Introduction

Hybrid star equation of state

Rotating hybrid stars

Results

Conclusions

Exploring the effect of rotation on the deconfinement phase transition in hybrid stars

Uniwersytet Wrocławski

July 24, 2024

EREP, Coimbra

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

Conclusions 00000

1 Introduction

- 2 Hybrid star equation of state
- **3** Rotating hybrid stars

4 Results

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

1 Introduction

- 2 Hybrid star equation of state
- 3 Rotating hybrid stars
- 4 Results

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

Introduction ○●○ Hybrid star equation of state

Rotating hybrid stars

Results

Conclusions

Are Neutron Stars (NSs) worth to discuss in a Relativity Meeting?

Illustration of NS-BH merger

Compactness of objects C = M/R

- Black Holes (BHs) \Rightarrow Schwartzschild radius $\Rightarrow C = 1/2$
- maximum mass NSs $\Rightarrow C \approx 0.2 0.3$

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

Rotating hybrid stars

esults 0000 Conclusions

What are these compact objects made of?

Christoph Gärtlein

Jniv. Lisbon, Univ. Coimbra, Univ. Wroclaw

Rotating hybrid stars

esults 0000 Conclusions

What are these compact objects made of?

• different possible composition of Neutron Stars (NS)

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

Rotating hybrid stars

esults 0000 Conclusions

What are these compact objects made of?

- different possible composition of Neutron Stars (NS)
- one possibility: Quark Gluon Plasma in the core (including phase transition)

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

Rotating hybrid stars

esults 0000 Conclusions

What are these compact objects made of?

- different possible composition of Neutron Stars (NS)
- one possibility: Quark Gluon Plasma in the core (including phase transition)
 - \Rightarrow chance to probe QCD phase diagram with NSs

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

- 2 Hybrid star equation of state
- 3 Rotating hybrid stars

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

How to build up an NS with Equations of State?

What do we need to obtain possible NS configurations?

 \Rightarrow Tolmann-Oppenheimer-Volkoff Equations (spherical symmetric and gravitational equilibrated objects)

$$\frac{dp}{dr} = -(\varepsilon + p)\frac{m + 4\pi r^3}{r^2 - 2rm}$$
$$\frac{dm}{dr} = 4\pi r^2 \varepsilon$$

\Rightarrow need $p(\varepsilon) \Rightarrow$ need full EoS \Rightarrow hybrid EoS

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

How to build up an NS with Equations of State?

Assumption: We work with a First order Phase Transition between Hadronic and Quark Gluon Plasma Phase

- <u>Hadronic Phase</u>: DD2npY-T model including n, p, e, μ and hyperonic degrees of freedom shahrbaf,Blaschke+(2022)
- Quark matter: confining relativistic density functional approach Ivanytskyi,Blaschke (2022)
 - \Rightarrow encoded in underlying Lagrangian

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

Rotating hybrid stars

Results

Conclusions

Interlude on phase transitions

Christoph Gärtlein

Short answer: Discontinuity of order parameter \Rightarrow First order phase transition

Jump in energy density for hybrid EoS

sharp interface between two phases

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

Rotating hybrid stars

Results

Conclusions

From EoSs to M-R curves

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

Remember interesting properties as

- Special Points (SPs) and
- the deconfinement phase transition

Christoph Gärtlein

Jniv. Lisbon, Univ. Coimbra, Univ. Wroclaw

duction	Hybrid star	equatio
	000000	

n of state

Rotating hybrid stars

Summary of published paper

1 Hybrid EoS with specific quark matter description

Christoph Gärtlein

ln.	tr	o	dı	J C	t	i	o	n

Hybrid star equation of state ○○○○○○● Rotating hybrid stars

Results

Conclusions

Summary of published paper

 $\mbox{ 1 hybrid EoS with specific quark matter description } \mbox{ 2 parameters of EoS } \Leftrightarrow \eta_V, \ \eta_D$

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

l ntroduction 000	Hybrid star equation of state ○○○○○○●	Rotating hybrid stars	Results 00000	Co 1
Summary	of published paper			

1 Hybrid EoS with specific quark matter description **2** parameters of EoS $\Leftrightarrow \eta_V, \eta_D$

 corresponding M-R curves with properties as Special point (emperical relation)

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

Introduction	Hybrid star equation of state	Rotating hybrid stars	Results
000	○○○○○○●		00000
Summary	of published paper		

 $\mbox{ 1 hybrid EoS with specific quark matter description } \mbox{ 2 parameters of EoS } \Leftrightarrow \eta_V, \ \eta_D$

- corresponding M-R curves with properties as Special point (emperical relation)
- 10.1103/PhysRevD.108.114028

