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✤ Particle production in the 
early universe

✤ Hawking radiation

✤ Schwinger effect

✤ Casimir effect
✤ …

Crumbs of semiclassical phenomena…
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Try this at home…
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Examples of partially resummed HK expansions…

derivatives contributions up to
second and third order in the curvatures 

resummations
in abelian bundles, QED , symmetric spaces

Barvinsky&Vilkovisky, NPB (1990)
Codello&Zanusso, JMathPhys (2013)
Barvinsky&Vilkovisky, NPB (1990)

Avramidi, JMathPhys (1996)
Gusynin&Shovkovy, JMathPhys (1999)

Avramidi&Fucci, CommMathPhys (2009)



K[t; x, y; 𝒪 = − □ + ξR] =
Δ1/2

VM

(4πt)n/2
exp [−

σ(x, y)
2t ] F[t; x, y]

where F[t; x, y] = exp [−tR(y)(ξ − 1/6)] 1 + ∑
j≥1

t j f̃j(x, y)

Jack & Parker, PRD (1985)

Parker & Toms, PRD (1985)



Take home

 Symmetry breaking mechanisms can be  
modified in curved spaces by effective masses 

of purely geometrical origin  



How does the interplay between strong interactions and geometry work?

BHs outskirts:curvature effects 
comparable to  

(cf. Hawking-Moss picture )
ΛQCD

Photons, neutrinos and gravitons… …electrons…muons… …pions and heavier hadrons

TBH ⇠ 1/mBH



The gourmet recipe

NJL + Large N approximation

+ Hubbard-Stratonovich transf.
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Flachi, Fukushima & me, PRL (2015)Flachi, Fukushima & me, PRL (2015)
Flachi & Fukushima, PRL (2014)

Flachi, PRL (2013)



The chiral gap effect

QCD phase diagram is in 
principle much more 

complicated…

Flachi, Fukushima & me, PRL (2015)
Flachi & Fukushima, PRL (2014)

Flachi, PRL (2013)



Fasolino et al, Nature Materials (2011)
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Extraction

Insertion

Castro, Flachi, Ribeiro & me, PRL (2018)
Flachi & me, PRD (2019)



Results

Castro, Flachi, Ribeiro & me, PRL (2018)
Flachi & me, PRD (2019)



…back for a moment to resummed HK’s…



Navarro-Salas & Pla, PRD (2021)

Brown & Duff, PRD (1975)

Gusynin & Shovkovy, JMathPhys (1999)
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e

−τV+∇αV[γ−3(γτ − 2 tanh(γτ/2))]αβ
∇βV

(4πτ)d/2 det1/2((γτ)−1sinh(γτ))
Ω(x, x; τ)

Derivative resummations: a proof

Franchino-Viñas, Garcia-Perez, Mazzitelli, Pla & me, in preparation

Franchino-Viñas, Garcia-Perez, Mazzitelli, Wainstein & me, PLB (2024)

¡¡¡works for Yukawa, SQED, QED, “axial” QED!!!

[γ2
μν = 2∇μνV ]



Some food for thought…

A scalar Schwinger effect
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Effective field theory models
Massive fermions: spontaneously broken symmetry
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Generation dynamical e↵ective mass Me↵ ⇠ h ̄ i



The chiral gap effect

In the chiral limit Me↵ ⇠ h ̄ i; more in general Me↵ solves the gap equation,
viz. minimizes the grand potential ⌦[Me↵] ⇠ tree level+quantum

Ωloop[σ] =
N
2

ln det [ □ + σ2 +
R
4

+ fσ′ ]

Flachi, Fukushima & me, PRL (2015)
Flachi & Fukushima, PRL (2014)

Flachi, PRL (2013)

Taking  and using the heat kernel expansion 
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Boundary conditions calculation
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1 Introduction
Following Sitenko and Vlasii NPB, we want to introduce topological defects in the graphene honeycombe

lattice by cutting some of the sides of the hexagonal cell. If Nd is the number of side we cut, and defining

