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Introduction

o 'Thas talk: Outline

A. Introduction

e ATLAS upgrade: High Granularity
~ Introduce the High-Granularity '11ming Detector in Timing Detector

the context of the next ATLAS upgrade and the e LGAD sensors

stimulation of LGAD sensors B. Simulation in Allpix

e (onfiguration
e FElectric field simulation

© Focus on the simulation of the multiplication of e Goals of this study

charges in the gain layer and discussion of current

C. Gain simulation
models

e (Gain simulation overview
e (Gain simulation models
* Data comparison

~ Some usetul links: e (Considerations and next steps

D. Conclusion

© HG'TD technical design report
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High Granularnty Timing Detector

- High-Granularity Timing Detector (HGTD) expected to be ready for Run4 and HL-LHC phase 1n 2029

© Built to deal with the high pile-up density ( < ¢ > = 200 interactions per bunch crossing)

© Track resolution of the detector expected to be worse than typical vertex separation (1.6 vertices/mm)

in the forward region — time measurement allows good vertex reconstruction
ATLAS detector

HGTD:

- Two disks, mserted between the barrel

and end-cap calorimeters, coverage in
24<n<4

~ Consists of around 8000 modules (each
module two LLGADs plus custom
electronics)

© Operating temperature at -30 C°,
maximum fluency at 2.5 x 101 Mo,/ cm”
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High Granularnty Timing Detector
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© HG'TD designed to provide 30 ps time resolution on tracks T
at the beginning ot Run4 (50 ps at the end)
10°
o Time measurement will act as an additional dimension 102
to discriminate between vertices
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High Granularnty Timing Detector

© New Inner Tracker (I'Tk) of ATLAS will measure the

longitudinal impact parameter z, of a track
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E
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© When the z;, resolution larger than the typical distance ¢
. . . = 0.4
between two vertices (c.g. in the forward region for -
HIL-LHC) — precision timing allows these vertices to be =
separated
0
. . . . 0.2
© HG'T'D designed to provide 30 ps time resolution on tracks
at the beginning of Run4 (50 ps at the end) o4
~0.6
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~ Time measurement will act as an additional dimensio%’

to discriminate between vertices
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LLGAD sensors

> Sensors made of 15 x 15 pads of 1.3 x 1.3 mm?, active
thickness of 50 ym

Cathode
Ring

© n-on-p structure with extra p-doped gain layer

| P

Avalanche
Region

~ Expected multlphcatlon of charges in the gain layer to e e, Y
produce a gain of 10-20

~ Time resolution (start - end of run):
~ Per hit: 30-30 ps
© Per track: 50-70 ps

Depletion l
Region

© Collected charge >41C, efficiency > 95% 1n the centre
of the sensor

© Test beam campaigns at DESY and SPS to check sensor

performance with the requirements
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Simulation in Allpix
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Simulation in Allpix*: configuration

~ Gonfiguration used for the simulation 1n Allpix:

- TCGAD file for electric field, weighting potential obtained from two TCADs at

ditferent voltages

~ TransientPropagation module used for the propagation step, multiplication

model chosen will be discussed later

© Effective simulation of electronic response: Pulse Iranster and

CSADigitizer modules chosen, parameters tuned to best match the average pulse

shape obtained in test beam data

~ Threshold on output pulse converted to match the 4tC charge threshold used

1n test beam

Impact 1onisation models and LGAD sensors for HGTD

Configuration file

[Allpix]

[GeometryBuilderGeant4]
world_material = "air"

[DepositionGeant4]

physics_list = "FTFP_BERT_LIV"
particle_type = "e-"
number_of_particles = 1
source_energy = 5GeV
source_position = Omm @mm -10mm
source_type = "square"

max_step_length = 100nm

[ElectricFieldReader]
model = "mesh"

[WeightingPotentialReader]
model = "mesh"

[TransientPropagation]

temperature = 293K

multiplication_model = # different models
charge_per_step = 10

timestep = 1lps # for proper gain layer sampling
integration_time = 10ns
max_multiplication_level = 10

[PulseTransfer]

