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Outline

• Motivation

- Why simulations?

• Simulation tools

- TCAD

- Allpix Squared

• Simulation procedure

- Examples from the Tangerine project
• Procedure applicable in many cases, however

• Example results

• Conclusions and outlook

https://doi.org/10.1016/j.nima.2022.167025
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Motivation for simulations
Old workflow
example

• A way to understand and predict 
sensor behaviour

• Computing power is relatively 
cheap nowadays

- Simulations are cheaper and faster 
than prototype production

• Simulations also help in providing 
a deeper understanding of 
measurement results

• A combination of detailed 
simulations and prototype testing 
can be used to efficiently guide the 
way in sensor developments

Current workflow
example

Figures by A. Simancas, BTTB10

https://indico.cern.ch/event/1058977/contributions/4636892/attachments/2465983/4228834/Simancas_BTTB10_V1.pdf
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Silicon sensor simulations

• Goal: Accurate simulation of the charge collection 
behaviour in the sensitive volume

- Enables prediction of sensor performance (e.g. resolution, 
efficiency)

- Done by simulating the movement of electron-hole pairs 
created by an interacting particle

• Issue: The access to manufacturing process information 
may be very limited

- The Tangerine project for example utilises a commercial 
CMOS imaging process - detailed process information is 
proprietary

• Solution: development of a technology-independent 
simulation approach using generic doping profiles

- Currently writing a paper describing the approach, serving 
as a toolbox for such simulations

Simulated motion of individual electrons and holes deposited 
in the centre of a silicon sensor with a linear electric field
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Tools used in the simulation approach

• Models semiconductor devices using finite element 
methods

• Calculates realistic and accurate electric fields and 
potentials from doping concentrations

• Simulates full detector chain, from energy deposition 
through charge carrier propagation to signal digitisation

- Interfaces to Geant4 and TCAD

• Simulation performed quickly - allows for high-
statistics data samples across a full detector

https://allpix-squared.docs.cern.ch/

Allpix Squared: a Monte Carlo 
simulation framework for 
semiconductor detectors

Example electric field in TCAD Particle beam passing through a single sensor in Allpix2

https://allpix-squared.docs.cern.ch/
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TCAD
Technology computer-aided design

• Models semiconductor devices in 2D or 3D, and numerically 
solves equations using provided information

- By providing doping information, e.g. electric fields and 
weighting potentials can be simulated

- Capacitances, I-V and C-V curves, and transient properties can be 
extracted

• Fabrication steps in semiconductor manufacturing can be 
simulated

• Different pixel geometries and layouts can be simulated in 
great detail

• Some example resulting electric fields shown on the right

Enhanced Lateral Drift 
sensor simulation, A. Velyka

Hexagonal pixel simulation, L. Mendes

Rectangular pixel simulation, A. Simancas
 

https://bib-pubdb1.desy.de/record/440957
https://arxiv.org/abs/2303.18153
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Allpix Squared
A Monte Carlo simulation framework for semiconductor detectors

• Simulates charge carrier motion in semiconductors, using 
well-tested and validated algorithms

• TCAD fields imported, and charge carrier creation calculated 
via energy deposition from Geant4

• Great synergy between Allpix Squared and the development of 
the presented approach

- Allpix Squared used throughout, and developments to the 
framework have been made alongside

- The approach provides a nice benchmark for comparing 
simulations to both TCAD results and data

Website and documentation:
https://allpix-squared.docs.cern.ch/

Minimal simulation configuration 
example

https://allpix-squared.docs.cern.ch/
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Silicon simulation layout and assumptions
Using the Tangerine project as an example

• High-resistivity epitaxial layer grown on low-resistivity 
substrate

• Approximate doping concentrations can be found in 
published papers and theses, that have been approved 
by the foundry

- The exact values are proprietary information, however

• Doping wells are simulated without internal structure 
and as flat profiles

- Small collection n-well in the centre of the pixel

- Deep p-well holding the in-pixel CMOS electronics

• 3D geometry simulated, including metal bias contacts 
and Ohmic contact regions in the silicon

“N-gap layout”, M. Münker et al 2019 JINST 14 C0501

Metal bias contacts

https://doi.org/10.1016/j.nima.2022.167025
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Finite element method simulations using TCAD
Using the Tangerine project as an example

• Using TCAD, doping profiles and electric fields are 
simulated

- Studies are made observing the impact of varying different 
parameters, e.g. mask geometries

