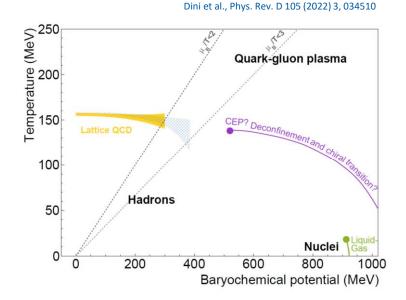


TOWARDS THE CBM EXPERIMENT AT FAIR

Piotr Gasik (GSI/FAIR)

CERN Detector Seminar 24 November, 2023

Bazavov et al., PLB 795 (2019) 15-21 Ding et al., PRL 123 (2019) 6, 062002


Exploring the QCD phase diagram at high net baryon densities

Vanishing $\mu_{\rm B}$, high T (lattice QCD)

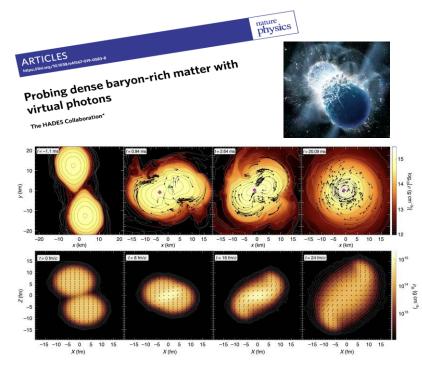
- Smooth crossover from hadronic to partonic medium
 - $T_{\rm pc} = 156.5 \pm 1.5$ MeV (physical quark masses)
 - $T_{\rm c} = 132^{+3}_{-6}$ MeV (chiral limit)
- No critical point indicated by lattice QCD at $\mu_B/T_c < 3$

Large $\mu_{\rm B}$, moderate T

- Limits of hadronic existence?
- 1st order phase transition?
- QCD Critical point?
- Equation-of-state of dense matter?

Worldwide experimental and theory efforts, relevance for astrophysics

Astrophysical relevance of high $\mu_{\rm B}$


- Equation of state at neutron star density
- What is the inner core of a neutron star composed of
 - Strange matter, hyperons, quark matter, ...
- Upper limits for neutron stars

GSI FAIR

- Remarkable similarity between
 - binary neutron star merger and heavy ion collisions

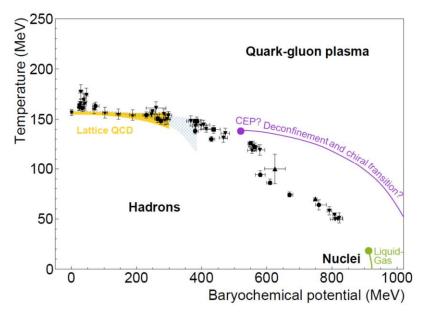
NS merger:	<i>T</i> ≈ 10 – 100 MeV
	ρ < 2 – 6 ρ_0
Heavy-ion collision:	<i>T</i> < 120 MeV
	$ ho$ < 5 – 10 $ ho_0$

18 orders of magnitude in scale, still similar conditions!

Different stages of the collision of 2 neutron stars (top) / 2 Au ions (bottom)

Compressed Baryonic Matter experiment mission

Systematically explore QCD matter at large baryon densities with high accuracy and rare probes at the highest interaction rates


Experimental challenge:

- Locate the onset of new phases of QCD
- ٠ Detect the conjectured QCD critical point
- Probe microscopic matter properties ۰

Measure with upmost precision:

- Event-by-event fluctuations (criticality) ٠
- Dileptons (emissivity) ۰
- Strangeness (vorticity) ٠
- Hypernuclei (equation-of-state)
- Charm (transport properties)

Almost unexplored (not accessible) so far in the high- $\mu_{\rm B}$ region

HADES, Nature Phys. 15 (2019) 10, 1040-1045 NA60, Specht et al., AIP Conf.Proc. (2010) 1322 Andronic et al., Nature 561 (2018) no.7723

CBM physics topics

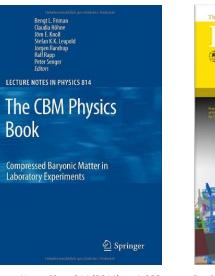
QCD matter properties at large $\mu_{\rm B}$

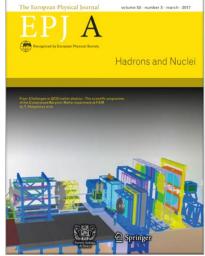
• Critical point, deconfinement phase transition, Equation-of-State

24 November, 2023

- Hadron yields, collective flow, dileptons, correlations, fluctuations
- (Multi-)strange hyperons (Λ , Σ , Ξ , Ω)

Chiral symmetry at large $\mu_{\rm B}$

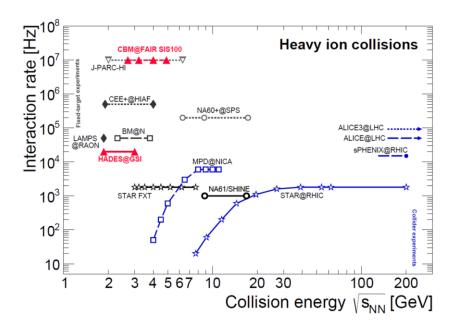

- In-medium modifications of light vector mesons
- Chiral ρ - a_1 mixing via intermediate mass dileptons


Hypernuclei

GSI

Charm production and propagation at threshold energies

- Excitation function in p+A collisions (J/ ψ , D⁰ , D^{+/-})
- Charmonium suppression in cold nuclear matter



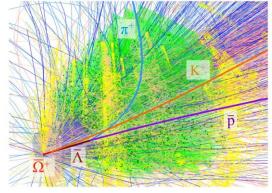
Lect. Notes Phys. 814 (2011) pp.1-980 DOI: 10.1007/978-3-642-13293-3

Eur.Phys.J.A 53 (2017) 3, 60 DOI: 10.1140/epja/i2017-12248-y

Rate challenge

T. Galatyuk, NPA 982 (2019), update 2023 https://github.com/tgalatyuk/interaction_rate_facilities, CBM, EPJA 53 3 (2017) 60

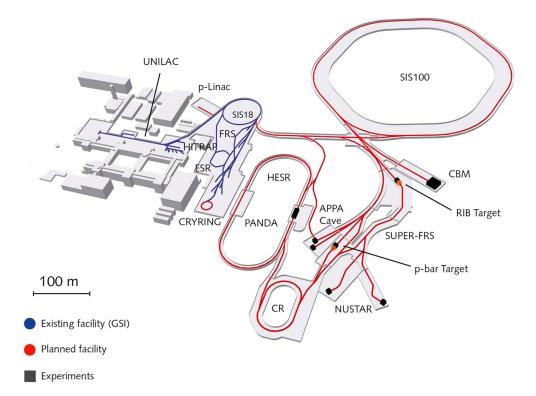
The program needs ever more precise data and


sensitivity for rarest signals

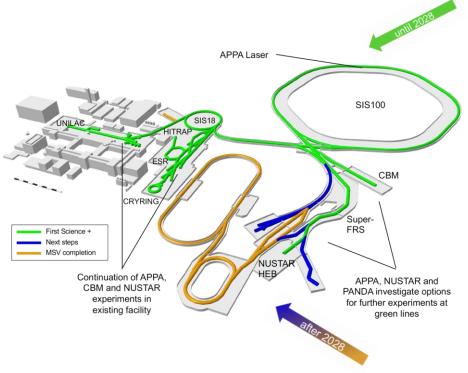
- CBM will play a unique role in the exploration of the QCD phase diagram in the region of high $\mu_{\rm B}$ with rare and electromagnetic probes: high-rate capability
- HADES: established thermal radiation at high $\mu_{\rm B}$, limited to 20kHz and $\sqrt{s_{\rm NN}}$ = 2.4 GeV
- STAR FXT@RHIC: BES program completed; limited capabilities for rare probes
- BM@N: running (light systems), limited capabilities for rare probes
- CEE+@HIAF proposal: multipurpose detector based on TPC, anticipated rate capability 500 kHz
- J-PARC-HI proposal: highest proton beam intensities, addition of heavy-ion option (HI booster), state-of-the-art detectors (*e*, μ, hadrons)

Physics goals realization (rate challenge)

- High event rates, up to 10⁷ Hz Au+Au collisions
- High multiplicity collisions, $\mathcal{O}(1000)$ particles/collision
- Data rates: ~0.5 TB/s
- Data volume: 10-20 PB/year
- Fast, radiation hard detectors & front-end electronics
- Free-streaming readout and online event reconstruction
- PID: hadrons and leptons, displaced (\sim 50 μ m) vertex reconstruction for charm measurements, decay topology
- High-speed DAQ and high-performance computing farm for online event selection


CBM simulation, central Au+Au @ 10 AGeV/c

Facility for Antiproton and Ion Research in Europe



SIS-100 Capabilities				
Beam	z	А	E _{max} [AGeV]	
р	1	1	29	
d	1	2	14	
Ca	20	40	14	
Au	79	197	11	
U	92	238	10	

- Intensity gain: \times 100–1000 ($\sim 10^{13}/s$ for p; $\sim 10^{11}/s$ for U)
- 10× energy (compared to SIS-18@GSI)
- Spill length: 1–100 s
- Antimatter: antiproton beams
- Precision: System of storage and cooler rings

FAIR status

Four FAIR pillars:

- APPA Atomic, Plasma Physics and Applications
- CBM Compressed Baryonic Matter
- NUSTAR Nuclear Structure, Astrophysics and Reactions
- PANDA Physics with High Energy Antiprotons

FAIR Timeline

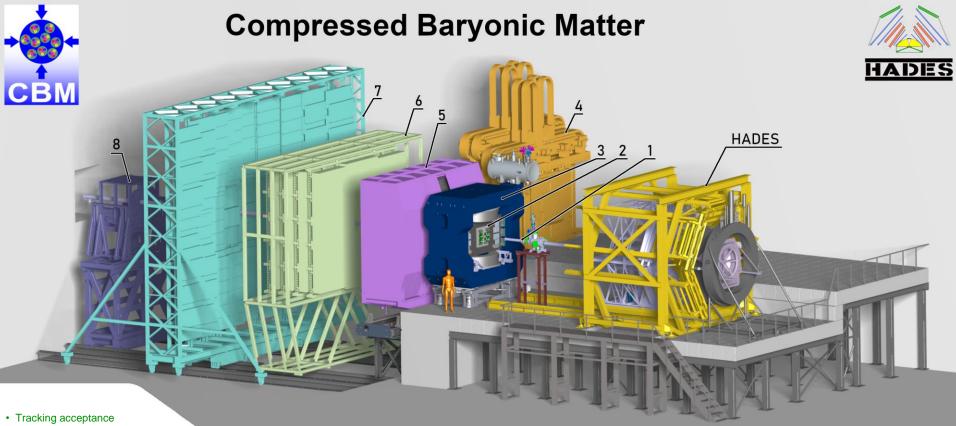
- July 2017: Start of excavation and trench sheeting
- July 2018: Start of shell construction
- June 2022: staging review
- 2023: Buildings completed (First Science+ and Next steps)
- 2024: Start of installation
- 2028: FAIR 2028 Operation

FAIR construction site in October

Installation

- Cryogenic plant installed in 2023
- Technical Building Infrastructure, cables pulling ongoing
- Accelerator installation starts in 2024
- Commissioning: 2025 onwards

SIS100 tunnel


SIS100 dipoles ready for installation

Cryo2 compressors

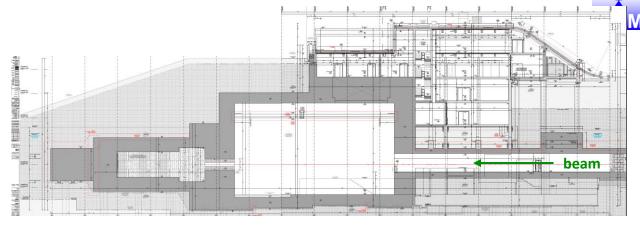
- Tracking acceptance
 2° < Θ_{LAB} < 25°
- · Free streaming readout
- Front-end connectivity up to $R_{int} = 10 \text{ MHz}$
- Software-based event selection

- 1: Time-Zero Detector & Beam Diagnostics
- 2: Silicon Tracking System / Micro Vertex Detector
- **3: Superconducting Dipole Magnet**
- 4: Muon Chambers

- 5: Ring Imaging Cherenkov Detector
- **6:** Transition Radiation Detector
- 7: Time of Flight Detector
- 8: Forward Spectator Detector

Piotr Gasik | CERN Detector Seminar | Towards the CBM Experiment at FAIR I

13/46

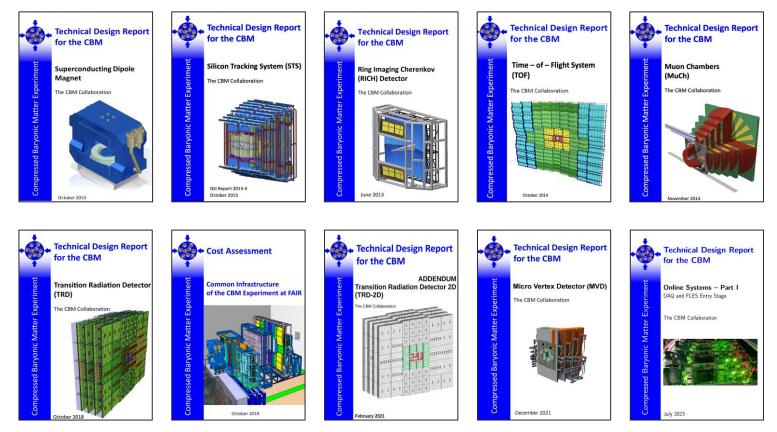

CBM Building

CBM Cave


- A dedicated cave with a massive beam dump for high-intensity, high-energy beams
- CBM Cave/Building shell completed
- Technical Building Infrastructure in 2025

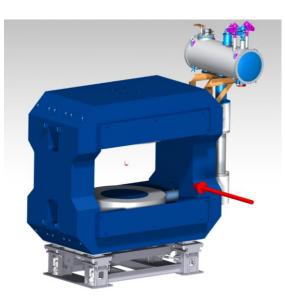
CBM Installation

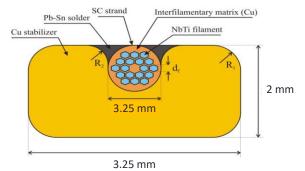
- CBM installation activities (platform) started in June 2023!
- CBM ready for beam by 2028, ~12 months contingency for CBM global commissioning
- SIS100 ready for beam to CBM in ~Q4.2028



Upstream Platform (NPI CAS Rež, CTU Prague)

Technical Design Reports for CBM





The CBM superconducting dipole

- Magnetic field integral of 1 Tm along 1 m ($\Delta p/p < 2\%$)
- Conductor: NbTi (filament < 60 μm), Cu/SC ≥ 5
- Aperture: 1.47 × 3.3 m²
- Acceptance: ±25° (vertical), ±30° (horizontal)
- Total weight of the yoke: ~150 t
- Operating temperature: 4.5 K

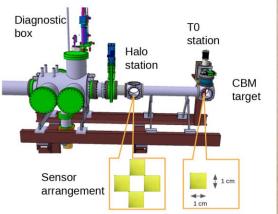
- Tendering: January October 2023
- Contract to be awarded in December!
- Expected delivery: Q4.2026/Q1.2027

19.9 mn

16/46

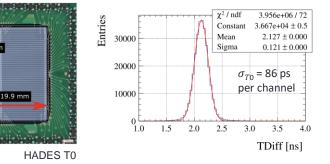
Beam Monitoring: T0 and HALO

TU Darmstadt, GSI


Day-1 concept based on pcCVD high-purity diamond sensors

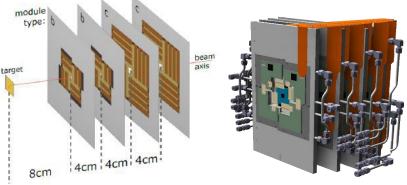
- High purity pcCVD diamond material: 1 cm × 1 cm, 80 μm thickness, striped metallization 16ch/side
- Required time resolution: 50 ps
- Readout: PADI-XI Discriminator + Get4 TDC (see CBM-TOF)

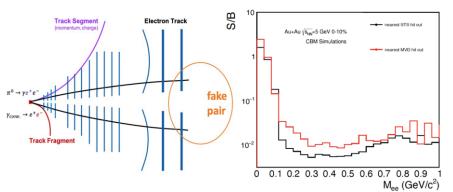
R&D on novel sensor technologies \rightarrow LGAD


- Currently employed by HADES START detector
- Sensor development: Bruno Kessler Foundation;
- Readout: DiRICH5 discriminator + TDC (<u>trb.gsi.de</u>)
- Performance with high-intensity heavy ion beams to be shown
- Further R&D activities (NIM 1039 (2022) 167046):

HADES TO, Medical applications, Beam diagnostics for S-DALINAC

16CH pcCVD prototype


Micro Vertex Detector


IKF Frankfurt, GSI, IPHC Strasbourg, CTU Prague, Pusan Nat'l Univ., IMP-CAS, CTU Prague

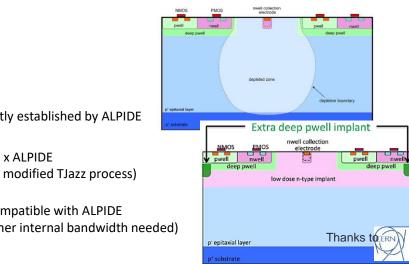
- 4 detector stations, based on MAPS technology
- 100 kHz Au+Au @ 11 AGeV and 10GHz p+Au @ 30 AGeV
- Non-uniform hit density in time and space
- High radiation environment, operating in a vacuum
- Material budget of $\mathcal{O}(0.5\% X_0)$ with TPG (pCVD diamond) carriers

MVD @ CBM

- Pointing precision at the target region
- Reconstruction of low-momentum tracks
- Among others, substantial di-electron background rejection
 - incompletely reconstructed conversion and Dalitz decays
 - way out with MVD: reconstruction of track fragments and segments

MIMOSIS chip

rg ss ir F(AIR


- Based on ALPIDE architecture
- First full-size prototype: MIMOSIS-1
- 504 × 1024 pixels (27 μm × 30 μm pitch)

