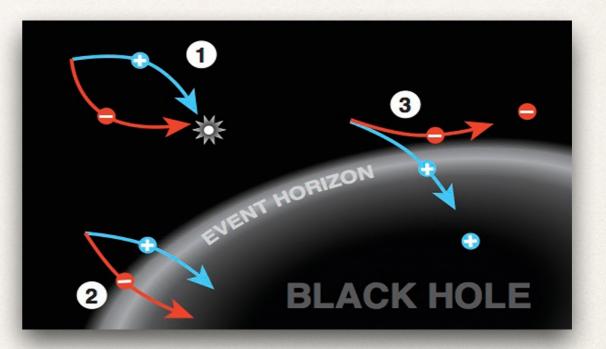


Heat Kernel and Revelations

Vincenzo Vitagliano (University of Genova & INFN), 23 Jul 2024

Crumbs of semiclassical phenomena...

- Particle production in the early universe
 Hawking radiation



- Schwinger effect
- Casimir effect

. . .

*

 $\mathcal{W} = \frac{1}{2} \ln \det \mathcal{O}$

(with $\mathcal{O} = -\Delta + \text{End}$)

$\mathcal{W} = -\frac{1}{2} \operatorname{Tr} \int \frac{dt}{t} K(t; x, y; \mathcal{O})$

$$\operatorname{Tr} K(t; x, y; \mathcal{O}) \simeq_{t \to 0^+} \sum_{k \ge 0} t^{\frac{k-n}{2}} a_k(\mathcal{O})$$

Try this at home...

$$K[t; x, y; \mathcal{O} = -\partial^2 + m^2] = \frac{1}{(4\pi t)^{n/2}} \exp\left[-\frac{|x - y|^2}{4t} - tm^2\right]$$

$$K[t; x, y; \mathcal{O} = -\Box + \xi R] = \frac{\Delta_{VM}^{1/2}}{(4\pi t)^{n/2}} \exp\left[-\frac{\sigma(x, y)}{2t}\right] F[t; x, y]$$

where
$$F[t; x, y] = \sum_{k \ge 0} t^k f_k(x, y)$$

Examples of partially resummed HK expansions...

derivatives contributions up to second and third order in the curvatures

> Barvinsky&Vilkovisky, NPB (1990) Codello&Zanusso, JMathPhys (2013) Barvinsky&Vilkovisky, NPB (1990)

resummations in abelian bundles, QED , symmetric spaces

> Avramidi&Fucci, CommMathPhys (2009) Gusynin&Shovkovy, JMathPhys (1999) Avramidi, JMathPhys (1996)

$$K[t; x, y; \mathcal{O} = -\Box + \xi R] = \frac{\Delta_{VM}^{1/2}}{(4\pi t)^{n/2}} \exp\left[-\frac{\sigma(x, y)}{2t}\right] F[t; x, y]$$

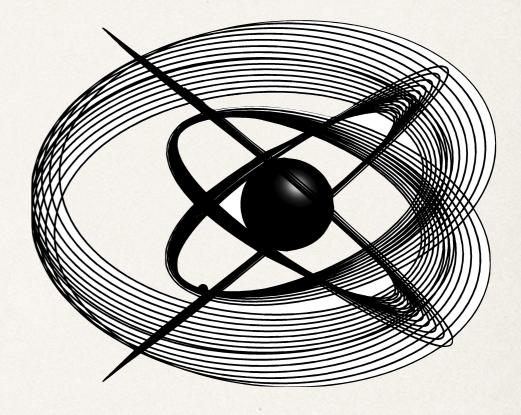
where $F[t; x, y] = \exp\left[-tR(y)(\xi - 1/6)\right] \left(1 + \sum_{j \ge 1} t^j \widetilde{f_j}(x, y)\right)$

Parker & Toms, PRD (1985) Jack & Parker, PRD (1985)

Take home

Symmetry breaking mechanisms can be modified in curved spaces by effective masses of purely geometrical origin How does the interplay between strong interactions and geometry work?