÷ = Nd/6, we can show that the boundary conditions on the spinors become what S&V call the Moebius

stripe condition (because if you do one rotation you end up in a configuration with exchange of the two

graphene sublattices, and with two rotations you’re back to the starting configuration)

Â(r, „ + 2fi) = ≠ exp

1
≠i

fi

2
NdR

2
Â(r, „) (1.1)

where R = i

3
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≠‡2
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4
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(last equality is true in the standard planar representation but change in
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4
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4
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4
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4
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(1.2)

then the boundary condition reads like in the flat graphene case

ÂÕ
(r, „ + 2fi) = ≠ÂÕ

(r, „) (1.3)

We have to calculate how the Lagrangian changes under this gauge transformation. Let me recall the model

(before Hubbard-Stratonovich transformation)

LNJL = ıÂ“µÒµÂ +
⁄

2N (ÂÂ)
2

(1.4)

where Ò is the (curved spacetime) covariant derivative. Note that, from now on, the “-matrices are replaced

by their curved counterparts “µ
= eµ

a“a
, where eµ

a is a D-bein and the “a
are the matrices in flat spacetime.

The metric tensor is defined as gµ‹
= eµ

ae‹
b ÷ab

, being ÷ab
the D-dimensional Minkowski metric. Considering

the transformed version of the wave functions we find
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2
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2

(1.5)

where we used the fact that R anticommutes with all the “ matrices and of course with itself. If we define

a sort of “gauge connection” Bµ © ”„
µ

Nd
4 R, then we can rewrite previous expression as

ıÂÕ“µ
(Òµ ≠ ıBµ) ÂÕ

+
⁄

2N (ÂÕÂÕ
)
2 © ıÂÕ“µDµÂÕ

+
⁄
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)
2

(1.6)

Now we can perform the Hubbard-Stratonovich transformation and use standard techniques to square the

modified Dirac operator. Then we find the e�ective action per fermion degree of freedom to be

� = ≠
ˆ

d4x
Ô
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Hubbard model

3

(p2 ! p2), leaving intact the Dirac points and the
spin, and the Lagrangian (1) invariant as long as � van-
ishes. The order parameter for the above symmetry is
� = 2�h ̄� � �  ̄+ +i and it describes the staggered
magnetization, i.e., � 6= 0 indicates broken symmetry. It
is possible to arrive at the same expression (1) following
the general decomposition of the Hubbard Hamiltonian
as outlined in [43].

By means of a kirigami like procedure1 we introduce a
spatial curvature in the model by inserting a disclination
that warps the lattice locally. There are many ways to
do this, but if we wish to isolate the interplay between
quantum e↵ects and geometry, we need to preserve the
bipartite nature of the lattice at tree level, that is avoid
frustrating the lattice. This requirement restricts the al-
lowed deformations to those induced by defects with an
even number of sides, as these are the only that preserve
the above symmetry classically. Inserting a defect with
ns < 6 sides in an hexagonal lattice generates a deficit
angle and a curvature that is locally positive (see Fig. 1).
In contrast, adding a defect with ns > 6 generates an ex-
cess angle and a locally negative curvature (see Fig. 1).

In the continuum model, the curvature can be intro-
duced by specifying the background metric to be that of
a manifold with a conical singularity. The Riemannian
geometry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, in order to model such a localised curva-
ture, we use a Euclidean parametrisation for the metric
tensor

ds2 = d⌧2 + dr2 + ↵2r2d✓2 (2)

with r � 0 and 0  ✓ < 2⇡ being the polar coordinates
centred at the apex. We will not concern ourselves with
finite temperature e↵ects here, but these can be included
in a straightforward manner by using the standard imagi-
nary time formalism. Defining ✓̃ = ↵ ✓, it should be clear
that the metric is that of flat space with 0  ✓̃ < 2⇡↵.
If ↵ < 1, then � = 2⇡ � 2⇡↵ describes a deficit angle.
Removing the deficit angle and identifying the two sides
results in a cone with opening angle 2 arcsin↵. The closer
to unity is ↵, the flatter is the cone. If ↵ > 1, then the
deficit angle becomes an excess angle.