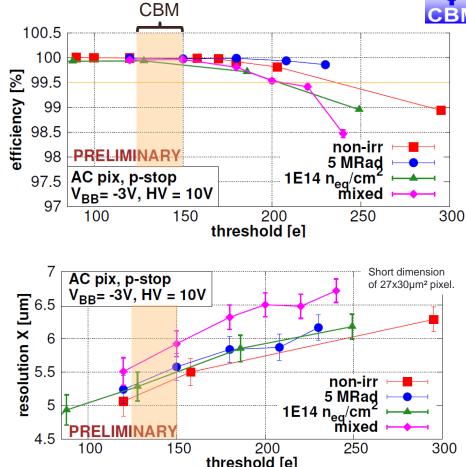
24 November, 2023

Optionally: fully depleted

IPHC Institut Pluridisciplinate Hobert Cutth STMSBORG	
TCAST	
	MIMOSIS-1, 60µm thick

Parameter	Value	
Technology	TowerJazz 180 nm	
Epi layer	\sim 25 μ m	
Epi layer resistivity	$> 1 k \Omega cm$	
Sensor thickness	60 µ m	
Pixel size	$26.88\mu m imes 30.24\mu m$	
Matrix size	1024×504 (516096 pix)	
Matrix area	$\approx 4.2 \mathrm{cm}^2$	
Matrix readout time	5 µs (event driven)	
Power consumption	$40-70 \mathrm{mW/cm^2}$	

Chip requirements		
Spatial / time resolution	~5 µm / 5 µs	
Material budget	~0.05% X ₀	Mostly established by ALPII
Rad. tolerance (non-ionizing)	~ 7 x 10 ¹³ n _{eq} /cm²	∼10 x ALPIDE
Rad. tolerance (ionizing)	~ 5 MRad	∫ (see modified TJazz proces
Rate capability (mean/peak)	(20/80) MHz/cm ²	Incompatible with ALPIDE
Data rate	> 2 Gbit/s	(higher internal bandwidth
Readout mode	Continuous	



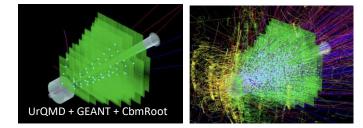
MIMOSIS-1 performance

- >99% efficiency after 10¹⁴neq/cm² + 5 Mrad
- 6 µm spatial resolution
 - (depending on radiation, threshold, etc.)
- < 10⁻⁶/pixel dark rate at end of lifetime dose.
- No latch-up seen up to LET = 20

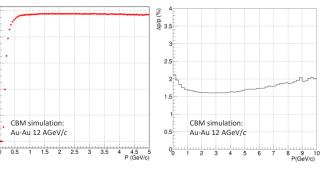
Conclusion on sensor performance:

- ✓ All pixels work excellent before irradiation.
- ✓ Standard pixels show best spatial resolution.
- P-stop AC pixel most radiation hard, matches requirements of CBM
- MIMOSIS-2 prototype development ongoing
- Final chip (MIMOSIS-3) by 2026

Silicon Tracking System

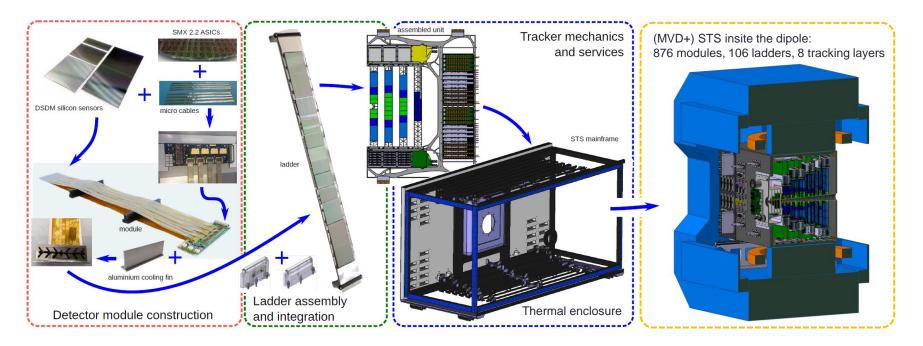

GSI Darmstadt, KIT Karlsruhe, JU Cracow, AGH Cracow, KINR Kiev, Univ. Tübingen, Warsaw UT, Uni. Frankfurt, KEK Tsukuba (assoc.)

Main CBM detector for charged particle measurement incl. momentum determination.


track point measurement in a high-rate collision environment:

24 November, 2023

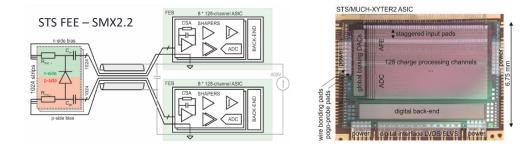
- 10⁵ 10⁷/s (A+A), up to 10⁹/s (p+A),
- physics aperture, distance from the target: $2.5^{\circ} \le \Theta \le 25^{\circ}$, $0.2 \text{ m} \le \Delta z \le 1.0 \text{ m}$
- 8 tracking stations
 - double-sided silicon microstrip sensors
 - hit spatial resolution \approx 15 µm (x), 110 µm (y)
- self-triggering front-end electronics
 - time-stamp resolution $\lesssim 5~\text{ns}$
- Material budget: 0.3% 1.5% X₀ per station
 - $\Delta p/p$ < 2% (p > 1 GeV/c, 1 Tm field)
- Rad. tolerance: $\sim 10^{14}$ 1 MeV n_{eq} over lifetime

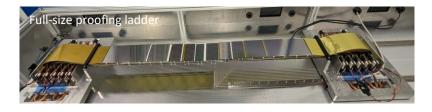


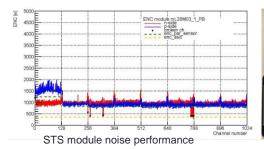
Silicon Tracking System

• Very complex lightweight system, integration effort

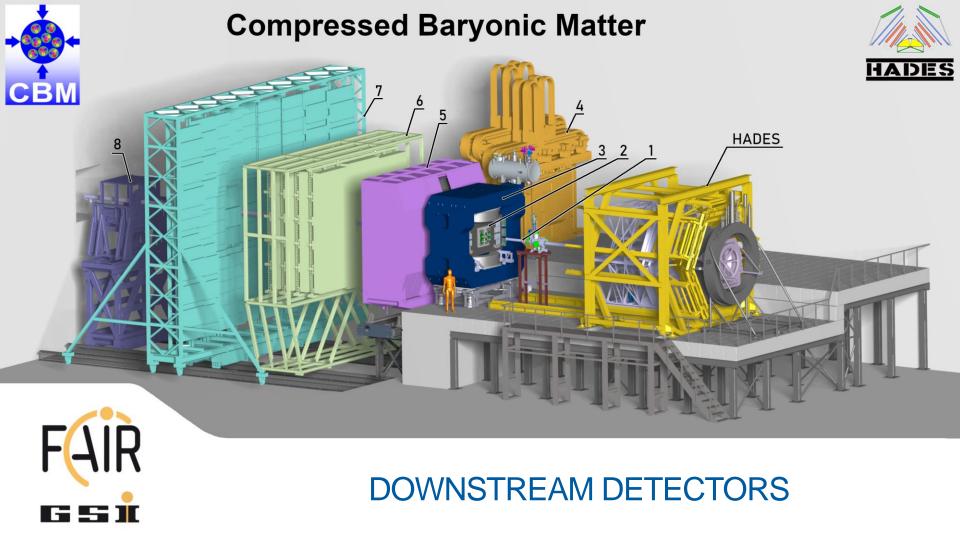
Silicon Tracking System

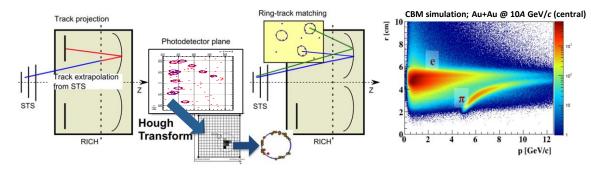

STS-MUCH-XYTER v2.2


K. Kasinski et al., NIM A 908 (2018) 225


- Low-power, self-triggering ASIC
- 128 channels: 5 bit ADC, 14 bit timestamp
- Time resolution \lesssim 5 ns, linearity range up to 15 fC
- Radiation hard layout

All final components available, pre-production ongoing

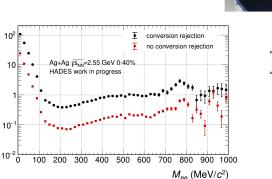

- > 60 modules assembled (see experience NIM A 1058 (2024) 168813)
- Ladder assembly ongoing
- PRR in Spring 2024

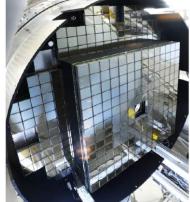

Ring Imaging Cherenkov Detector

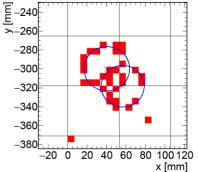
Univ. Giessen, Univ. Wuppertal, GSI Darmstadt

GSIFAR

- Gaseous RICH detector for electron identification (*p* < 8 GeV/c)
- Radiator: CO₂ as radiator gas ($p_{\pi,th}$ = 4.65 GeV/*c*), ~80 m³ volume
- Photodetector: 2 photodetector planes (MAPMTs, Hamamatsu H12700) with approx. 55 000 channels
- Mirror: 2 large spherical mirrors (*R* = 3 m) as focussing optics, Al+MgF₂ reflective coating
- Vertical splitting of RICH geometry because CBM dipole magnet is located in front of the RICH

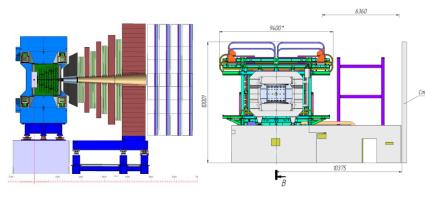

HADES RICH upgrade with CBM technology


S/B ratio


- HADES photon detector replaced by 428 H12700 MAPMTs (~40% of CBM MAPMTs)
- New readout electronics developed based on the "DiRICH" family,
 - average timing precision \sim 225 ps, same development for CBM!
- Great performance figures of the upgraded HADES RICH
 - very low noise and clear rings

GSÍ 🗛

- ring finder integrated efficiency > 99.5%
- electrons integrated purity > 99.5%
- 15-19 measured photoelectrons per ring
- $-\,$ pion suppression factor >10^4\,
- excellent double ring detection (factor of 8 better signal-to-background ratio)

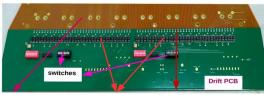


Muon Chambers

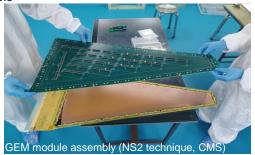
Aligarh Muslim U., Bose Inst. Kolkata, Panjab U., U. of Jammu., U. of Kashmir, U. of Calcutta, B.H. U. Varanasi, VECC Kolkata, IOP Bhubaneswar, NISER Bhubaneswar, IIT Kharagpur, IIT Indore, Guwahati U.