BHs outskirts:curvature effects comparable to Λ_{QCD} (cf. Hawking-Moss picture)



 $T_{BH} \sim 1/m_{BH}$

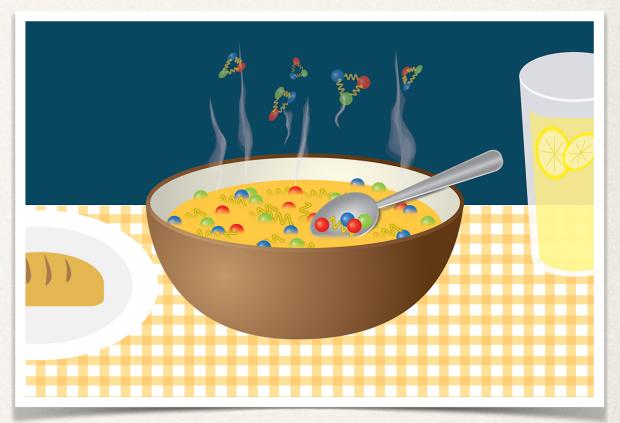
Photons, neutrinos and gravitons...

...electrons...muons...

...pions and heavier hadrons

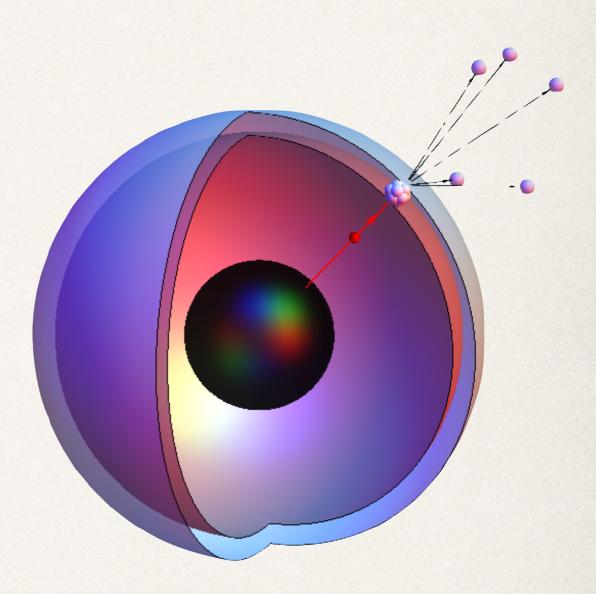
The gourmet recipe

NJL + Large N approximation + Hubbard-Stratonovich transf. $\Gamma = -\int d^4x \sqrt{g} \left(\frac{\sigma^2}{2\lambda}\right) + \operatorname{Tr} \ln(i\gamma^{\mu}\nabla_{\mu} - \sigma)$ with $\sigma[r] \equiv -\frac{\lambda}{N} \bar{\psi} \psi$

