

For sample position $= 75$ mm

Using Allpix Squared

•

• Mathematically one can quadratically add a third function to model the increase in width with z position : *h*(*z*)

$$
h(z)\begin{cases}0(\text{if } z\leq s)\\ \text{grad}*(z-s)(\text{else})\end{cases}\frac{P(z)=\sqrt{f(z)^2+g(z)^2+h(z)^2}}{P(z)=\sqrt{f(z)^2+g(z)^2+h(z)^2}}
$$

Where $grad =$ gradient of $h(z)$ depends on material properties

For sample position $= 20$ mm

Needs to be verified at test beam

Using Allpix Squared

•

• Mathematically one can quadratically add a third function to model the increase in width with z position : *h*(*z*)

$$
h(z)\begin{cases}0(\text{if } z < s)\\ \text{grad} * (z - s)(\text{else})\end{cases}\begin{cases}\nP(z) = \sqrt{f(z)^2 + g(z)^2 + h(z)^2}\n\end{cases}
$$

Where $grad =$ gradient of $h(z)$ depends on material properties

For sample position $= 100$ mm

Needs to be verified at test beam

Using Allpix Squared

•

• Mathematically one can quadratically add a third function to model the increase in width with z position : *h*(*z*)

$$
h(z)\begin{bmatrix} 0(if z < s) \\ grad*(z - s)(else) \end{bmatrix} \begin{bmatrix} P(z) = \sqrt{f(z)^2 + g(z)^2 + h(z)^2} \end{bmatrix}
$$

Where $grad =$ gradient of $h(z)$ depends on material properties

For sample position $= 140$ mm