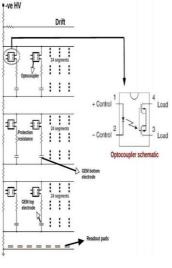
- 5 absorbers (Graphite, Fe, Fe, Fe, Fe)
- 4 detector stations, 3 detector layers each, sandwiched between two absorbers
 - Station 1 and 2: GEM chambers
 - Station 3 and 4: RPCs
- Movable (110 t) between data taking in CBM di-muon mode and parking in during CBM di-electron mode runs
- Different configurations for different collision energies and physics reach (see table)
- Capable of taking data at up to 10 MHz interaction rate
- Di-muon trigger!

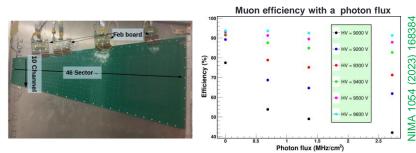
MuCh geometry variants	MuCh Geometry variant	No of absorbers	Configuration of the absorbers	No of detector stations	Purpose
	LE version	3	1 st : 58 cm (28 C + 30 cm concrete) 2 nd & 3 rd : 20 cm Iron	2 (GEM stations)	LMVM detection E _b < 4 A GeV (Au beam)
MuCh LMVM version	LVMV version	4	1 st : 58 cm (28 C + 30 cm concrete) 2 nd & 3 rd : 20 cm Iron 4 th : 30 cm Iron	2 (GEM stations) 2 (RPC stations)	LMVM detection E _b > 4 A GeV (Au beam)
MuCh J/ψ version	J/Ψ version	5	1 st : 58 cm (28 C + 30 cm concrete) 2 nd & 3 rd : 20 cm Iron 4 th : 30 cm Iron 5 th : 100 cm Iron	2 (GEM stations) 2 (RPC stations)	J/ψ detection


MUCH

GEM chambers, Station 1/2

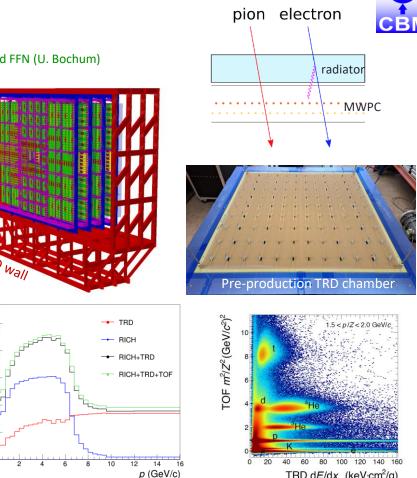

- Triple GEM, 3/2/2/2 mm gap configuration, Ar/CO₂ (70/30)
- 48/60 modules, 0.2 m²/0.25 m² area each, ~220 000 SMX2.2 channels
- Up to 400 kHz/cm² in the innermost regions of station 1
- Innovative optocoupler-based HV system for segment isolation
- Stable operation at GIF++, and high-rate tests with hadron beams


RPC chambers, Station 3/4


- Single-gap (2 mm) RPC with 1.2 mm Bakelite electrodes ($\rho \approx 10^{10} \Omega$ cm) R134a/iC4H10/SF6 (95.2/4.5/0.3)
- 54/54 modules, 0.35 m² / 0.51 m² area each, 50 000 SMX2.2 channels
- Up to 34 kHz/cm² in the innermost region of Station 3
- Tested up to 2.5 MHz/cm² photon flux (24kHz/cm² digi rate) with 90% muon efficiency at GIF++,

nt Opto-couplers Protection resistances

'dns μ^{10⁵}


Transition Radiation Detector

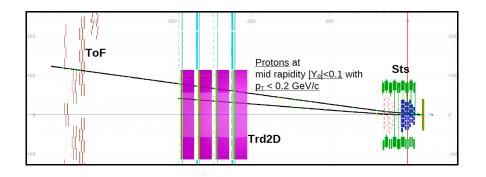
NIPNE Bucharest, Univ. Frankfurt, Univ. Heidelberg, Univ. Münster, IRI Frankfurt, GSI and FFN (U. Bochum)

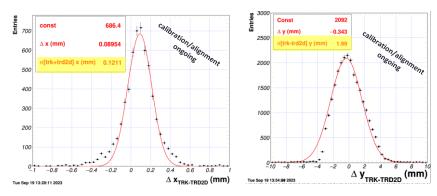
- Electron-ID at high momenta
- $\Rightarrow \pi$ -suppression 10–20 (90% e-eff.)
- ID of light nuclei (e.g. d ⁴He)
- \Rightarrow *dE/dx*-resolution ~25 %
- Tracking between STS and TOF
- \Rightarrow space-point resolution \sim 300 μ m (across the pads)
- High rates \Rightarrow fast detector (max. signal coll. 0.3 µs)

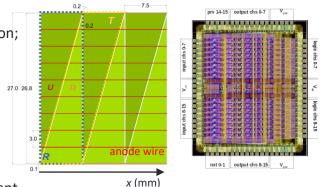
Components

- Four detector layers (SIS100): radiator with PE foam foils + MWPC
- ~250 000 channels, SPADIC ASIC FEE
- Gas mixture: Xe/CO₂ (85/15) ٠

CBM simulation; Au+Au @ 10A GeV/c (central)

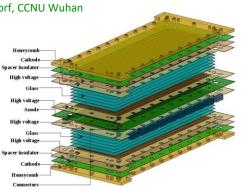

TRD dE/dx (keV·cm²/g)

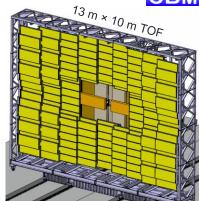


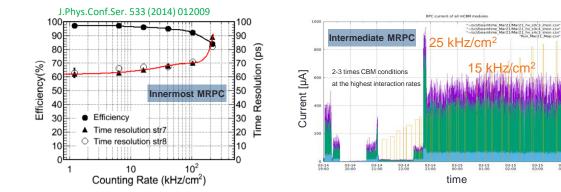


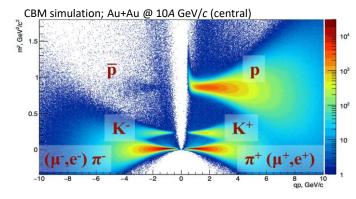
TRD-2D

- High-rate MWPCs with 2D readout for ultra-low p_t tracking for the inner-most TRD region;
- Can act as an intermediate tracker for particles: 4 layers with xy information
- The pad plane is split into triangular pads (200k channels in total):
 - The read-out is organized based on overlapping R-pairs/T-pairs; pairing by the FASP ASIC
 - Identification of the anode wire where the charge is amplified
- Spatial resolution of < 100 μ m (along the pads) obtained in high-rate hadron environment
- Rate capabilities up to 100 kHz/cm² demonstrated!