Since the curvature of conical manifolds diverges at
the apex, some regularisation is necessary to deal with
the singular behaviour. Here, we will regulate the geom-
etry by replacing the singular space with a sequence of
regular manifolds as done in Ref. [46, 47]. Calculations
are done in the regularised geometry and results in the
original singular space are obtained as a limit, once the
regularisation is removed at the end. In practise, this
procedure can be implemented by replacing the original

1 Kirigami is a variation of origami that includes cutting of the
paper, rather than solely folding the paper [58].

b1

b2
b3

r

FIG. 1: A honeycomb, planar lattice with bipartite nature,
and some possible defective configurations. The top figures
illustrate the flat hexagonal lattice with a 2⇡/3 section high-
lighted. The exchange symmetry between the two triangular
(red and blue) sub-lattices is also illustrated. Defects are
introduced by a procedure of adding or cutting the lattice
⇡/3 sections and gluing the remaining sides along the cut.
For example, subtracting a 2⇡/3 section, one obtains a pos-
itive curved cone with a ns = 4-sides defect (bottom left).
Adding a 2⇡/3 section, instead, generates a negative curved
saddle geometry with ns = 8 (bottom right). These lattice
structures are well known and form the basis of chiral curved
poly-aromatic systems (n-circulene, see Ref. [44] for a review
of the geometry of these lattice structures).

metric (2) with the following regular one:

ds̃2 = d⌧2 + f✏(r)dr
2 + ↵2r2d✓2 (3)

where ✏ represents a regularisation parameter and f✏(r) is
a smooth function satisfying the following properties: 1)
lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) = const
for r = 0. It should be noted that while the limit of
✏ ! 0 corresponds to removing the regularisation, in an
eventual comparison with a lattice simulation, ✏ should
be associated with the lattice spacing and it acquires the
status of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by
a minimal covariantization procedure, i.e. letting the
Minkowski metric, the derivatives, and the gamma matri-
ces to the corresponding quantities in curved space. We
shall not include non-minimal couplings in the present
treatment (see Ref. [48] for a discussion about this point).

The last element we need to take into account are the
boundary conditions along the cut where the two sides
of the lattice have been glued after having removed or

H = �t
X

r, i, �=±
u†
�(r)v�(r+bi)+H.C.+

U

4

X

r,�,�0,i

(n�(r)n�0(r) + n�(r+ bi)n�0(r+ bi))
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Path-integral approach to the Hubbard model
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A path-integral approach to the Hubbard model is developed for the whole range of the cou-
pling strength U. At half filling, the strong-coupling results are readily reproduced within the
simple Gaussian fluctuations. The low-lying spin wave is shown to be described by the nonlinear
a model. The

effective

coupling of the doped hole with the background fluctuations also agrees
with that obtained from the t-J model in the small-doping limit. At finite doping, such a formal-
ism may provide a starting point for investigating the short-range spin-liquid state.

The single-band Hubbard Hamiltonian has been pro-
posed by Anderson' as a simplified model describing the
basic physics of the Cu02 layers of the copper oxide high-
T, superconductors. The Hubbard repulsion parameter U
is usually considered to be close to its value in the inter-
mediate- or strong-coupling regime. In the case of strong
coupling, a I/U expansion could be employed, which leads
to the well-known t-J model in the reduced Hilbert space,
the double-occupancy states being projected out. At finite
doping, both the diSculties and the plentiful features of
the t-J model turn out to be associated with the treatment
of such a single-occupancy constraint. On the other hand,
it is known that projecting out the state in large charge
energy scale could be naturally realized in the itinerant
approach by lifting an upper band from the lower one.
But the problems with the itinerant approach are related
to getting the correct low-energy behavior at strong cou-
pling and more importantly, how one can go beyond the
saddle point of the spin-density wave (SDW). For the
latter problem, an attempt has been made to find the
short-range spiral instability at finite doping.
In the present paper, the approach in Ref. 3 will be gen-

eralized by the path-integral method such that the formal-
isin could be applied to the whole range of the coupling
strength U. At half filling, along with the effective actions
for the charge and amplitude Iluctuations, a nonlinear o
model describing the low-lying spin Iluctuations has been
derived in this approach which in the case of strong cou-
pling is in agreement with the well-known results from the
Heisenberg model. The Lagrangian determining the one-
hole-doping and few-holes-doping problem is obtained and