• Starting by creating the geometry and doping regions

- Doping distribution is further refined by simulating 
diffusion between regions at reasonable sensor production 
process temperatures
• Gives a continuous interface between epi and substrate

• Device simulations used to simulate electric fields, 
electrostatic potentials, capacitances, and performing 
transient simulations

Process simulation result, showing dopant diffusion 
between substrate and epitaxial layer

https://doi.org/10.1016/j.nima.2022.167025
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Finite element method simulations using TCAD
Example study: impact of n-gap size on electric field

• The gap in the n-gap layout is introduced to give a lateral electric field at pixel edges

• The magnitude of the field depends on the size of the gap

- Too small gap: the lateral field components cancel out
- Too large gap: low-field region between pixels (i.e. in the gap)

• Figures show simulation results for the lateral electric field (red and blue) for different gap sizes

Collection electrodes Gap Depletion boundary
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Finite element method simulations using TCAD
Transient simulations

• Extracting the time-dependent induced signal on the 
collection electrodes, from traversal of a MIP

• Investigating both pixel corner incidence and pixel 
centre incidence

- Gives indication of “worst case” and “best case” particle hit 
scenarios

Transient pulses for pixel centre and corner incidence

Corner incidenceCentre incidence
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Monte Carlo simulations using Allpix2

• Flexible and modular framework, describing each part of semiconductor signal generation and propagation

• Allows import of TCAD fields and doping profiles

- Allpix2 and TCAD make a powerful combination; fast and detailed simulations possible, allowing high statistics

Figure from S. Spannagel, BTTB10, and A. Simancas, 4th Allpix Squared User Workshop

https://indico.cern.ch/event/1058977/contributions/4632035/
https://indico.cern.ch/event/1252505/contributions/5388331/
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Monte Carlo simulations using Allpix2

Impact of dopant diffusion simulation

• Linegraphs to demonstrate charge carrier movement

• Without simulated dopant diffusion, a significant 
electric field appears in the epitaxial layer-substrate 
interface

- This is unphysical

• With simulated dopant diffusion (see slide 9), there is 
a smooth transition region rather than a step 
function

- More natural, and provides a better match to data

Collection electrodes

Epitaxial 
layer

Substrate

Epitaxial 
layer

Substrate
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Monte Carlo simulations using Allpix2

Impact of mobility model

• Physical parameters and models can easily be exchanged

• Example: mobility models in silicon

- Jacoboni-Canali model is doping-independent
• Sufficient for describing charge propagation in low-doped regions
• In high-doped regions (e.g. substrate) diffusion is unphysically 

large

- Extended Canali model (including the Masetti model) is doping-
dependent
• Describes charge carrier motion well also in highly-doped regions

• Linegraphs show the propagation paths of individual charge 
carriers
- Each blue line is the path of a single electron

Collection electrodes Gap

Epitaxial 
layer

Substrate

Epitaxial 
layer

Substrate

Incident particle track
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Monte Carlo simulations using Allpix2

Impact of mobility model

• Mobility model also impacts final observables

• High-statistics simulations allow extraction of 
observables such as cluster size, resolution, efficiency

• Figure shows sensor efficiency vs detection 
threshold, for two different mobility models

- Simulation carried out with a DESY II-like beam of 
electrons

- Each point corresponds to 500 000 events, so the statistical 
error bars are very small

• The doping-independent mobility model over-
estimates efficiency, due to an excess of charge 
collected from the highly-doped substrate Sensor efficiency vs threshold for two different 

mobility models
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Allpix2 combined with TCAD
Example result from the Tangerine project

• High-statistics simulations allow extraction of 
observables such as cluster size, resolution, 
efficiency

• Sensor mean efficiency versus detection 
threshold, for different bias voltage

- Simulation carried out with a DESY II-like beam of 
electrons; many events (500 000), so statistical error 
bars are small

• The trend is as expected:

- Efficiency decreases as threshold increases
- The sensor reaches its full efficiency potential already 

at -1.2 V

• 0 V deviates from the others by being less efficient 
as threshold increases, most likely due to 
incomplete depletion

https://doi.org/10.1016/j.nima.2022.167025
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Allpix2 combined with TCAD - different pixel geometries □ ⬡
Example result from the Tangerine project
• Simulations allow for comparison of the 

performance of different sensor geometries

- See Larissa’s talk for details

• A hexagonal layout leads to reduced charge 
sharing in pixel corners and a reduced distance 
from pixel boundary to pixel centre

- Allows efficient operation at higher thresholds, and 
possibly better spatial resolution