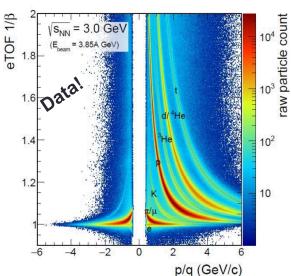


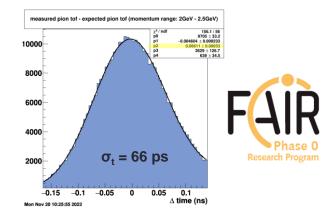



Time of Flight


U. Heidelberg, THU Beijing, NIPNE Bucharest, GSI, TU Darmstadt, USTC Hefei, HZDR Rossendorf, CCNU Wuhan

- Double-stack multi-gap resistive plate chambers for ultra-high rates
- All CBM TOF wall requirements met!
 - system time resolution: $\sigma_{sys} \approx 80 \text{ ps}$
 - efficiency: $\epsilon \gtrsim 95 \%$
 - rate capability up to 50 kHz/cm² (depending on the region) achieved with a float (ρ ≈ 10¹² Ω cm) and low resistivity (ρ ≈ 10¹⁰ Ω cm) glass
 - − Low power FEE (100 000 ch), continuous RO \rightarrow PADI XI + GET4 ASICs

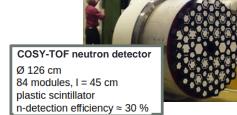




Endcap TOF at STAR with CBM MRPCs

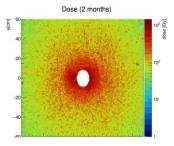
- As a part of the FAIR Phase-0 program, the CBM TOF detectors have been installed and successfully operated in the STAR BES II
 - 36 modules, 108 MRPCs, ~7000 FEE channels
 - system time resolution 66 ps (108 counters)
 - PID capability demonstrated
 - physics analysis started: 4×10⁹ events collected in FXT and COLL modes
 - operation will continue at $\sqrt{s_{NN}}$ = 200 GeV in the coming years
- CBM MRPC counter production starts this year, followed by modules assembly
 - ~230 modules, 1400 MRPCs, 90'000 FEE channels
 - counter production in China, modules assembly in Bucharest (RO) and Heidelberg
 (DE)

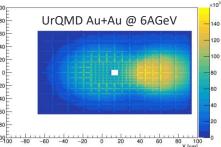
Forward Spectator Detector CTU Prague, GSI and FFN (U. Bochum)

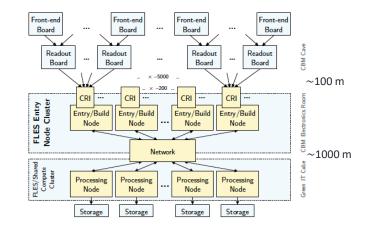

Important subsystem for centrality determination

GSIFAR

- Original concept based on hadronic calorimeter (Pb/Scintillator) in-kind contract cancelled
- Replacement based on plastic scintillator, similar to HADES forward hodoscope wall or STAR
 Event Plane Detector
- Provides an opportunity to improve performance at low energies and high interaction rates
- Background and performance studies have been launched
- 5×5 cm² scintillator module prototypes with WLS+SiPM or PMT readout
- Readout based on TRB+DiRICH proven GSI in-house technology
- Possibility of adding COSY-TOF neutron detector



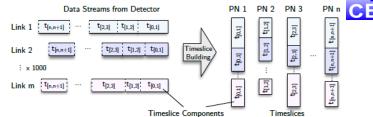



CBM data acquisition FIAS, GSI, KIT, ZIB

Free-streaming readout up to 10 MHz interaction rates (peak) ۲

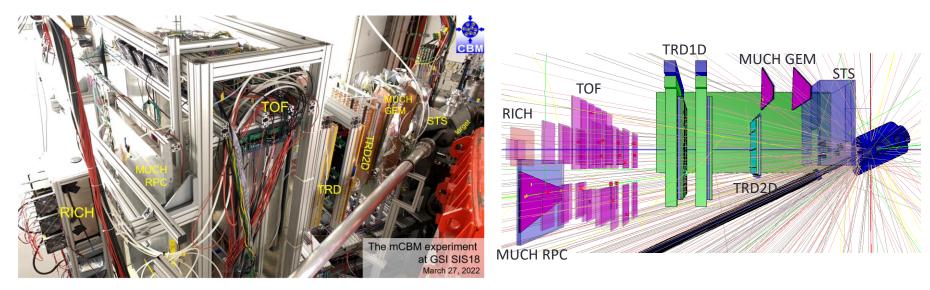
24 November, 2023

- Raw data rate about 500 GB/s ۲
- Online reduction of the raw data by ~2 orders of magnitude
- FEE of all CBM detectors autonomous and self-triggered, delivers timestamped hit messages
- FEE synchronized by a central timing system (TFC)
- Online systems: collect, aggregate and deliver data to the online compute farm
- First Level Event Selector: event reconstruction and inspection online, up to the software trigger decision
- DAQ/FLES TDR was accepted in June 2023! ٠



Online systems FIAS, GSI, KIT, ZIB

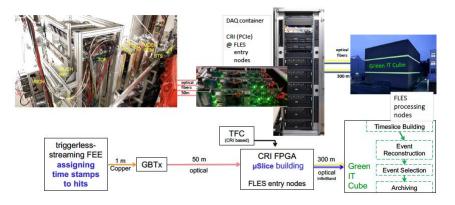
- The First-level Event Selector (FLES) is the central data handling and event selection entity of the CBM experiment
- Readout boards (mostly GBTx-based) send time-stamped data stream (timeslice components) via optical links to CRIs
- FPGA-based Common Readout Interface PCIe cards:
 - Reformats data received from FEE into micro-slices, suitable for processing in the FLES
 - Forwards clock and time information to FEE
- Timeslice components assembled by the entry nodes are transferred over an InfiniBand network to the processing nodes at GSI Green-IT Cube (CPU/GPU farm)
- Required online computing capacity: ~1000 kHEPSPEC06

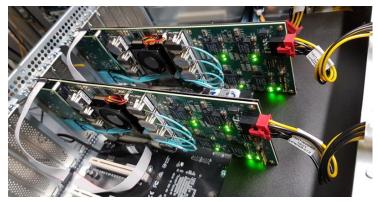


FAIR Phase-0: mCBM at SIS18

- Full system test, verification of the triggerless-streaming read-out and data transport of CBM
- High-rate detector tests with up to 10 MHz collision rates
- Physics program: Λ excitation function in the SIS18 energy range

mCBM data acquisition

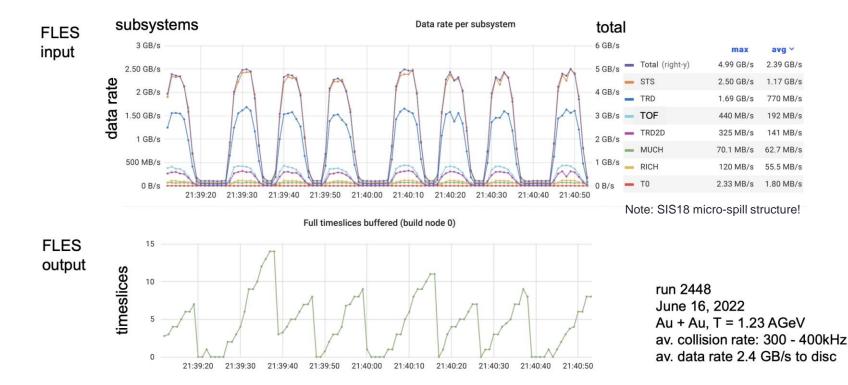

- Free-streaming readout implemented and commissioned in mCBM
- Connection scheme, hardware, achieved occupancies
 close to the final CBM DAQ → can be scaled towards full CBM
- High-rate capabilities demonstrated up to 10 MHz


Ni + Ni, T = 1.93 AGeV, run duration: 6 h

• av. collision rate: 400 kHz

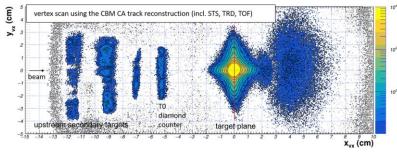
GSI FAIR

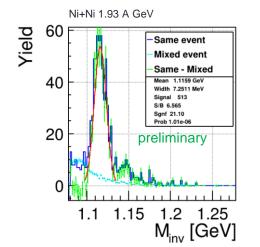
- av. data rate 1.5 GB/s to disc, 32 TB data collected
- Au + Au, T = 1.23 AGeV, run duration: 35h
- av. collision rate: 200 300 kHz
- av. data rate 1.4 2.2 GB/s to disc, 180 TB data collected



mCBM DAQ with CRIs (prototype for CBM) in an entry node

Data path performance - FLES input and output data rates



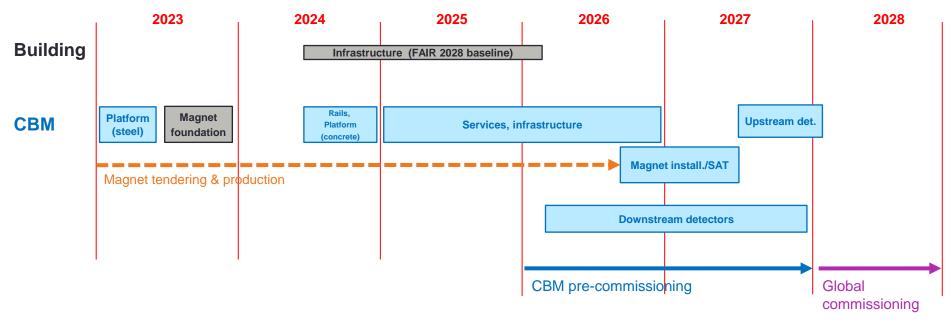


mCBM @ SIS18 - CBM full system setup

Ni+Ni 1.93 AGeV

- CBM readout concept demonstrated and verified!
- High-rate tests of detector prototypes
- First results: Λ signal identified with topological + timing cuts only

(calibration and alignment studies ongoing)


mCBM campaign in 2024-2025

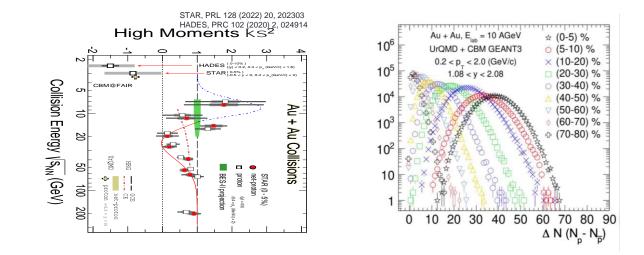
- Runs in 2024-2025 approved by GSI-PAC
- A excitation function at SIS-18 energies (Au+Au, Ni+Ni)
- Further development of the readout chain and online analysis tools
- High-rate detector tests: Production Readiness Reviews, QA/QC
- Testing of the next generation of CRI cards