H =—t g (c;t~~ +H.c.) +Ug n; t n; i .
& .i&

We shall develop a path-integral formalism for Eq. (1).
For this purpose, the density-density product in the in-
teraction term of Eq. (1) could be rewritten as a charge
part and a spin part,

p 2
n;tnti = ' —(S')',

where p; =n;t+n;i and S;=—,
' P c; cr, c; . Usually, one

introduces the Hubbard-Stratonovich transformation to
the right-hand side of Eq. (2), which is formally not
SU(2) invariant, although the left-hand side is obviously
SU(2) invariant. In such a formalism, it is hard to get the
saddle point beyond the rotational-symmetry-broken state
(i.e., the SDW state).
We note the fact that for spin- 2 fermions, the follow-

ing relation holds for arbitrary unit vector n

(2)

S,'=S„=S'=(S.n) (3)
where S —,

' g c (ts) c and 8is the Pauli matrix. By
using the equality of Eq. (3), one can write down the fol-
lowing SU(2)-invariant Hubbard-Stratonovich transfor-
mation of Eq. (2)

it also agrees with the t-J-model result. The present
method provides a starting point to approach the finite-
doping problem.
The single-band two-dimensional Hubbard Hamiltoni-

an is given by

Ugn;tn;~
e

dtAdhd n; P; . 4exp+ +iy;p;+ ' —2&;n; S;4g2U ] U ' ' U
(4)

in which the integration of the unit vector n; makes the right-hand side explicitly SU(2) invariant. Then by the standard
procedure, the partition function Z =Tr(exp pH) could be expressed in—the path-integral formalism as

dctdc, dp;dA;d'n;
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coupling of the doped hole with the background fluctuations also agrees
with that obtained from the t-J model in the small-doping limit. At finite doping, such a formal-
ism may provide a starting point for investigating the short-range spin-liquid state.

The single-band Hubbard Hamiltonian has been pro-
posed by Anderson' as a simplified model describing the
basic physics of the Cu02 layers of the copper oxide high-
T, superconductors. The Hubbard repulsion parameter U
is usually considered to be close to its value in the inter-
mediate- or strong-coupling regime. In the case of strong
coupling, a I/U expansion could be employed, which leads
to the well-known t-J model in the reduced Hilbert space,
the double-occupancy states being projected out. At finite
doping, both the diSculties and the plentiful features of
the t-J model turn out to be associated with the treatment
of such a single-occupancy constraint. On the other hand,
it is known that projecting out the state in large charge
energy scale could be naturally realized in the itinerant
approach by lifting an upper band from the lower one.
But the problems with the itinerant approach are related
to getting the correct low-energy behavior at strong cou-
pling and more importantly, how one can go beyond the
saddle point of the spin-density wave (SDW). For the
latter problem, an attempt has been made to find the
short-range spiral instability at finite doping.
In the present paper, the approach in Ref. 3 will be gen-

eralized by the path-integral method such that the formal-
isin could be applied to the whole range of the coupling
strength U. At half filling, along with the effective actions
for the charge and amplitude Iluctuations, a nonlinear o
model describing the low-lying spin Iluctuations has been
derived in this approach which in the case of strong cou-
pling is in agreement with the well-known results from the
Heisenberg model. The Lagrangian determining the one-
hole-doping and few-holes-doping problem is obtained and

H =—t g (c;t~~ +H.c.) +Ug n; t n; i .
& .i&

We shall develop a path-integral formalism for Eq. (1).
For this purpose, the density-density product in the in-
teraction term of Eq. (1) could be rewritten as a charge
part and a spin part,

p 2
n;tnti = ' —(S')',

where p; =n;t+n;i and S;=—,
' P c; cr, c; . Usually, one

introduces the Hubbard-Stratonovich transformation to
the right-hand side of Eq. (2), which is formally not
SU(2) invariant, although the left-hand side is obviously
SU(2) invariant. In such a formalism, it is hard to get the
saddle point beyond the rotational-symmetry-broken state
(i.e., the SDW state).
We note the fact that for spin- 2 fermions, the follow-

ing relation holds for arbitrary unit vector n

(2)