[CSADigitizer]

model = "simple"
feedback_capacitance = le-15C/V
rise_time_constant = 50ps
feedback_time_constant = 100ps
integration_time = 0.5e-6s
threshold = 126.68mV
ignore_polarity= true
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Electric field and weighting field potential

o~ TGAD output for ditferent bias voltages used to simulate electric field in the sensor (very imited in inputs

available, due to constraints from the vendors)

© 'I'wo voltages (30V difference) used to create a weighting potential file also used as input in the simulation as
described 1n the manual

© Electric field projection along thickness axis 1s shown below (32 V/um max for about 1 um GL)
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Simulation in Allpix“: goals

~ Simulated data passed through Corryvreckan for tracking, and sensor simulated with telescope to obtain
efficiency maps

© Goal 1s being able to reproduce test beam data (comparing low level information like collected charge and
extrapolating on high level observables like ethciency and time resolution)

ATLAS HGTD Simulation
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Data comparison

~ Sources of ditference between data and simulation :
o Gain simulation: gain models not very flexible (plus our input electric fields are limited and not pertectly matching
tested sensors) — gain can be quite different with consequences on all simulated quantities (ime resolution, etficiency

etc etc)

© Electronics: we don’t have the electronic response ot the ASIC (for now): just implemented matching the average
pulse shape — this data-driven approach probably also not very flexible

Gain distribution for a 150 V non-irradiated TCAD for 25k events

X

-t

o
(o2}

30

ATLAS HGTD Simulation
Example from our experience:

25

20

~ Gain underestimated (5-6 instead of 10-20
— expected) with Okuto or Massey models

15

© Had to compensate with ad-hoc correction
factor — bad approx in the edges of the sensor

10

Number of transported electron groups
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I - Next part of the talk on gain models!
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Gain
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Gain simulation
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Gain stmulation models

- Impact ionisation models are empirical parameterisations of the expected gain as function ot the electric

field strength E in the sensor and the temperature T

© In general the gain g after a given step 1n the stmulation 1s expressed as:
Electric field (z-component)

g—enp(ET)lE>Et 0 — e

where [ 1s the step length of the simulation and ¢, , is the - iLL

impact ionisation coefficient (model dependent) for -
electrons or holes N .

~ In Allpix the probability to create a number of charges n per B

step 18 implemented drawing a random number u from a - -

. . . In(u -
uniform distribution as: n = () n

In(1 — 1/g) i L
301
l

° . . ° | | ‘ | | | | | | | | | ’ | | | | | | | | | ‘ | | | | X10_3
~ Step size in the propagation has to be sufficiently small 20 21 25

to sample the gain layer (1 um) E ~ 32 V/ um z (mm)
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(Gain comparison

Models have different dependence on E and T, either through parameterisation formula or through different values of the

parameters (A, B found fitting data):

o Okuto-Crowell:

B(T)

a(E, T) = A(T)Ee_<T> . A(T),B(T) linearin T

-~ Massey:

—B(T)

a(E, T) =Ae t ; B(T) inearin T

o JSI model (Howard et al, JINST 17 P10036) :

—B(T)

a(E, T)=A(T)e t ; A(T),B(T) inearin T

~ Optimised models (RD50, E. Curras Rivera,

M. Moll,10.1109/TED.2023.3267058): model

parameters updated on LGADs

a,(um-1)

Parameters found

on LGADs
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https://www.sciencedirect.com/science/article/pii/0038110175900994?via=ihub
https://ieeexplore.ieee.org/document/1677871
https://iopscience.iop.org/article/10.1088/1748-0221/17/10/P10036
https://ieeexplore.ieee.org/document/10114953/citations?tabFilter=papers#citations
https://ieeexplore.ieee.org/document/10114953/citations?tabFilter=papers#citations
https://ieeexplore.ieee.org/document/10114953/citations?tabFilter=papers#citations

Some calculations

Same (simplified) calculations to understand the difterence between these models 1n our case:

— a(ET)I
g=¢€
~ Ghoosing [ = 0.1 um as a step, 10-12 steps 1n the gain layer with E=32 V/um

