Influence of spatial curvature in early cosmological particle production

Álvaro Parra-López · <u>alvaparr@ucm.es</u> Complutense University of Madrid & IPARCOS

Article in preparation

In collaboration with José A. R. Cembranos and Luis J. Garay

EREP2024 - July 2024

Introduction

- QFT in the presence of an external, time-dependent agent
 - Particle production (even from vacuum)
 - Vacuum/particle notion is ambiguous

Introduction

- QFT in the presence of an external, time-dependent agent
 - Particle production (even from vacuum)
 - Vacuum/particle notion is ambiguous

 Spatial curvature may affect the Primordial Power Spectrum (PPS)

Bonga '16, '17, Hergt '22

 Does this affect gravitational production (of DM) too?

Scalar field in flat FLRW

• Non-interacting scalar field with action

$$S = -\frac{1}{2} \int d^4x \sqrt{-g} [\partial_\mu \varphi \partial^\mu \varphi + (m^2 + \xi R) \varphi^2]$$

- Non-minimal coupling to the curvature
- We expand the auxiliary field $\chi = a\varphi$ as

$$\chi(\eta, \mathbf{x}) = \int_{\mathbf{k}} [a_{\mathbf{k}} v_{k}(\eta) + a_{-\mathbf{k}}^{*} v_{k}^{*}(\eta)] e^{i\mathbf{k}\mathbf{x}}$$

Conformal time

Scalar field in flat FLRW

• Non-interacting scalar field with action

$$S = -\frac{1}{2} \int d^4x \sqrt{-g} [\partial_\mu \varphi \partial^\mu \varphi + (m^2 + \xi R) \varphi^2]$$

- Non-minimal coupling to the curvature
- We expand the auxiliary field $\chi = a\varphi$ as

$$\chi(\eta, \mathbf{x}) = \int_{\mathbf{k}} [a_{\mathbf{k}} v_{k}(\eta) + a_{-\mathbf{k}}^{*} v_{k}^{*}(\eta)] e^{i\mathbf{k}\mathbf{x}}$$

Conformal time

• The EOM of $\chi(\eta, \mathbf{x})$ in *k*-space is

$$v_k''(\eta) + \omega_k^2(\eta)v_k(\eta) = 0$$

with frequency

$$\omega_k^2(\eta) = k^2 + a^2(\eta) \left[m^2 + \left(\xi - \frac{1}{6}\right)R(\eta)\right]$$

- Background determines $a^2(\eta)$ and $R(\eta)$
- Quantization: $a_k, a_k^* \rightarrow \hat{a}_k, \hat{a}_k^+$

Scalar field in curved FLRW

• Non-interacting scalar field with action

$$S = -\frac{1}{2} \int d^4x \sqrt{-g} [\partial_\mu \varphi \partial^\mu \varphi + (m^2 + \xi R) \varphi^2]$$

- Non-minimal coupling to the curvature
- We expand the auxiliary field $\chi = a\varphi$ as

$$\chi(\eta, \mathbf{x}) = \int_{\mathbf{k}} [a_{\mathbf{k}} v_{k}(\eta) + a_{-\mathbf{k}}^{*} v_{k}^{*}(\eta)] f_{\mathbf{k}}(\mathbf{x})$$

Conformal time

• The EOM of $\chi(\eta, \mathbf{x})$ in k-space is

 $v_k''(\eta) + \omega_k^2(\eta)v_k(\eta) = 0$

with frequency

$$\omega_k^2(\eta) = -h(k) + a^2(\eta) \left[m^2 + \left(\xi - \frac{1}{6}\right)R(\eta)\right]$$

- Background determines $a^2(\eta)$ and $R(\eta)$
- Quantization: $a_k, a_k^* \rightarrow \hat{a}_k, \hat{a}_k^+$

Particle production

• Two particular solutions v_k and u_k expand χ with different operators (and vacua),

Particle production

• Two particular solutions v_k and u_k expand χ with different operators (and vacua),

$$u_{k} = \alpha_{k} v_{k} + \beta_{k} v_{k}^{*}, \quad \hat{b}_{k} = \alpha_{k}^{*} \hat{a}_{k} - \beta_{k}^{*} \hat{a}_{k}^{+}$$
$$\downarrow^{|\alpha_{k}|^{2} - |\beta_{k}|^{2} = 1}$$