Installation/commissioning timeline

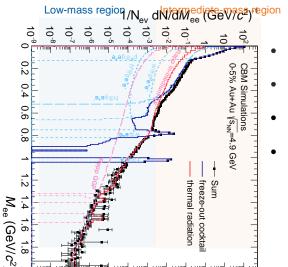
- We plan CBM to be ready for beam beginning of 2028
- ~1y contingency until SIS100 "ready for physics" (used for CBM global commissioning)

CBM setups

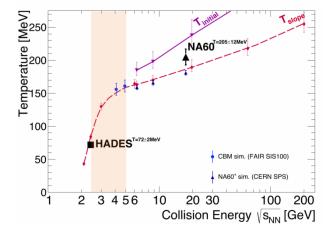
	Setup	Included detectors	Average "Day-1" interaction rate	Average MSV - interaction rate
	ELEHADMVD,STS,RICH,TRD,TOF,PSDMUONSTS,MUCH,TRD,TOF,PSD		0.1 MHz	0.1 MHz
			1 MHz	5 MHz
	HADR	STS,TRD,TOF,PSD	0.5 MHz	5 MHz
ľ.				
	ELEHAD	MU	ON	HADR


- CBM commissioning with beam (earliest on the floor):
 - preferred configuration: ELEHAD setup
 - minimum configuration: HADR setup

Highlighted future directions

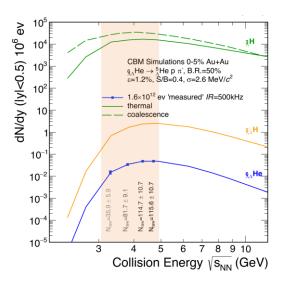

- Critical point search: discontinuities of the higher moments of particle number distributions, and ratios of conserved quantities (B, Q,
 - S) are sensitive to QCD CEP \rightarrow beam energy scan

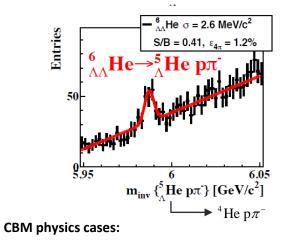
• CBM can systematically study the higher-order cumulants and ratios to contribute significantly to the search of QCD-CEP

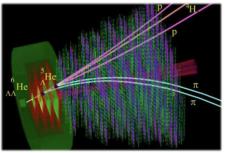

Dilepton measurements

GSI FAIR

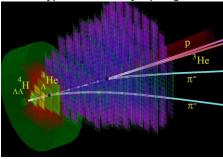
- Low mass range: total yield \sim fireball lifetime
- Intermediate mass range: slope ~ emitting source temperature
- Access to thermal signal is very feasible with good background description
- Crucial for high-quality data: interaction rates and S/B ratio


- Non-monotonous behaviour of the caloric curve (flattening) would give evidence for a phase transition.
- CBM will be the first experiment to use di-leptons for systematic measurements in both production channels (e+e- and μ + μ -) in the same




Hypernuclei

- Precise and comprehensive study of hypernuclei possible at SIS100
- High rate capabilities + online analysis (clean identification) → increased yield



- How (hyper)nuclei form in heavy ion collisions?
- Hypernuclei lifetime --> YN, YY interactions
- Do YY bound states exist?

43/46

Hypernuclei decay topologies

Strategy for detector upgrades

GSIFAR

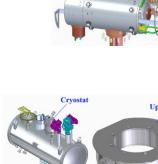
- After first 3 years of operation (~2032) major upgrades are considered
 - upgrade upstream STS stations with radiation hard pixel sensors
 - upgrade MVD with next generation MAPS (IPHC, CERN developments)
 - possible addition of timing silicon layers (LGADs, SPADs)
 - forward silicon tracker (fragments ID inside the beampipe)
- Timeline fits well the upgrade/production plans of the HL-LHC, eIC, ...
 - aim for state-of-art rate capability, improved time measurement, reduced material budget and improved radiation hardness
 - improved cooling → readout rates
- Long-term upgrades (see e.g. ECFA detector R&D roadmap)
 - muon systems, PID detectors, timing, calorimetry, ...

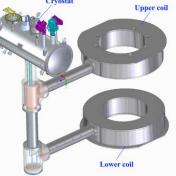
State-of-art MAPS: MIMOSIS-1 prototype for MVD

Summary

- Timely completion of SIS100: unique physics program with CBM
- Long-term prospects: highly competitive due to high interaction rate capability (detector upgrades, well-understood running experiment)
- CBM is progressing well towards science program with SIS100 beams
- High-rate capabilities achieved in the extensive R&D phase
- All subsystems on the verge of the series production
- CBM aims for taking data in 2028!

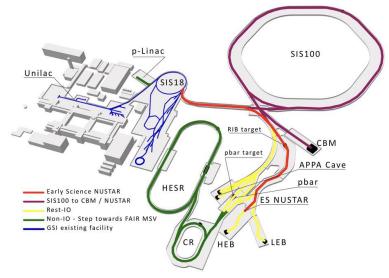
BACKUP



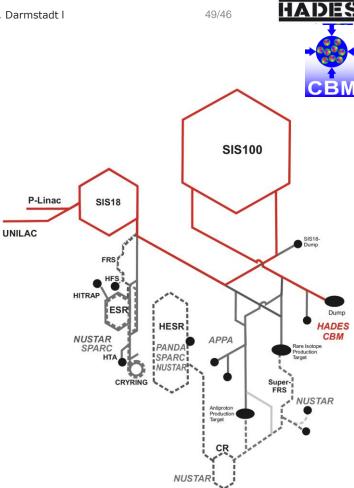

Magnet

47/46

CCE


Main parameters of the CBM magnet			
Magnetic field integral along 1 m about the center	1.02 Tm		
Maximal magnetic field on the coils	3.6 T		
Inner diameter of the SC winding	1.396 m		
Vertical distance between the poles	1.47 m		
Operating current	666 A		
Number of turns per coil	1716		
Total current	1.143 MA		
Number of layers	52		
Stored energy at test current	5.0 MJ		
Coils cold mass	3600 kg		
Operating temperature	4.5 K		
Inductance at operating current	21 H		
Vertical force acting on the coils toward the iron yoke	3.0 MN		
Total weight of the yoke	150 t		

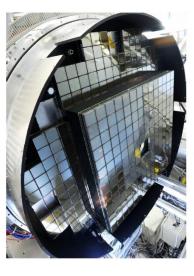
CBM @ SIS100

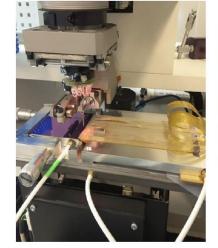

GSI FAIR

- C.B.M. at FAIR: dedicated high-rate heavy ion experimental program
- Accelerator chain: injector (UNILAC+SIS18), SIS100, high-energy beam transfer lines
- Proton and heavy-ion beams parameters well defined
 - no special requirements (see FAIR Operation Modes review Q4)
 - up to 10¹⁰ ions per spill (10 s), at full SIS100 energy range
- Beam intensity requirements demonstrated by the injector chain
- Ultimate parameters can be reached within a few months of commissioning.
- Current estimate: SIS100 commissioning with beams starts in Q2.2028

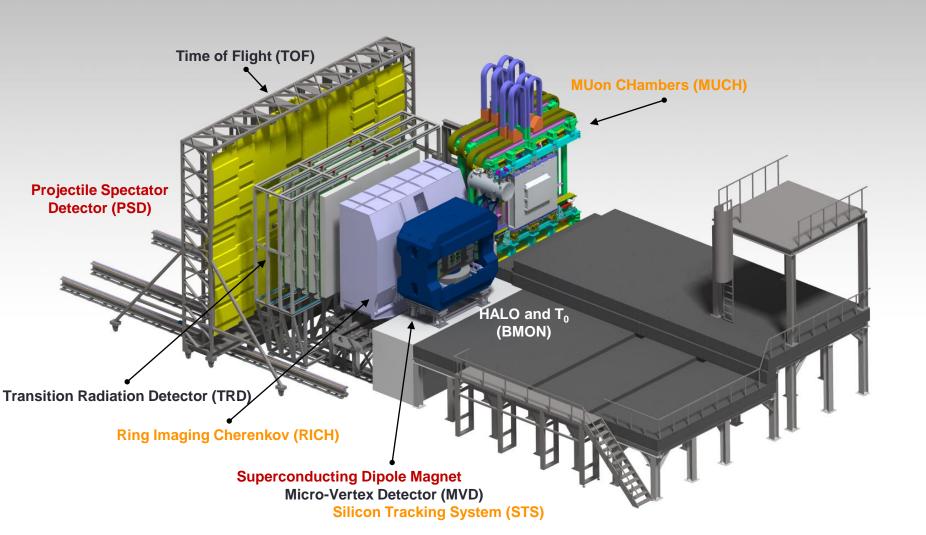
CBM @ SIS100

- C.B.M. at FAIR: dedicated high-rate heavy ion experimental program
- Accelerator chain: injector (UNILAC+SIS18), SIS100, high-energy beam transfer lines
- Proton and heavy-ion beams parameters well defined
 - no special requirements (see FAIR Operation Modes review Q4)
 - up to 10^{10} ions per spill (10 s), at full SIS100 energy range
- Beam intensity requirements demonstrated by the injector chain
- Ultimate parameters can be reached within a few months of commissioning.
- Current estimate: SIS100 commissioning with beams starts in Q2.2028