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

Conclusions 00000

- 2 Hybrid star equation of state
- **3** Rotating hybrid stars

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

⇒ Consider a "phase diagram" of rotating hybrid stars ω -*M* space

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

Intro	o du	ctic	n

Rotating hybrid stars

Results

Conclusions

Justification

 multiple detected pulsars including rotations over 700Hz ⇒ millisecond pulsars

Pulsars - Showing a "beam of light"

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

Intro	du	cti	io r	1

Rotating hybrid stars

Results

Conclusions

Justification

- multiple detected pulsars including rotations over 700Hz ⇒ millisecond pulsars
- changing of spherical shape (flattening) and frame-dragging

Pulsars - Showing a "beam of light"

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

Intro	du	cti	io r	1

Rotating hybrid stars

Results

Conclusions

Justification

Pulsars - Showing a "beam of light"

- multiple detected pulsars including rotations over 700Hz ⇒ millisecond pulsars
- changing of spherical shape (flattening) and frame-dragging
- phase transition inside and maximum mass ⇒ how does it change?

Christoph Gärtlein

Jniv. Lisbon, Univ. Coimbra, Univ. Wroclaw

 $ds^{2} = -e^{2\nu}dt^{2} + e^{2\psi}(d\phi - \omega dt)^{2} + e^{2\lambda}(dr^{2} + r^{2}d\theta^{2})$

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

$$ds^{2} = -e^{2\nu}dt^{2} + e^{2\psi}(d\phi - \omega dt)^{2} + e^{2\lambda}(dr^{2} + r^{2}d\theta^{2})$$

• TOV equations modified

Christoph Gärtlein

Jniv. Lisbon, Univ. Coimbra, Univ. Wroclaw

$$ds^2 = -e^{2\nu}dt^2 + e^{2\psi}(d\phi - \omega dt)^2 + e^{2\lambda}(dr^2 + r^2d\theta^2)$$

- TOV equations modified
- depending on rotational frequency ω

Christoph Gärtlein

Jniv. Lisbon, Univ. Coimbra, Univ. Wroclaw

$$ds^2 = -e^{2
u}dt^2 + e^{2\psi}(d\phi - \omega dt)^2 + e^{2\lambda}(dr^2 + r^2d\theta^2)$$

- TOV equations modified
- depending on rotational frequency ω
- numerically expensive \Rightarrow performance with RNS code by N. Stergioulas

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

$$ds^2 = -e^{2
u}dt^2 + e^{2\psi}(d\phi - \omega dt)^2 + e^{2\lambda}(dr^2 + r^2d\theta^2)$$

- TOV equations modified
- depending on rotational frequency ω
- numerically expensive \Rightarrow performance with RNS code by N. Stergioulas
- process:

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

$$ds^{2} = -e^{2\nu}dt^{2} + e^{2\psi}(d\phi - \omega dt)^{2} + e^{2\lambda}(dr^{2} + r^{2}d\theta^{2})$$

- TOV equations modified
- depending on rotational frequency ω
- numerically expensive \Rightarrow performance with RNS code by N. Stergioulas
- process:
 - input: EoS, central density ε_c , frequency ω

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

$$ds^{2} = -e^{2\nu}dt^{2} + e^{2\psi}(d\phi - \omega dt)^{2} + e^{2\lambda}(dr^{2} + r^{2}d\theta^{2})$$

- TOV equations modified
- depending on rotational frequency ω
- numerically expensive \Rightarrow performance with RNS code by N. Stergioulas
- process:
 - input: EoS, central density ε_c , frequency ω
 - output: R, M, oblateness (R_p/R_e) , etc.

Christoph Gärtlein

Jniv. Lisbon, Univ. Coimbra, Univ. Wroclaw

Kepler frequency

NSs rotating at Kepler frequency

- hypothetical highest rotation of NSs
- higher rotations will lead to mass shedding

•
$$\omega_{Kepler} \propto \sqrt{rac{M}{R^3}}$$

• ω_{Kepler} will play the role of a phase boundary in our discussion

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

- 2 Hybrid star equation of state
- 3 Rotating hybrid stars

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

ntroduction	Hybrid star equation of stat	e Rotating 00000	hybrid stars	Results 0●000	Conclusion 00000
Neutron st	tars under rotation				
	static case	$\omega = 6 \ \mathrm{kHz}$	Kepler frequen	cy	
	Neut	tron star under rota	ation		
1.0	$M=1.44M_{\odot}, \ \eta_D=0.711, \ \eta_V=0.230$	• ob	lateness as a	function c	of

Christoph Gärtlein

- the rotational frequency ω
- depending on EoS/couplings • \Rightarrow oblateness goes down to ca. 55%