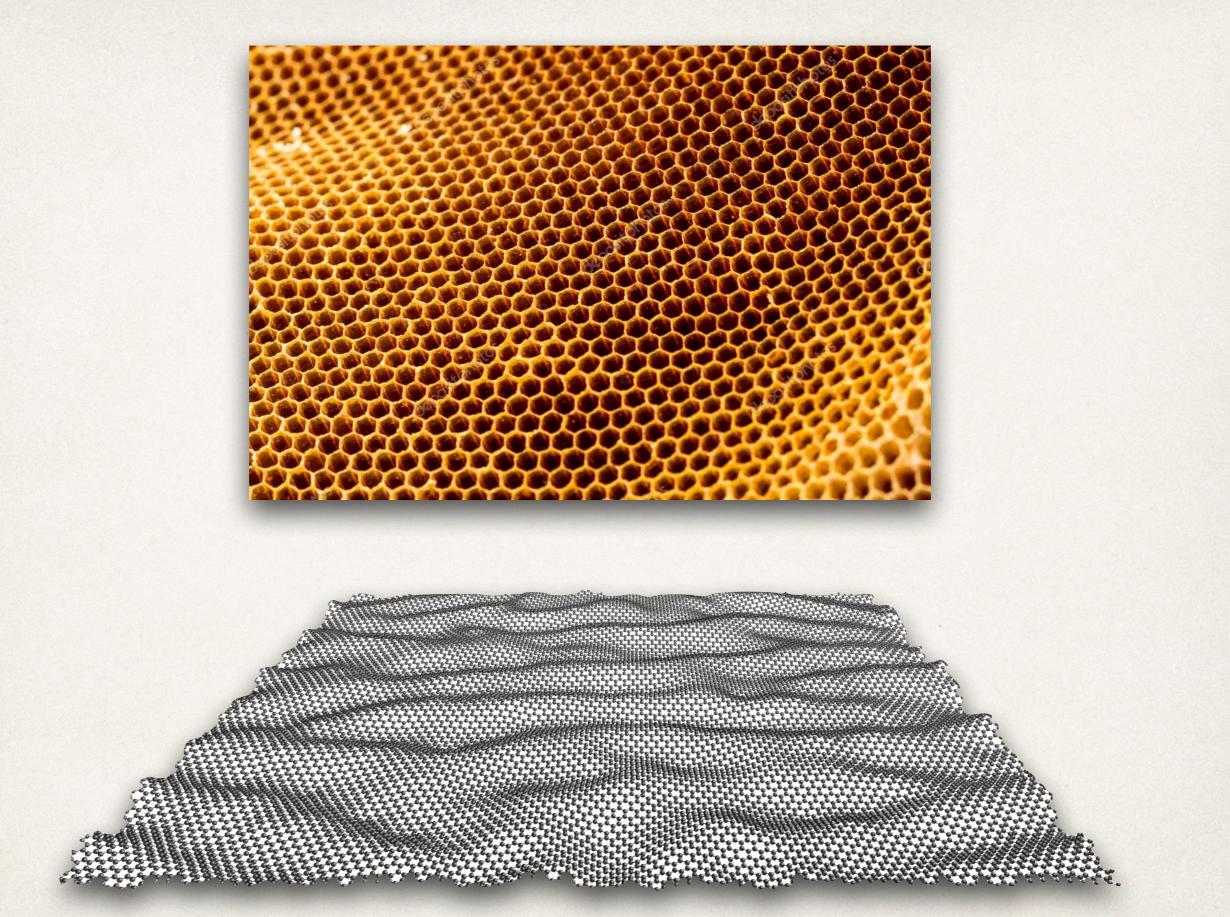


Flachi, PRL (2013) Flachi & Fukushima, PRL (2014) Flachi, Fukushima & me, PRL (2015) The chiral gap effect