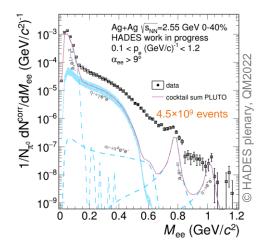


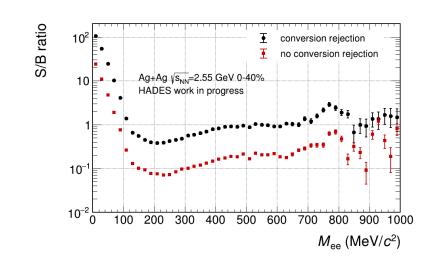

50/46

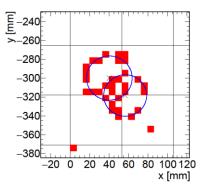
FAIR Phase-0 research program



- eTOF @ STAR is installed, commissioned and running
- Use 430 out of 1100 CBM RICH multi-anode photo-multipliers in HADES
- Silicon Tracking Stations development for BM@N in JINR
- Use PSD modules at BM@N and NA61/SHINE

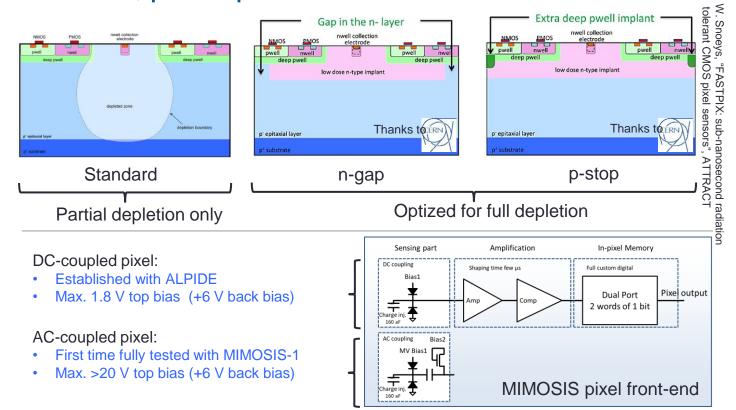



52/46



HADES RICH performance

- Superb performance of MAPMT-based RICH photo detector
 - dilepton measurement successfully extended
 - pion suppression factor >10⁴
 - excellent double ring detection (factor of 8 better signal-to-background ratio)
 - excess radiation observed in Ag+Ag collisions



MIMOSIS - 1, pixel options

54/46

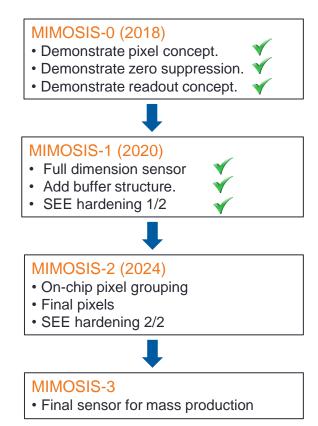
	de la compañía de la comp	
-		•
	1	
С	В	V

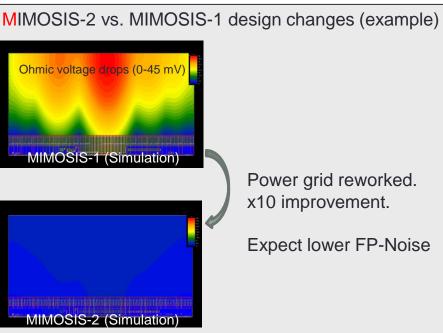
Date	Location	Beam	Goal
13. – 14. Mar 2021	GSI / mCBM	1 AGeV Pb	Single-Event-Effects (SEE)
23. – 24. May 2021	GSI / mCBM	1 AGeV Xe	SEE
07. – 13. Jun 2021	DESY	5 GeV e⁻	Performance
19. – 26. Sep 2021	DESY	5 GeV e-	Performance (X-ray irradiated)
05. – 12. Oct 2021	CERN	~100 GeV π^{\pm}	Performance (neutron irradiated)
14. – 20. Feb 2022	DESY	5 GeV e-	Performance (mixed irradiated) ++
21. – 28. Mar 2022	COSY	0.3 – 3 GeV p	Performance, dE/dx?
23. – 29. May 2022	GSI/UNILAC	10 MeV Au	SEE, slow fragments
01. – 07. Sep 2022	CERN	~100 GeV π^{\pm}	Response to inclined tracks

Irradiation campaigns:

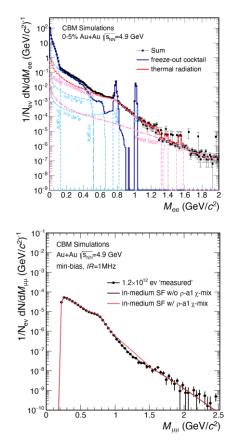
Date	Location	Radiation		
Jul – Aug 2021	Ljubjana (TRIGA)	~1 MeV reactor neutrons		
Sep 2021	Karlsruhe (KIT)	~10 keV X-rays		
Aug 2022	Karlsruhe (KIT)	~10 keV X-rays		

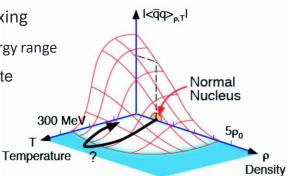
Special thanks to IPHC for massive support in beam time preparation. Meanwhile: 14 IPHC people (9-10 FTE) involved in MIMOSIS.


Shielding for PCB-ICs


(X-rays @ KIT)

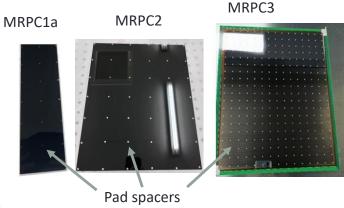
Test of MIMOSIS-2

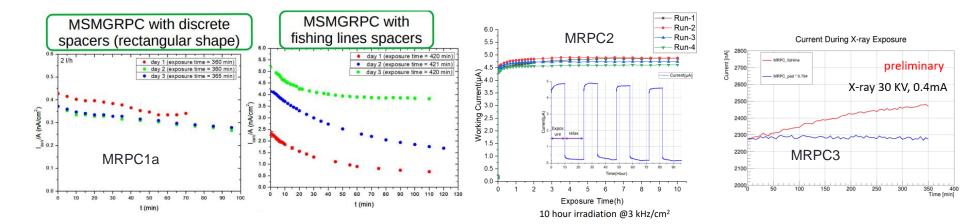




Dilepton measurements

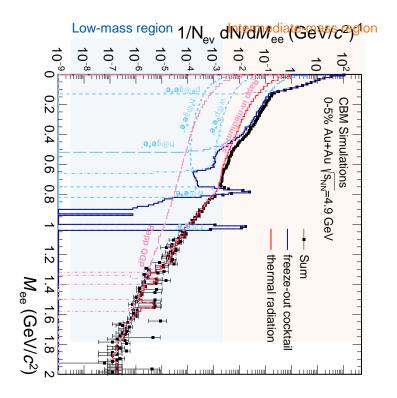
- Low mass range: total yield ~ fireball lifetime
- Intermediate mass range: slope \sim emitting source temperature
- Access to thermal signal is very feasible with good background description
- Chiral symmetry resotration $\rightarrow \rho$ and a_1 mixing
 - Mapping phase boundary over full incident energy range
 - T and ρ dependence of the quark condensate
 - Complementary to the LHC measurements



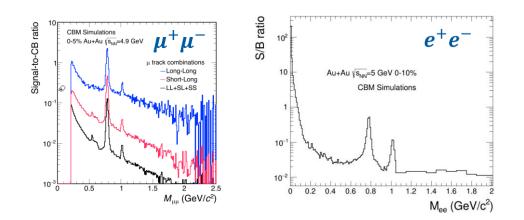

- Crucial for high quality data:
 - Interaciton rate
 - S/B ratio

Main achievements in last ~6 months

- Counter pre-production finished -> all counters arrived in Heidelberg
- Design and production of several pad spacer counters from type MRPC1a, 2 and 3
- Aging tests of all produced pad spacer counters with X-rays
- Engineering design on the main frame in full swing
- 12 module chambers build to be integrated in the mockup frame
- First MRPC1b and c assembled in Bucharest and tested with cosmic rays
- FEE ASIC PRR successfully finished on 30 May 2023 -> new batch of FEE chips to be produced soon



Emissivity

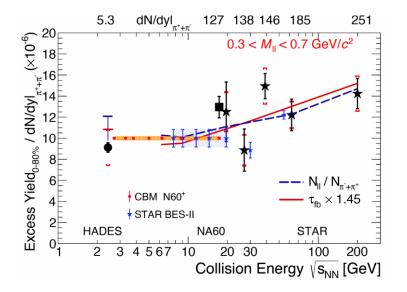


Electron-setup $R_{int} = O(0.1 \text{ MHz})$:

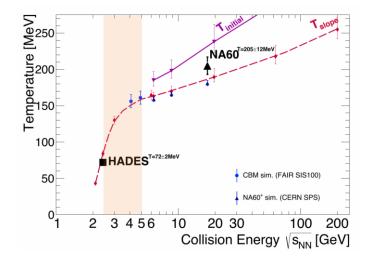
- identification with RICH-TRD-ToF (π suppr. \geq 10⁴);
- major CB γ -conversions in target, π^0 Dalitz decays;
- topological cuts used to reject CB

