Field interactions from broken diffeomorphisms

Diego Tessainer Bonet Universidad Complutense de Madrid In collaboration with Antonio L. Maroto and Prado Martín-Moruno Spanish and Portuguese Relativity Meeting (EREP 2024)

Unknown nature of the dark sector

study modifications of gravity at cosmological scales.

Motivation

Unimodular gravity (UG)

break invariance under diffeomorphisms

Transverse diffeomorphisms (TDiff)

- Weyl rescalings
- Solution to the vacuum-energy problem

A. Einstein, Siz. Preuss. Acad. Scis. (1919). W. G. Unruh, Phys. Rev. D 40 (1989) 1048.

- Study of **TDiff** invariant theories
- Modify the geometry sector or the matter sector.

Interesting phenomenology in cosmological contexts

A. L. Maroto (2023), JCAP 04, 037, arXiv:2301.05713 [gr-qc].

Objectives and methodology

- Study shift-symmetric TDiff invariant theories in the matter sector, consisting of multiple kinetically driven scalar fields, applications to cosmology.
- Application to the study of the dark sector and comparison with observational data from type Ia supernovae.

Single-field TDiff theories

 Variation of the action under coordinate transformations

$$x^\mu \to x^\mu + \xi^\mu(x)$$
 ; $S = \int d^4 x f(g) \mathcal{L}$

$$\delta_{\xi}S = \int d^{4}x \partial_{\mu}\xi^{\mu} (f(g) - 2gf'(g))\mathcal{L}$$

TDiff: $\partial_{\mu}\xi^{\mu} = 0$

$$\Rightarrow$$

$$S = \int d^4x \left(\frac{1}{2} f_K(g) \partial_\mu \phi \partial^\mu \phi - f_V(g) V(\phi) \right)$$

Flat Robertson-Walker spacetime

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = b(\tau)^{2}d\tau^{2} - a(\tau)^{2}dx^{2}$$

Single-field TDiff theories

- Energy-momentum tensor: perfect fluid approach $T_{\mu\nu} = (\rho + p)u_{\mu}u_{\nu} pg_{\mu\nu}$ (when $\partial_{\mu}\phi$ is a timelike vector) (*)
- Homogeneous case $\phi = \phi(\tau)$: energy density and pressure

$$p = \frac{f_K(g)}{b^2 \sqrt{g}} (1 - F_K(g))(\phi')^2 + \frac{2f_V(g)}{\sqrt{g}} F_V(g)V(\phi)$$
$$p = \frac{f_K(g)}{b^2 \sqrt{g}} F_K(g)(\phi')^2 - \frac{2f_V(g)}{\sqrt{g}} F_V(g)V(\phi)$$

D. Jaramillo-Garrido, A. L. Maroto, and P. Martín-Moruno, JHEP 03, 084, arXiv:2307.14861 [gr-qc].

Single-field TDiff theories

• Einstein Equations ($G_{\mu\nu} = 8\pi G T_{\mu\nu}$)

$$\left(\frac{a'}{a}\right)^2 = \frac{8\pi G}{3}\rho b^2$$

Field equations

$$\phi'(\tau) = C_{\phi} \frac{b^2(\tau)}{f_{K(g)}}$$

• Conservation of the energy-momentum tensor $\nabla_{\nu}T^{\mu\nu} = 0$ (preserved through Bianchi identities)

$$\rho' + 3\frac{a'}{a}(\rho + p) = 0$$

Gives rise to geometrical constrains on g which allow to obtain b

Model: kinetically driven fields and power-law couplings

Kinetic regime: constrain $g^{1-\alpha}|2\alpha - 1| = C_g a^6$

Equation of state parameter: $w = \frac{p}{\rho} = \frac{\alpha}{1-\alpha}$

Multi-field TDiff theories. Presentation of the model

Particular model: two kinetically driven fields with power-law couplings

$$S = \sum_{i} \int d^{4}x f_{i}(g) \left(\frac{1}{2} \partial_{\mu} \phi_{i} \partial^{\mu} \phi^{i}\right) \quad ; f_{K_{1}}(g) = kg^{\alpha} \; ; f_{K_{2}}(g) = \lambda g^{\beta}$$