S,'=S„=S'=(S.n) (3)
where S —,

' g c (ts) c and 8is the Pauli matrix. By
using the equality of Eq. (3), one can write down the fol-
lowing SU(2)-invariant Hubbard-Stratonovich transfor-
mation of Eq. (2)

it also agrees with the t-J-model result. The present
method provides a starting point to approach the finite-
doping problem.
The single-band two-dimensional Hubbard Hamiltoni-

an is given by

Ugn;tn;~
e

dtAdhd n; P; . 4exp+ +iy;p;+ ' —2&;n; S;4g2U ] U ' ' U
(4)

in which the integration of the unit vector n; makes the right-hand side explicitly SU(2) invariant. Then by the standard
procedure, the partition function Z =Tr(exp pH) could be expressed in—the path-integral formalism as
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where

L(z) =pc;t8~; t—g (c;~, +H.c.)
io. (i,j &Cr

p
2 Q2+g ' +(iiti; —p)p+ ' —2an; S; . (5)

In L(z), the spin of the electron will couple with both the
amplitude field b„as well as the unit-vector field n; simul-
taneously, and generally the Auctuations of the latter
could lead to a strong scattering of the electrons as the

cia g Uiaa'aia' r
l, O'

where U; is an SU(2) transformation such that

U~n" crU a

(6)

Then the Lagrangian (5) is transformed into the following
form:

presence of a large amplitude field 6; in this term. But
one can introduce an SU(2) transformation to eliminate
the n; field from such a coupling:

2
L'(z) gitr; B,itr;+gitr; (U; 8,U;)y; —tg [yt(U; UJ)y +JH.c.]++ +(ip; —p)p;+ 6;itrtc—r, y;

where the spinor y; is defined as
I

canonical transformation:

ag =ukak —crvgpg
a;)

&,'-(U/2)&pter, y;) -(—I)'a, iy,'=(U/2)&p;), (1O)

and U; UJ 1 which is stable at the half filling.
The Lagrangian L'(z) at the saddle point is

Lo-ga.B,a;.—t g (a.a,.+H.c.)i, a &ij ),O
—gd( —I)'cra; a; —P N.
l, O'

The corresponding Hamiltonian is the well-known mean-
field SD%' Hamiltonian which can be diagonalized by the

According to Eq. (7), the Grassmann variable a; is
defined in the spin representation with n; as the spin-
reference axis, and the path-integral measures for a; and
a;~ will not be changed because U; is a canonical transfor-
mation. As n; is the spin-reference direction for the fer-
mion y;, such a particle will always see a fictitious mag-
netic field polarized along its z direction with an ampli-
tude of 6; as shown in the Lagrangian (8). But the true
local dynamical spin structure will be determined by U;
which enters the on-site and the hopping terms in L'(z)
through the quantities Ut8, U; and UtU~, respectively.
The real physical quantities and the correlation functions
should be calculated under the original electron operator
c; through the relation (6). We note that the role of U; is
similar to the Schwinger boson in the slave-fermion ap-
proach of the t-J model, but without an additional con-
straint (U; always satisfies U;tU;=1). According to Eq.
(7), Ui is determined only up to an SU(2)/U(1) transfor-
mation which leads to a local U(1) gauge freedom of the
Lagrangian (8). At finite doping, U; UJ could have vari-
ous spiral, chiral spin structures, or Auctuations. There-
fore, this formalism provides a possible way to approach
the strong short-range magnetic fluctuations by mapping
the problem into some long-range fictitious field with the
fluctuations treatable as perturbations.
In the following, we shall show how to apply this

formalism to study a simple saddle point of L'(z):