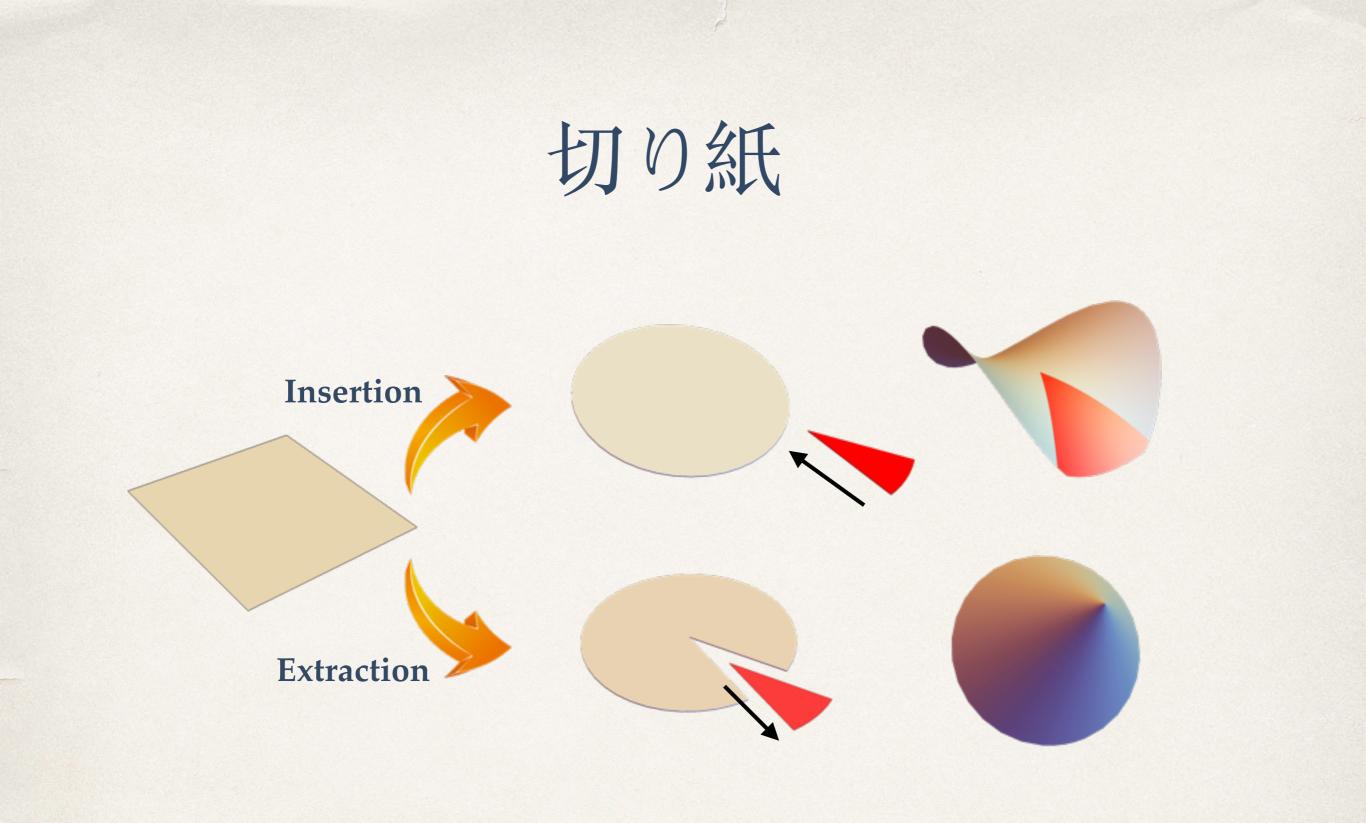
QCD phase diagram is in principle much more complicated...



Flachi, PRL (2013) Flachi & Fukushima, PRL (2014) Flachi, Fukushima & me, PRL (2015)