Geometrical constrain:

 $C_1 g^{1-\alpha} |2\alpha - 1| + C_2 g^{1-\beta} |2\beta - 1| = C_g a^6$ effective interactions between the fields:

$$\rho_1' + 3\frac{a'}{a}(\rho_1 + p_1) = Q = -\rho_2' - 3\frac{a'}{a}(\rho_2 + p_2)$$

Energy densities:

$$\rho_i = C_i (1 - \alpha_i) \frac{b^{1 - 2\alpha_i}}{a^{6\alpha_i + 3}}$$

• No interacting terms in the action, the equation of state parameters are constant (w_i)

$$w_1 = \frac{\alpha}{1-\alpha}$$
; $w_2 = \frac{\beta}{1-\beta}$

Multi-field TDiff theories. Domination regimes

Domination regimes: assuming one field (ϕ_1) dominates, it will approximately satisfy its individual conservation law, and $b \propto a^{3w_1}$:

$$\rho_1(a) \propto a^{-3(1+w_1)} ; \rho_2(a) \propto a^{-3(1+w_{eff})}$$

The subdominant component sees its decay behavior altered, now parameterized by

$$w_{eff} = \frac{2w_2 - w_1 + w_1w_2}{1 + w_2}$$

Multi-field TDiff theories. Domination regimes

• Wide phenomenology.

- Possible to have a cosmological constant in subdominant regimes.
 - Possibility of *phantom-crossing*.

Multi-field TDiff theories. Analytical case

- Analytical case: $\alpha = 0$, $\beta = -\frac{1}{2}$ $(w_2 = -\frac{1}{3})$. Constrain with analytical solution: $C_1g + 3C_2g^2 = C_ga^6$
- Allows us to obtain b(a) and the energy densities analytically:

$$a \gg 1 \text{ limit:}$$

$$\rho_1(a) \propto \left(\sqrt{A}a^{-\frac{9}{2}} - \frac{1}{\sqrt{2}A}a^{-\frac{15}{2}}\right)$$

$$\rho_2(a) \propto \left(-3\sqrt{A}a^{-\frac{9}{2}} + 2a^{-\frac{3}{2}A^{\frac{3}{2}}}\right)$$

$$A \equiv \sqrt{12C_2C_g/C_1^2}$$

$$a \ll 1 \text{ limit:}$$

$$\rho_1(a) \propto \left(a^{-3} - \frac{3C_2C_g}{2C_1^2}a^3\right)$$

$$\rho_2(a) \propto a^3$$

Dark matter dominates at shorter times and dark energy at later times.

Multi-field TDiff theories. Analytical model

Fig.2. Effective equation of state parameter for both components in terms of the redshift.

- Parameter: redshift at the moment of equality.
- We can define an effective equation of state parameter in terms of the redshift,

$$\rho_i' + 3\frac{a'}{a} \left(1 + w_{eff,i}(z)\right)\rho_i = 0$$

$$w_{eff,i}(z) = -\frac{1}{3} \left(-\frac{1+z}{b(z)} (1-2\alpha_i) \frac{db}{dz} - 6\alpha_i - 3 \right) - 1$$

• We study general dark sector models with two interacting fields: dark matter ($\alpha = 0$) and dark energy ($\beta < -1/2$). Two free parameters (fixing the gauge condition $a(t_0) = b(t_0) = 1$):

Coupling exponent of dark energy (β).