• Can not impose Poincaré symmetry, $\omega_k^2 = \omega_k^2(\eta)$

Particle production

• Two particular solutions v_k and u_k expand χ with different operators (and vacua),

$$u_{k} = \alpha_{k}v_{k} + \beta_{k}v_{k}^{*}, \quad \hat{b}_{k} = \alpha_{k}^{*}\hat{a}_{k} - \beta_{k}^{*}\hat{a}_{k}^{+}$$
$$\downarrow^{|\alpha_{k}|^{2} - |\beta_{k}|^{2} = 1}$$

- Can not impose Poincaré symmetry, $\omega_k^2 = \omega_k^2(\eta)$
- If the systems is in the state $|0_a\rangle$ at η_i ,

 $N_k(\eta_f) = \langle 0_a | \hat{b}_k^+ \hat{b}_k | 0_a \rangle = |\beta_k|^2$

• Need to know v_k and u_k at the same time (η_f)

Background dynamics

• Toy model: de Sitter universe + sudden Minkowski

$$\frac{u_k(\eta_f)}{\omega_k(\eta_f)} = 1/\sqrt{\omega_k(\eta_f)}, \ \frac{u'_k(\eta_f)}{\omega_k(\eta_f)} = -i\omega_k(\eta_f)/\sqrt{\omega_k(\eta_f)}$$

• Alternative: adiabatic vacuum (smooth transition)

$$\boldsymbol{u_k'}(\eta_f) = -\left(i\omega_k(\eta_f) + \frac{1}{2}\frac{\omega_k'(\eta_f)}{\omega_k(\eta_f)}\right) / \sqrt{\omega_k(\eta_f)}$$

• Choose **Bunch-Davies** as initial vacuum

• Take $\xi = 1/6$

Density and abundance

- The total comoving density of particles is $n(m,\xi) = \int dk \ k^2 |\beta_k|^2$
- The physical density at the end of reheating is $n_{rh}(m,\xi) = n(m,\xi)/a_{rh}^3$
- If the field is non-interacting, the abundance of dark matter today can be expressed in terms of the reheating temperature as

$$\Omega(m,\xi) = \frac{8\pi}{3M_P^2 H_0^2} \frac{g_{*S}^0}{g_{*S}^{rh}} \left(\frac{T_0}{T_{rh}}\right)^3 mn_{rh}(m,\xi)$$

Density and abundance (flat)

• The adiabatic coefficient (the difference between the two inflation exits) is

$$\frac{\omega_k'}{\omega_k^2} = \frac{m^2}{H^2 \left(k^2 \eta^2 + \frac{m^2}{H^2}\right)^{3/2}}$$

- For $m \gg H$, the two toy models coincide
- For *m* < *H*, the mass dependence seems due to the vacuum choice, not the evolution

Density and abundance (curved)

- There can be differences depending on curvature
- Small wavelengths do not see curvature effects
- Negative curvature increases production
- Positive curvature decreases production

Álvaro

Observation-compatible curvature leads to differences only for very small masses (negligible abundance)

 $\Omega_{\kappa} \gg \Omega_{\kappa, \text{obs}}, \ m = 10^{-2} m_{\phi}$

 $|\Omega_{\kappa}| \sim |\Omega_{\kappa, \text{obs}}|, m = 10^{-40} m_{\phi}$

Summary

• QFT in CS leads to gravitational particle production

• Initial spatial curvature can influence particle production for a spectator field

• However, differences are found for too large curvature, or for very small abundances

• Preliminary results suggest that cosmological dark matter production is not affected

Vacuum choice in the flat case

• Spacetime is always expanding \rightarrow No preferred notion of vacuum a priori

• We take $|0_a\rangle$ to be the Bunch-Davies vacuum, with corresponding v_k fuliflying

$$v_k(\eta \to -\infty) \sim e^{-ik\eta}$$
 (Assume we recover de Sitter
at the beginning of inflation)

• For $|0_b\rangle$ we take the adiabatic vacuum, defined when expansion is very slow, with

$$u_{k}(\eta_{f}) = 1/\sqrt{\omega_{k}(\eta_{f})}, \ u_{k}'(\eta_{f}) = -\left(i\omega_{k}(\eta_{f}) + \frac{1}{2}\frac{\omega_{k}'(\eta_{f})}{\omega_{k}(\eta_{f})}\right)/\sqrt{\omega_{k}(\eta_{f})}$$

Time at which expansion is adiabatic

Density and abundance (slow-roll)

Density and abundance (slow-roll)