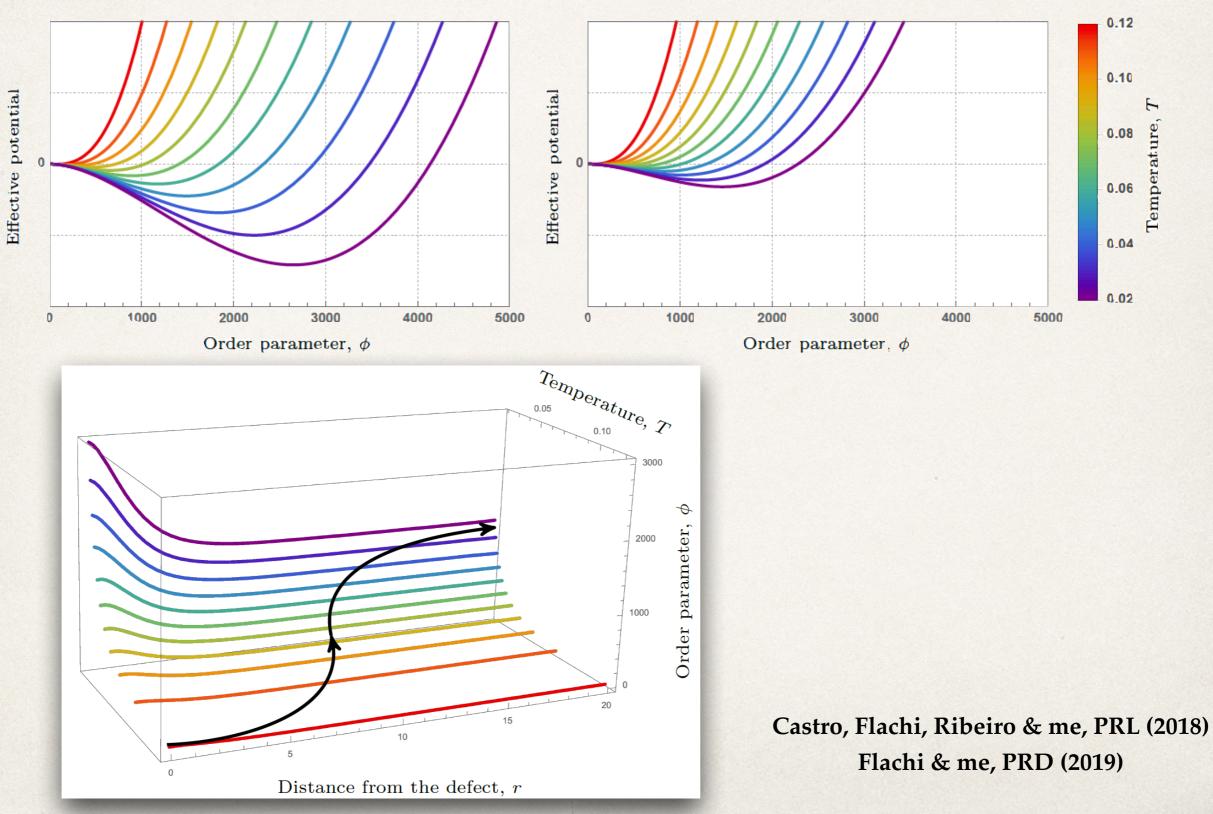


Fasolino et al, Nature Materials (2011)



Castro, Flachi, Ribeiro & me, PRL (2018) Flachi & me, PRD (2019)

Results



... back for a moment to resummed HK's...

$$\mathscr{L}_{\text{scalar}}^{(1)} = \int_{0}^{\infty} \frac{d\tau}{\tau} \det^{1/2} \left(\frac{e\tau F_{\nu}^{\mu}}{\sinh(e\tau F_{\nu}^{\mu})} \right) \bar{g}(x,\tau)$$

$$\mathscr{L}_{\text{spinor}}^{(1)} = \int_0^\infty \frac{d\tau}{\tau} \det^{1/2} \left(\frac{e\tau F_{\nu}^{\mu}}{\sinh(e\tau F_{\nu}^{\mu})} \right) \operatorname{tr}[e^{\iota e\tau F_{\mu\nu}\sigma^{\mu\nu}/2}]\bar{h}(x,\tau)$$

Brown & Duff, PRD (1975) Gusynin & Shovkovy, JMathPhys (1999) Navarro-Salas & Pla, PRD (2021)

Derivative resummations: a proof

$$K[\tau; x, x; \mathcal{O}] = \frac{e^{-\tau V + \nabla^{\alpha} V \left[\gamma^{-3} \left(\gamma \tau - 2 \tanh(\gamma \tau/2)\right)\right]_{\alpha\beta} \nabla^{\beta} V}}{(4\pi\tau)^{d/2} \det^{1/2} \left((\gamma \tau)^{-1} \sinh(\gamma \tau)\right)} \Omega(x, x; \tau)$$

 $[\gamma_{\mu\nu}^2 = 2\,\nabla_{\mu\nu}V]$

jjjworks for Yukawa, SQED, QED, "axial" QED!!!