Comparison of gain models, T=293K

~ Coethcients a at 32 V/um: o -
— % . ] o
o JSI model a=53um™t - 13210 ~ 200 (too high)
° ° — %k
o Okuto optimised: a =2 um™! - *1"2210 ~ 10 (expected)
_ 3% ]
o Okuto: a=14um™! - 14210 ~ 5 (too low) 10%:
s _
= 00— N E
S L E!
S 1 < 107
[ o
10 —
L 10—2_:
20— i / ---1- Massey
B 10_3__ III - 1 JS'
- ] / —+ Massey optmized
— / — Okuto optimized
30| L T / ---1- Okuto
B | | L | L | L | L1 | L] "10_3 ' ' ' ' ' '
15 20 25 30 35 40
20 21 22 23 24 25 Electric Field Magnitude (V/um)
Z (mm)
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Charge collection and comparison with test beam

©  Okuto optimised model chosen for our case, gain looks as expected:

- Collected charge distribution between TB and

simulation: MPV different by less than 5%, compared Charge distribution for MC simulated data
300 -

Simulation

Events

to a factor two with other models

250

----- MPV:61.0 ke
200

~  Residual difterences might be explained by differences
between the electric field of the TCAD and the sensor

under test

150

100

%))
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Some considerations

o JSIvs RD50 optimised models as a case study:
~ Both sets of parameters have been found on LGADs (differently than original Massey/Okuto-Crowell papers)

o JSI electric field in the GL around 27 V/um
~ RDAJO0 electric field in the GL higher, and around our TCAD values

- Two models are quite different for > 20V /um

~ Small differences between the simulated electric field and the sensor under test can result in very ditferent gain due to the
exponential formula

- More complex eftects like charge screening might attect the gain 1n the ssmulation

E 5105 e L L
= 0 :
o | 30V
5 410° | -
— CNM
o = HPK2-S1
§ 310°t 54 HPK2-S2 -
| = HPK2-S3
IDKO_ 1
| LCII__J 2105 L K2-S4 _-
20 L1l i
unirradiated; bias=130V 105 i ]
25 2 5E15; bias=500V -
B T 20 30 40 50 0 T et A
depth x [um] (front electrode is at x=0) . depth [a.u.]
Howard et al, JINST 17 P10036 k.. Curras Rivera, M. Moll,10.1109/TED.2023.3267058
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Conclusions and next steps

Conclusions:

© Models are not very flexible: they reproduce well the data used for fit performed to obtain their parameters, but fail

to be extended to a general case

o Limited availability of TGAD mputs vs tested sensors increases difhiculty ot precise benchmarks with data

o Eftect of radiation 1s not included in the models

Next steps 1in our studies:
© 'T''me performance studies and benchmark with data

~ Working towards understanding the gain simulation for irradiated sensors

Thank you!
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Back-up
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HG'TD geometry

EC LARG
Cryostat

Outer ring

Peripheral
Electronics

Double sided
layers

Moderator/

Outer part
Moderator/ Back cover — Sensor} Module
Inner part m— ASIC
. I Cooling plate
CO2 cooling
manifolds \\
Front cover

Inner Ring: Middle Ring: Outer Ring:
70% sensor overlap 50% sensor overlap 20% sensor overlap
20mm

120 mm 230 mm 470 mm 660 mm
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Optimised model from RD50

Optimized Massey model, T = 20°C Optimized Overstraeten model, T = 20°C Optimized Okuto-Crowell model, T = 20°C
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Figure 10: Agreement between the measured and simulated gain, at 20°C, after the
optimization of the parameters for the three models indicated in the figure titles.
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Optimised model from RD50

Optimized Massey model, HPK2-S1 Optimized Overstraeten model, HPK2-S1 Optimized Okuto-Crowell model, HPK2-S1
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Figure 12: Measured and simulated gain of the HPK2-S1 LGAD at different temperatures,
after the optimization of the parameters for the three models indicated in the titles of the
three plots.
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4D tracking

Longitudinal view

Timing layer

Transverse view

From: LGAD and 3D as Timing Detectors
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