• Ratio between the abundances today (λ)

 $\lambda = \frac{\Omega_{DMT}}{\Omega_{DET}}$

$$\frac{C_1}{C_2}g^{1-\alpha}|2\alpha - 1| + g^{1-\beta}|2\beta - 1| = \frac{C_g}{C_2}a^6$$

• Start from Friedmann equation with baryons and TDiff dark sector: $H^{2}(z) = H_{0}^{2} \left[\Omega_{B}(1+z)^{3} + (1-\Omega_{B}) \left(1+\frac{1}{\lambda}\right)^{-1} b(z)(1+z)^{3} + \frac{1}{\lambda}(1-\Omega_{B}) \left(1+\frac{1}{\lambda}\right)^{-1} b(z)^{1-2\beta}(1+z)^{6\beta+3} \right]$

 Dark matter dominates at shorter times we can define an effective matter density parameter at high redshift, which is constant:

$$\Omega_{M}^{eff} \equiv \Omega_{B} + (1 - \Omega_{B}) \left(1 + \frac{1}{\lambda}\right)^{-1} b_{early}$$

b_{early} is the value of *b* at high redshift, which is a **constant** under matter domination.

$$b_{early} = \sqrt{\frac{\lambda(1-\beta) + |2\beta - 1|}{\lambda(1-\beta)}}$$

We can fit both parameters (w₂, Ω^{eff}_M) to observational data. Using the Union2 data from type la supernovae and do the analysis using the distance moduli.

 $\mu^{th}(z) = 5 \log_{10} (H_0 d_L(z)) + M \equiv \hat{\mu}(z) + M$

- The **best fit** will be that minimizing the value of the χ^2 estimator: $\chi^2 = \sum_{i} \frac{\left(\mu^{obs}(z_i) - \mu^{th}(z_i)\right)^2}{E_i^2}$
- The absolute magnitude *M* will be marginalized:

$$M = \sum_{i} \left(\frac{1}{\sigma} \frac{\left(\hat{\mu}(z_i) - \mu^{obs}(z_i) \right)}{E_i^2} \right); \sigma = \sum_{i} E_i^{-2}$$

Results and comparison with wCDM

• Two parameter fit (w_2, Ω_M^{eff}) :

	Best fit	$\chi^2_{\rm min}$
TDiff	$w_2 = -0.813^{+0.102}_{-0.060}, \Omega_{\rm M}^{\rm eff} = 0.387^{+0.056}_{-0.078}$	542.16
wCDM	$w = -1.063^{+0.225}_{-0.183}, \Omega_{\rm M} = 0.294^{+0.077}_{-0.069}$	542.64

Best fit: two-parameter case

Fig.4. Contour regions up to the four sigma region for both parameters.

Fig.5. Comparison between the best fit, observations and *w*CDM.

Best fit: two parameter case

Fig.6. Effective equation of state parameters for each component in terms of the redshift. Best fit.

- Results are **compatible** in the one sigma region with the CMB measurement for Ω_M .
- TDiff and wCDM are in accordance, they start to deviate at higher redshift.
- Dark energy exhibits a dynamical behavior: phantom in the past, quintessence in the future and approximately constant at recent times. There is phantom-crossing.
- Dark matter starts to decay faster tan expected from its equation of state as dark energy starts to dominate.

- Breaking the invariance under diffeomorphisms in a theory with multiple scalar fields leads to interactions of geometrical nature between both components.
- In cosmological contexts, matter fields exhibit dynamical decay behaviors that vary with the expansion of the universe, even if the individual equation of state parameters are constant.
- It is possible to have dark energy interpolating from *phantom* (in the subdominant regime) and *quintessence* (in the future), without introducing non canonical terms or ghosts in the action.
- The model shows good accordance with observations and it is compatible with the CMB measurement in the one sigma region.

Conclusions and future work

• Future work:

- Stability of the theory under **perturbations** and **structure formation**.
- Break the symmetry in the **geometric sector** too.
- Study more general couplings and non-homogeneous fields.
- Consider models in the **potential or mixed regimes**.
- Extend to more **data sets** (Pantheon, CMB, BAO...)