Franchino-Viñas, Garcia-Perez, Mazzitelli, Wainstein & me, PLB (2024) Franchino-Viñas, Garcia-Perez, Mazzitelli, Pla & me, in preparation

Some food for thought...

A scalar Schwinger effect

$$\Gamma_E = -\int d^d x \int_0^\infty \frac{d\tau}{\tau} K[\tau; x, x]$$

$$\Gamma_M = -\int d^d x \int_0^\infty \frac{d\tau}{\tau} \det^{-1/2} [(\tilde{\gamma}_e \tau)^{-1} \sinh[\tilde{\gamma}_e \tau]] \cdot \text{''reg''}$$

AVENUES OF QUANTUM FIELD THEORY IN CURVED SPACETIME IV January 22-24, 2025

University of Tours

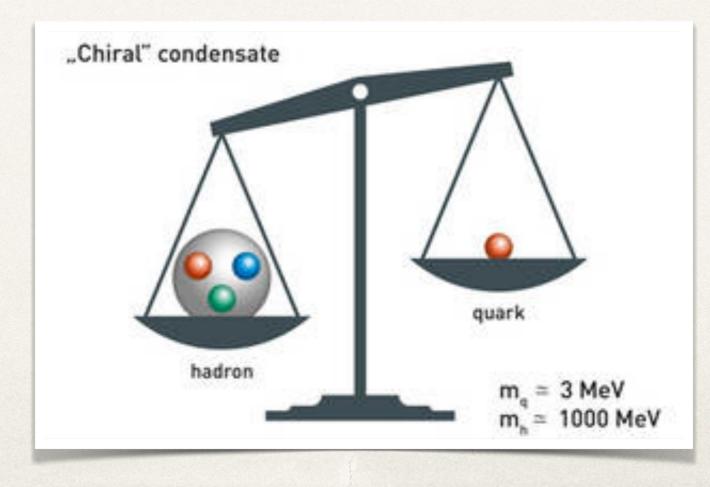
Organizers: M Chernodub (Tours U), O Corradini (UMoRe), A Flachi (Keio U), J V Rocha (ISCTE-IUL), D Trancanelli (UMoRe), V Vitagliano (UniGe)

Effective field theory models

Massive fermions: spontaneously broken symmetry

$$S_{\rm NJL} = \int d^4x \sqrt{g} \left\{ \bar{\psi} i \gamma^{\mu} \nabla_{\mu} \psi + \frac{\lambda}{2N} (\bar{\psi} \psi)^2 \right\}$$

Generation dynamical effective mass $M_{\rm eff} \sim \langle \bar{\psi} \psi \rangle$



The chiral gap effect

In the chiral limit $M_{\text{eff}} \sim \langle \psi \psi \rangle$; more in general M_{eff} solves the gap equation, *viz.* minimizes the grand potential $\Omega[M_{\text{eff}}] \sim$ tree level+quantum

$$\Omega_{\text{loop}}[\sigma] = \frac{N}{2} \ln \det \left[\Box + \sigma^2 + \frac{R}{4} + f\sigma' \right]$$

Taking $g_{tt} = 1$ and using the heat kernel expansion

$$\operatorname{Tr}_{\operatorname{space}} \exp^{-t \cdot (-\partial_t^2 - \Delta + \sigma^2 + R/4 + f\sigma')} = \frac{1}{(4\pi t)^2} \exp^{-t (\sigma^2 + R/12 + f\sigma')} \sum_k \operatorname{Tr} a_k t^k$$

Flachi, PRL (2013) Flachi & Fukushima, PRL (2014) Flachi, Fukushima & me, PRL (2015)