• Tests have been performed comparing square pixels 
and hexagonal pixels, maintaining the pixel area

- The space available for readout electronics thus 
remains the same per pixel

• Figure compares hexagonal pixels 18 µm corner-to-
corner, and 15x15 µm2 square pixels, in the 
standard layout (ALPIDE-like)

https://doi.org/10.1016/j.nima.2022.167025
https://indico.cern.ch/event/1346382/contributions/5938421/
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Transient simulations, comparing TCAD and Allpix2

• Generating weighting potentials for use in Allpix2, from the 
electrostatic potentials from TCAD

- Using Allpix2 for the transient simulations gives a lower 
computational cost, and allows use of Geant4 energy 
deposition

• First step: compare Allpix2 results to TCAD results

- Allpix2 results are the average of 10 000 events, TCAD is a 
single event

- Same settings are used for charge carrier creation and mobility

- Results in general agreement

• Allows for simulation of sensor time response and further 
front-end electronics simulations

• See talk by Manuel for more details and further studies

https://indico.cern.ch/event/1346382/contributions/5939030/


Simulations compared to data
Does the procedure actually work?
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Allpix2 combined with TCAD - Preliminary comparison to data
Example result from the Tangerine project

• Testbeams have been carried out at DESY, and 
comparisons made to simulations

• Results from the “Analog Pixel Test Structure” (APTS)

- N-gap layout

- 25x25 µm2 pixel size

- 4x4 pixel matrix

- -4.8 V bias voltage

• The trend between simulations and data matches well

https://doi.org/10.1016/j.nima.2024.169414

Cluster seed pixel charge distributionCluster charge distribution

http://dx.doi.org/10.1016/j.nima.2022.167025
https://doi.org/10.1016/j.nima.2022.167025
https://iopscience.iop.org/article/10.1088/1748-0221/18/01/C01065
https://doi.org/10.1016/j.nima.2024.169414
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Allpix2 combined with TCAD - Preliminary comparison to data
Example result from the Tangerine project

• Testbeams have been carried out at DESY, and 
comparisons made to simulations

• Results from the “Analog Pixel Test Structure” (APTS)

- N-gap layout

- 25x25 µm2 pixel size

- 4x4 pixel matrix

- -4.8 V bias voltage

• The trend between simulations and data matches well

- Error bars on the simulated results are purely statistical here

• In conclusion, the developed simulation procedure 
works well, without any proprietary information https://doi.org/10.1016/j.nima.2024.169414

Particle detection efficiency vs thresholdMean efficiency vs threshold

http://dx.doi.org/10.1016/j.nima.2022.167025
https://doi.org/10.1016/j.nima.2022.167025
https://iopscience.iop.org/article/10.1088/1748-0221/18/01/C01065
https://doi.org/10.1016/j.nima.2024.169414
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Conclusions and outlook

• Simulations are a powerful tool for sensor understanding and development

• A technology-independent approach using generic doping profiles has been 
developed for silicon sensor simulations; a generic toolbox, free from proprietary 
information

- A paper describing it will be submitted soon

• Next steps for simulations in the Tangerine project:

- Properly define the uncertainties of the simulation results, by varying parameters and 
quantifying their impacts
• So far, error bars are purely statistical

- Compare to data from testbeams carried out on test chips
• This will allow for validation of the predictive power of the simulations

• Accurate simulations will guide the way to future sensor submissions!



Backup slides
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Rules followed in determining sensible sensor parameters

• The doping concentrations in the interfaces between different doping structures (n- and p-wells, epitaxial 
layer/substrate) should be diffused to avoid unphysical effects, such as abrupt changes in doping concentration and the 
corresponding electric field. 

• The p-well must shield its content from the electric field in the active sensor area; the doping must thus be sufficient for 
it to only be depleted very near its boundaries.

• The charge carriers generated in the sensor volume have to reach the collection electrode.

• There should be no conductive channel between different biased structures, i.e. punch-through in the sensor should be 
avoided.