ai, +q crvi, ag +ui,pka,

where g (iz, iz) and Ic is defined in the reduced or mag-
netic Brillouin zone. ui, [ —,' (1—ei,/Eq)t', vi, =[2 (1
+ei,/Ek)]', where eq= —2t(cosk a+cosk~a) and
Ei, (& +ei, ) ' . The operators ai, and pi, describe the
quasiparticles in the lower band and the upper band, re-
spectively, the two bands being split by a SDW-gap 2A.
At half filling, with the lo~er band filled by the electrons
while the upper band is einpty, the low-lying fluctuations
within the gap will dominate the low-temperature behav-
ior. In the strong-coupling limit, the SDW state just be-
comes the localized Neel state.
The eff'ective Lagrangian for the spin, charge, and am-

plitude fluctuations could be derived after the fermion de-
gree of freedom has been integrated out. The spin fluc-
tuations are related to the quantities U; B,U~ and U; U~—1 in the Lagrangian (8). If n; has a small deviation
from the z axis, U; 8,U; and U; U, —1 could be expanded
in the power of B,n; and n; —n~. According to Eq. (7), U;
could be expressed approximately as exp[ —i(zxn;). (cr/
2)]. But because of the U(l) uncertainty of U; mentioned
before, one may not be able to calculate U; 8,U; directly
by this expression. Instead, the relation U; (z) U; (z+ 8)
exp( —i&cr, /2)U;(z, z+8) should be employed. Here

P is the solid angle subtended by n;(z), n;(z+8), and z,
and U;(z, z+b') is the rotational transformation between
n;(z) and n;(z+b). We carry out the integration of the
fermion degree of freedom up to the one-loop approxima-
tion. The long-wavelength and short-wavelength part of
n; will have different behaviors and we separate them in
an explicit way:

n; Q;+ (—1)'L;,

~here both 0; and L; are slowly-varying fields on the lat-
tice satisfying Q; L; 0 and )L;~&&~Q;~—1. Then in the
limit of long-wavelength ~q~ &&g

' (( is the SDW coher-
ence length), and low-energy ~co~ &&5, effective Lagrang-
ian for the spin fluctuations could be obtained using the
one-loop approximation, which is decoupled from the
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other areas of physics are contributing to modernise the
above questions and to formulate new exciting problems.

One such area is related to recent advances in con-
densed matter research at the nanoscale, particularly in
connection with layered materials. Graphene and, more
generally, two-dimensional materials are the most spec-
tacular example of the sort, owing to geometrical ver-
satility coupled to an emergent relativistic behaviour of
fermions [18–20]. In these examples, the background ge-
ometry is the two-dimensional lattice on top of which
fluctuations propagate and the relevance of curvature ef-
fects has already been appreciated [21–25]. Other inter-
esting examples can be found in Refs. [26, 27].

QCD physics is also fuelling novel research where the
use of language and methods of quantum field theory in
curved space is becoming more common. Some inter-
esting examples range from the more generic remarks
of Refs. [28, 29] (and references therein), to the very
popular area of strongly interacting fermions and chi-
ral symmetry breaking in rotating backgrounds (see, for
example,[30–36]), to applications of lattice QCD (see, for
example, [37–39]). In these contexts a range of pecu-
liar geometry-induced phenomena are expected to occur
(e.g, condensate suppression/enhancement, appearance
of new phases, changes in the critical points geography),
whose physical relevance spans from relativistic heavy ion
collisions, to transport phenomena, to the astrophysics of
compact stars.

The focus of this paper is to reconsider the role of
the background geometry in a↵ecting the stability of the
vacuum. We will argue that, contrary to expectation,
increasing the spatial curvature does not necessarily im-
ply that the system moves closer to a phase of restored
symmetry, and we shall present an explicit example of
this. Although the example is non-trivial, it is amenable
to simple explanation and anticipates the possibility of
appearance of exotic changes in the phase behaviour of
interacting quantum field theories with a number of in-
teresting implications that we will mention later.

Model and geometry. For the sake of concreteness, we
shall consider here a specific class of (2 + 1)-dimensional
interacting field theoretical models of the Hubbard-type,
whose Hamiltonian H = H0 +HI is expressed as the sum
of a free part,

H0 = �t
X

r, i, �=±
u†
�(r)v�(r+ bi) + H.C.,

plus an interacting sector,

HI =
U

4

X

r,�,�0,i

(n�(r)n�0(r) + n�(r+ bi)n�0(r+ bi)) .