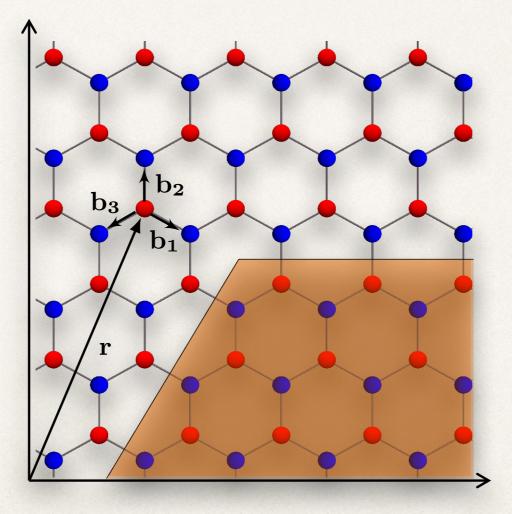
Boundary conditions calculation

$$\begin{split} i\overline{\psi}\gamma^{\mu}\nabla_{\mu}\psi + \frac{\lambda}{2\mathcal{N}}(\overline{\psi}\psi)^{2} &= i\psi'^{\dagger}A^{\dagger}\gamma^{0}\gamma^{\mu}\nabla_{\mu}(A\psi') + \frac{\lambda}{2\mathcal{N}}(\psi'^{\dagger}A^{\dagger}\gamma^{0}A\psi')^{2} = \\ &= i\psi'^{\dagger}A^{\dagger}\gamma^{0}\gamma^{\mu}(\nabla_{\mu}A)\psi' + i\psi'^{\dagger}\gamma^{0}\gamma^{\mu}\nabla_{\mu}\psi' + \frac{\lambda}{2\mathcal{N}}(\overline{\psi'}\psi')^{2} = \\ &= i\psi'^{\dagger}\gamma^{0}\gamma^{\mu}A^{\dagger}(\nabla_{\mu}A)\psi' + i\overline{\psi'}\gamma^{\mu}\nabla_{\mu}\psi' + \frac{\lambda}{2\mathcal{N}}(\overline{\psi'}\psi')^{2} = \\ &= i\overline{\psi'}\gamma^{\mu}\left(-i\delta^{\phi}_{\mu}\frac{N_{d}}{4}R\right)\psi' + i\overline{\psi'}\gamma^{\mu}\nabla_{\mu}\psi' + \frac{\lambda}{2\mathcal{N}}(\overline{\psi'}\psi')^{2} \end{split}$$

$$i\overline{\psi'}\gamma^{\mu}\left(\nabla_{\mu}-i\mathcal{B}_{\mu}\right)\psi'+\frac{\lambda}{2\mathcal{N}}(\overline{\psi'}\psi')^{2}\equiv i\overline{\psi'}\gamma^{\mu}\mathcal{D}_{\mu}\psi'+\frac{\lambda}{2\mathcal{N}}(\overline{\psi'}\psi')^{2}$$

Hubbard model

 $\mathbf{H} = -t \sum_{\mathbf{r}, i, \sigma=\pm} u_{\sigma}^{\dagger}(\mathbf{r}) v_{\sigma}(\mathbf{r} + \mathbf{b}_{i}) + \text{H.C.} + \frac{U}{4} \sum_{\mathbf{r}, \sigma, \sigma', i} \left(n_{\sigma}(\mathbf{r}) n_{\sigma'}(\mathbf{r}) + n_{\sigma}(\mathbf{r} + \mathbf{b}_{i}) n_{\sigma'}(\mathbf{r} + \mathbf{b}_{i}) \right)$



HS transformation

$$H = -t \sum_{\langle i,j \rangle_{\sigma}} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c.}) + U \sum_{j} n_{i\uparrow} n_{i\downarrow}$$

$$n_{i\uparrow}n_{i\downarrow} = \frac{\rho_i^2}{4} - (S_i^z)^2 \qquad \rho_i = n_{i\uparrow} + n_{i\downarrow} \qquad S_i^z = \frac{1}{2} \sum_{\sigma} c_{i\sigma}^{\dagger} \sigma_z c_{i\sigma}$$