• The limitations on the operating voltages of the transistors in the readout electronics should be respected.
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Sensor design

• The sensor design comprises both sensitive volume and electronics design

• For the sensitive volume design, there are three available layouts (all with a small collection electrode) originally 
designed for a 180 nm CMOS imaging process:

W. Snoeys et al. doi:10.1016/j.nima.2017.07.046

• Standard layout

- ALPIDE-like

• N-blanket layout

- Blanket layer of n-doped 
silicon, creating a deep 
planar junction

• N-gap layout

- Blanket n-layer with gaps 
at pixel edges

M. Münker et al 2019 JINST 14 C05013S. Senyukov et al. doi:10.1016/j.nima.2013.03.017
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Example observables for sensor characterisation
Cluster size

• Number of pixels that register hits 
for a single incident particle 
(charge sharing)

• This will depend on the position of 
the incident particle, but with a large 
number of particles a mean value 
can be found, as well as the cluster 
size versus hit position

• Varies with threshold value

• Denotes the fraction of particles 
incident on the sensor that 
produce a signal in the sensor

• Goes between 0 and 1

- If all particles traversing the 
sensor produce a signal, the sensor 
is 100% efficient
- Desirable to have as high as 

possible
• Strongly related to threshold value

• Can find mean efficiency across the 
sensor, and look at efficiency versus 
hit position 

Efficiency :   Pixel registering hit

:   Particle track
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Allpix2 combined with TCAD - Charge collection time of DESY ER1
Example result from the Tangerine project

• DESY ER1 prototype sensor

• 2x2 matrix with rectangular pixels of size 
35x25 µm2

• Tests with iron-55

- Signal amplitude results are unexpected!
- Two-peak structure, but not Kα and Kβ

• Theory: deposits far from pixel centre get 
collected slowly, so some charge drains 
away before peaking

• Higher Krummenacher current (i.e. faster 
return to baseline) leads to two-peak 
structure of single-energy x-ray 

https://indico.desy.de/event/43834/contributions/167831

http://dx.doi.org/10.1016/j.nima.2022.167025
https://doi.org/10.1016/j.nima.2022.167025
https://indico.desy.de/event/43834/contributions/167831%0D
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Allpix2 combined with TCAD - Charge collection time of DESY ER1
Example result from the Tangerine project

• Charge deposition simulated over a full pixel, with 1640 
electrons in each point

• Plot shows time taken to collect 1600 electrons

• There are clear regions of different collection time

• This can explain the two-peak structure seen in lab tests

- Slower collection means that more charge drains away 
before peaking, leading to a lower maximum amplitude

http://dx.doi.org/10.1016/j.nima.2022.167025
https://doi.org/10.1016/j.nima.2022.167025
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Allpix2 combined with TCAD - Charge collection time of DESY ER1
Example result from the Tangerine project

• Charge deposition simulated over a full pixel, with 1640 
electrons in each point

• Plot shows time taken to collect 1600 electrons

• There are clear regions of different collection time

• This can explain the two-peak structure seen in lab tests

- Slower collection means that more charge drains away 
before peaking, leading to a lower maximum amplitude

http://dx.doi.org/10.1016/j.nima.2022.167025
https://doi.org/10.1016/j.nima.2022.167025
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Allpix2 combined with TCAD - Charge collection time of DESY ER1
Example result from the Tangerine project

• Lateral electric field magnitude

• In x, we have a region with low field 
between gap and collection electrode

• This is also in y, but much smaller due to 
the smaller distance - we never go as low as 
in x

• This leads to overall faster charge collection, 
as charges are constantly pushed towards the 
collection electrode

• Simulations are a powerful tool for providing 
understanding of results

http://dx.doi.org/10.1016/j.nima.2022.167025
https://doi.org/10.1016/j.nima.2022.167025
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Transient simulations, comparing linear energy deposition to Geant4

• Using the n-blanket layout

• Each signal is the average of 10 000 events, incident in the 
pixel corner

• Geant4 energy deposition includes stochastic effects, while 
linear deposit generates 63 electron-hole pairs per µm
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The Tangerine project: published references

• The Tangerine project: Development of high-resolution 65 nm silicon MAPS

- https://doi.org/10.1016/j.nima.2022.167025

• Towards a new generation of Monolithic Active Pixel Sensors

- https://doi.org/10.1016/j.nima.2022.167821

• Developing a Monolithic Silicon Sensor in a 65 nm CMOS Imaging Technology for 
Future Lepton Collider Vertex Detectors

- https://doi.org/10.1109/NSS/MIC44845.2022.10398964

• Simulations and performance studies of a MAPS in 65 nm CMOS imaging 
technology

- https://doi.org/10.1016/j.nima.2024.169414

https://doi.org/10.1016/j.nima.2022.167025
https://doi.org/10.1016/j.nima.2022.167821
https://doi.org/10.1109/NSS/MIC44845.2022.10398964
https://doi.org/10.1016/j.nima.2024.169414
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