Int	ro	du	ct	io	n

Rotating hybrid stars

Results

Conclusions

M-R curves and characteristics

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

Intr	o du	ctio	n

Rotating hybrid stars

Results

Conclusions

Phase diagram ω -M

Christoph Gärtlein

Jniv. Lisbon, Univ. Coimbra, Univ. Wroclaw

Inti	0	dı	ı c	ti	o	n

Rotating hybrid stars

Results

Conclusions

Phase diagram ω -M

Christoph Gärtlein

Jniv. Lisbon, Univ. Coimbra, Univ. Wroclaw

1 Introduction

- 2 Hybrid star equation of state
- 3 Rotating hybrid stars

4 Results

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

Introduction 000	Hybrid star equation of state	Rotating hybrid stars	Results 00000	Conclusions 00000
Conclusions				

RNS code enables to model rotating hybrid stars up to Kepler frequency

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

Introduction 000	Hybrid star equation of state	Rotating hybrid stars	Results 00000	Conclusions ○●○○○
Conclusions				

- RNS code enables to model rotating hybrid stars up to Kepler frequency
- **2** Special Point exists in rotating case

Christoph Gärtlein

Jniv. Lisbon, Univ. Coimbra, Univ. Wroclaw

Introduction 000	Hybrid star equation of state	Rotating hybrid stars	Results 00000	Conclusions ○●○○○
Conclusions				

- RNS code enables to model rotating hybrid stars up to Kepler frequency
- **2** Special Point exists in rotating case
- **3** shift of the deconfinement phase transition increases with higher onset mass (smaller η_D)

Introduction 000	Hybrid star equation of state	Rotating hybrid stars	Results 00000	Conclusions ○●○○○
Conclusions				

- RNS code enables to model rotating hybrid stars up to Kepler frequency
- **2** Special Point exists in rotating case
- **3** shift of the deconfinement phase transition increases with higher onset mass (smaller η_D)
- maximum mass M_{max} is shifted for towards higher rotational frequencies (predicts high mass NSs)

Introduction 000	Hybrid star equation of state	Rotating hybrid stars	Results 00000	Conclusions ○●○○○
Conclusions				

- RNS code enables to model rotating hybrid stars up to Kepler frequency
- **2** Special Point exists in rotating case
- **3** shift of the deconfinement phase transition increases with higher onset mass (smaller η_D)
- maximum mass M_{max} is shifted for towards higher rotational frequencies (predicts high mass NSs)
- **6** phase diagram predicts composition of hybrid stars \Rightarrow parameter space (η_V, η_D) needs to be more restricted

Introduction 000	Hybrid star equation of state	Rotating hybrid stars	Results 00000	Conclusions ○●○○○
Conclusions				

- RNS code enables to model rotating hybrid stars up to Kepler frequency
- **2** Special Point exists in rotating case
- **3** shift of the deconfinement phase transition increases with higher onset mass (smaller η_D)
- maximum mass M_{max} is shifted for towards higher rotational frequencies (predicts high mass NSs)
- **6** phase diagram predicts composition of hybrid stars \Rightarrow parameter space (η_V, η_D) needs to be more restricted
- observation of rotating stars can put constraints on internal composition

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

Introduction 000 Hybrid star equation of state

Rotating hybrid stars

esults 0000 Conclusions

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

• But: inside star, no shell of mixed phase \Rightarrow narrow

Christoph Gärtlein

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw

Relativistic density functional for guark matter EOS

$$\mathcal{L} = \overline{q}(i\partial \!\!\!/ - \hat{m})q + \mathcal{L}_{PS} + \mathcal{L}_V + \mathcal{L}_D$$

● Pseudoscalar interaction ⇒ chiral dynamics

$$\mathcal{L}_{PS} = \mathit{G}_{0}\left[(1+lpha)\langle\overline{q}q
angle_{0}^{2}-(\overline{q}q)^{2}-(\overline{q}iec{ au}\gamma_{5}q)^{2}
ight]^{rac{1}{3}}$$

• Vector interaction \Rightarrow repulsion

$${\cal L}_V = -G_V (\overline{q} \gamma_\mu q)^2$$

• Diquark pairing \Rightarrow color superconductivity

$$\mathcal{L}_D = \mathcal{G}_D \sum_{A=2,5,7} (\overline{q} i \gamma_5 au_2 \lambda_A q^c) (\overline{q}^c i \gamma_5 au_2 \lambda_A q)$$

Comparison to NJL model

Christoph Gärtlein

- medium dependent scalar G_S and pseudoscalar G_{PS} couplings
- high vacuum quark mass \Rightarrow phenomenological confinement
- quark correlations \Rightarrow mesons: $\pi, \sigma = \cdots$

Details in:

Ivanytskyi, Blaschke, PRD (2022) Ivanytskyi, Blaschke, Particles (2022)

Univ. Lisbon, Univ. Coimbra, Univ. Wroclaw