Muon-setup R_{int} = $\mathcal{O}(1 \text{ MHz})$:

- instrumented hadron absorber, low- and high energy configuration



59/46

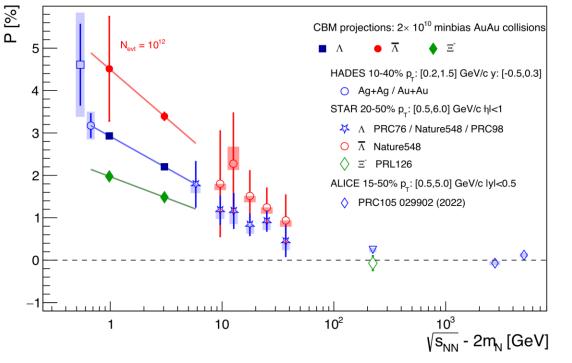


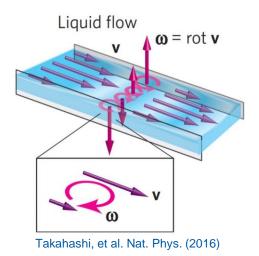
Emissivity with e⁺e⁻ after 3 years

Excess yield in Low Mass Region tracks fireball lifetime

- Search for "extra radiation" due to latent heat at phase transition.
- Precision sufficient to observe 1^{st} order phase transition, predicted to be of the order 2 3

Slope of invariant mass spectra in Intermediate Mass Region measures source temperature


- Flattening of caloric curve (*T* vs ε) would give evidence for a phase transition.
- Statistics after 3 years not sufficient for conclusive results .



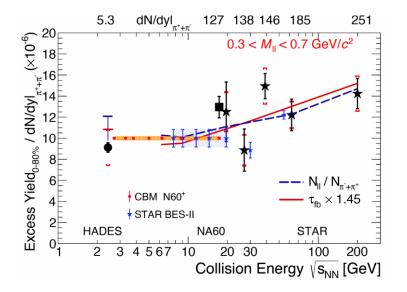
Vorticity

Global spin polarization of hyperons as a probe of fluid behaviour

- Driving mechanism for coupling orbital momentum to spin not understood yet.
- Measurement of polarization of Λ and Ξ^- with precision of 5% possible.
- Mapping of the excitation function for $\overline{\Lambda}$ requires $\geq 10^{13}$ events.

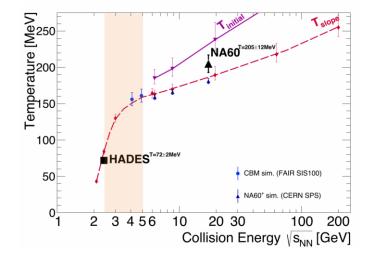
Preliminary CBM program for the first 3 years

see review Q3


Year	Setup	Reaction	Beam Energies T _{lab} [AGeV]	Days on Target	Number of events	Remarks
0	HAD/ELEHAD	C+C, Ag+Ag, Au+Au	2,4,6,8,10,max	60		Commissioning
1	ELEHAD	Au+Au	2,4,6,8,10,max	30 (5 each)	2.10 ¹⁰ each	EB minBias
1	ELEHAD	C+C	2,4,6,8,10,max	18 (3 each)	4·10 ¹⁰ each	minBias
1	ELEHAD	p+Be	3,4,8,29	12 (3 each)	2·10 ¹¹ each	minBias
2	MUON	Au+Au	2,4,6,8,10,max	30 (5 each)	2·10 ¹¹ each	minBias
2	MUON	C+C	2,4,6,8,10,max	18 (3 each)	4.10 ¹¹ each	minBias
2	MUON	p+Be	3,4,8,29	12 (3 each)	2·10 ¹² each	minBias
3	HADR	Au+Au	2,4,6,8,10,max	12 (2 each)	4·10 ¹¹ each	EB + Selector(s)
3	HADR	C+C	2,4,6,8,10,max	6 (1 each)	8·10 ¹¹ each	
3	HADES	Ag+Ag	2,4	28 (14 each)	10 ¹⁰ each	
3	ELEHAD	Ag+Ag	2,4	8 (4 each)	2·10 ¹⁰ each	minBias

62/46

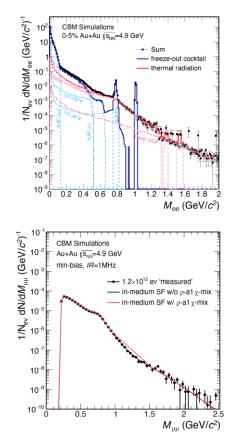
Emissivity with e⁺e⁻ after 3 years

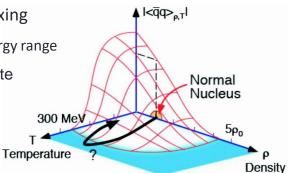


Excess yield in Low Mass Region tracks fireball lifetime

- Search for "extra radiation" due to latent heat at phase transition.
- Precision sufficient to observe 1st order phase transition,

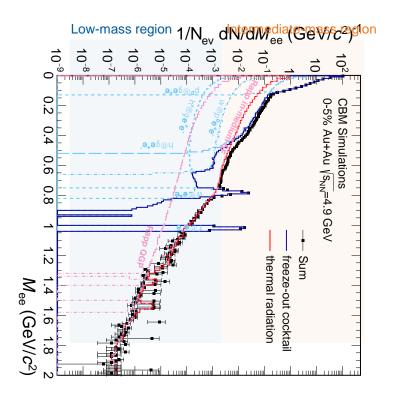
Slope of invariant mass spectra in Intermediate Mass Region measures source temperature


- Flattening of caloric curve (*T* vs ε) would give evidence for a phase transition.
- Statistics after 3 years not sufficient for conclusive results .



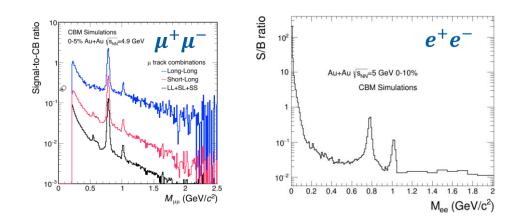
Dilepton measurements

- Low mass range: total yield ~ fireball lifetime
- Intermediate mass range: slope \sim emitting source temperature
- Access to thermal signal is very feasible with good background description
- Chiral symmetry resotration $\rightarrow \rho$ and a_1 mixing
 - Mapping phase boundary over full incident energy range
 - T and ρ dependence of the quark condensate
 - Complementary to the LHC measurements



- Crucial for high quality data:
 - Interaciton rate
 - S/B ratio

Emissivity

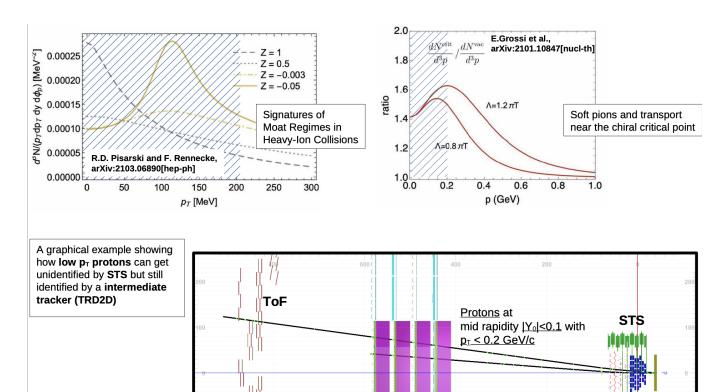


Electron-setup $R_{int} = O(0.1 \text{ MHz})$:

- identification with RICH-TRD-ToF (π suppr. \geq 10⁴);
- major CB γ -conversions in target, π^0 Dalitz decays;
- topological cuts used to reject CB

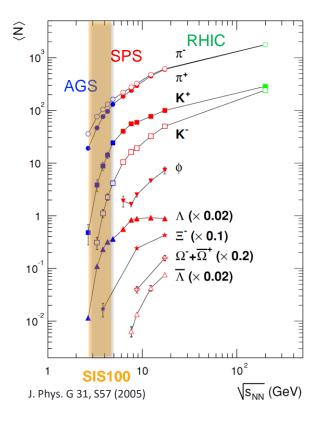
Muon-setup R_{int} = $\mathcal{O}(1 \text{ MHz})$:

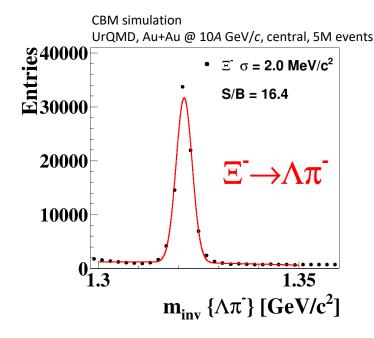
- instrumented hadron absorber, low- and high energy configuration



TRD2D

Dense QCD matter can ٠ exhibit spatially modulated regimes. They can be characterized by particles with a moat spectrum, where the minimum of the energy is over a sphere at nonzero momentum. Such a moat regime can either be a precursor for the formation inhomogeneous condensates, or signal a quantum pion liquid.


TRD2D



66/46

Multi-strange hadrons

• High-precision measurements of excitation functions of multi-

strange hyperons in A+A collision at SIS100 energies!