$$e^{U\sum_{i}n_{i\uparrow}n_{i\downarrow}} = \int \prod_{i} \frac{d\phi_{i}d\Delta_{i}d^{2}\mathbf{n}_{i}}{4\pi^{2}U} \exp\sum_{i} \left(\frac{\phi_{i}^{2}}{U} + i\phi_{i}\rho_{i} + \frac{\Delta_{i}^{2}}{U} - 2\Delta_{i}\mathbf{n}_{i}\cdot\mathbf{S}_{i}\right)$$

$$Z = \int \prod_{i} \frac{dc_{i}^{\dagger} dc_{i} d\phi_{i} d\Delta_{i} d^{2} \mathbf{n}_{i}}{4\pi^{2} U} \exp\left(-\int_{0}^{\beta} L(\tau)\right)$$

$$L(\tau) = \sum_{i\sigma} c_{i\sigma}^{\dagger} \partial_{\tau} c_{i\sigma} - t \sum_{\langle i,j \rangle_{\sigma}} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c.}) + \sum_{i} \left(\frac{\phi_{i}^{2}}{U} + (i\phi_{i} - \mu)\rho_{i} + \frac{\Delta_{i}^{2}}{U} - 2\Delta_{i} \mathbf{n}_{i} \cdot \mathbf{S}_{i} \right)$$

Hubbard model

Bosonization

$$\mathscr{L} = \bar{\psi}_{\sigma} \imath \partial \!\!\!/ \psi_{\sigma} + \left(\sigma \bar{\psi}_{\sigma} \phi \psi_{\sigma} \right) + \frac{\phi^2}{2\lambda} \quad ; \qquad \sigma = \pm$$

$$\psi_{\sigma}^{T} = \left(\psi_{\sigma}^{A1}, \psi_{\sigma}^{B1}, \psi_{\sigma}^{A2}, \psi_{\sigma}^{B2}\right)$$
$$\psi_{\sigma}^{IJ} = \int d^{2}p \, e^{-\imath \mathbf{p} \cdot \mathbf{r}} z_{\sigma}^{IJ}(\mathbf{p})$$

e.g. Weng et al, PLB[R] (1990); Schultz, PRL (1990)

fill driever with end of a desires in the state of the second se

...and its regularisation

wave function w

is not nculis to rea

fect, the two fsab-tate

With 1) $\lim_{\epsilon \to 0} f_{\epsilon}(r) = 1;$

- 2) $f_{\epsilon}(r) \approx 1$ for $r \gg \epsilon$;
- 3) $f_{\epsilon}(r) = \text{const for } r = 0$

the sphaular specific specific sectors sectors by the specific sectors of the en with a beau and a b is the second of the second of the second se nie the annocling the the the the the second of the second original blacing the original $d\tau^{2}_{(3)} = d\tilde{\xi}^{2}_{(3)} + d\tilde{\xi}^{2}_{(3)} + d\tilde{f}^{2}_{\ell} + d\tilde{f}^{2}$ (3) $\frac{d f_{\epsilon}(r) \text{ is}}{d r \text{equation}} = \frac{d f_{\epsilon}(r) \text{ is}}{d r \text{equation}} = \frac{d$ t_{ϵ} the second of the second secon Sitenko&Vlasii NPB (2007) Sitenkoz Vlasii, NPB (2007) the property of the state of the space by the space of the s

The effective action

$$\tilde{\Gamma}\left[\phi\right] = -\int d^3x \sqrt{\tilde{g}} \frac{\phi^2}{2\lambda} + \operatorname{Tr}\log\left(i\gamma^{\mu}\tilde{D}_{\mu} \pm \phi\right)$$

$$\tilde{\Gamma}\left[\phi\right] = -\int d^3x \sqrt{\tilde{g}} \frac{\phi^2}{2\lambda} + \frac{1}{2} \sum_{p=\pm} \log \det\left(\tilde{\Box} + \frac{\tilde{R}}{4} + \phi^2 \pm \sqrt{\tilde{g}^{rr}}\phi'\right)$$

- _

12

Castro, Flachi, Ribeiro & me, PRL (2018) Flachi & me, PRD (2019)