The above field theory is defined on an underlying lattice
that we assume for the moment to be flat with hexago-
nal cells and generated by linear combinations of a set
of basis vectors as illustrated in Fig. 1 (r span a trian-
gular sub-lattice and the vectors bi, i = 1, 2, 3 connect
the atom in r with the three nearest-neighbours). The

annihilation operators of the two sub-lattices are u and
v and n� is the number operator. The quantities t and
U are positive numbers describing, respectively, the hop-
ping and the interaction constant.
The above model is routinely used to describe many

of the properties of graphene and other layered materials
[18, 40]. An important aspect is the possibility to locally
induce curvature by deforming the lattice with the inser-
tion of defects. Also, the continuum limit is not di�cult
to analyse and generalisations can be easily imagined.
Finally, although here we will be concerned with the con-
tinuum limit, carrying out lattice simulations should be
feasible.
The specific type of symmetry breaking that we wish

to discuss here is associated with the bipartite nature
of the honeycomb lattice that the Hubbard model above
captures in the magnetisation that we shall properly de-
fine below. Since our goal here is to scrutinise the ef-
fect of curvature on the spontaneous breakdown of the
above sub-lattice symmetry, our first task is to covari-
antize the model to curved space. For this it is convenient
to work with the continuum Lagrangian counterpart that
can be obtained using standard methods by expressing
the original Hamiltonian in terms of the SU(2) vector
S =

P
�, �0 u†

�(r)~⌧�,�0u�0(r)/2, where ~⌧ is a vector with
the Pauli matrices as components, and then proceed by
means of a Hubbard-Stratonovich transformation. In or-
der to maintain our treatment as simple as possible we
will assume a scalar order parameter that can be mo-
tivated by a rotational anisotropy favouring symmetry
breaking along the z axes (for graphene this could be
due to the presence of a substrate and related spin-orbit
coupling enhancement [41, 42]). This allows to gap out
the Goldstone modes that can be straightforwardly in-
cluded in a more involved treatment. Choosing an auxil-
iary field � that breaks both the Z2 and the discrete sub-
lattice symmetry, the Hamiltonian H can be mapped, at
low energies, onto the following (2 + 1)-dimensional field
theory

L =  ̄�ı/@ � +
�
� ̄�� �

�
+
�2

2�
, (1)

where the first term is a free Dirac contribution and the
remaining terms describe the interaction sector. The
summation over repeated spin indices � = ± is un-
derstood and the four-component spinors  � are ar-
ranged as  T

� =
�
 A1
� , B1

� , A2
� , B2

�

�
, with  IJ

� (x) =
a
vF

R d2p
(2⇡)2 e�ıp·xzIJ� (p) and where zI,J� (p) = zI�(KJ +

a
vF

p) represents the sub-lattice annihilation operators

(zA = u, zB = v) near the two Dirac cones KJ=1,2 of the
dispersion relation. The spatial coordinates were rescaled
by x = r/vF where vF = 3/2ta is the Fermi velocity and
a is the lattice spacing. Finally, the coupling constant
� is proportional to the interaction strength � / U up
to an unimportant factor, dependent on the particular
regularization of the low energy theory.
The exchange of the sub-lattices can then be im-

plemented by the simultaneous exchange x2 ! �x2

Bosonization

e.g. Weng et al, PLB[R] (1990); Schultz, PRL (1990)

� = ±;

2

popular area of strongly interacting fermions and chi-
ral symmetry breaking in rotating backgrounds (see, for
example,[26–31]), to applications of lattice QCD (see, for
example, [32–34]). In these contexts a range of pecu-
liar geometry-induced phenomena are expected to occur
(e.g, condensate suppression/enhancement, appearance
of new phases, changes in the critical points geography),
whose physical relevance spans from relativistic heavy ion
collisions, to transport phenomena, to the astrophysics of
compact stars.

The focus of this paper is to reconsider the role of
the background geometry in a↵ecting the stability of the
vacuum. We will argue that, contrary to expectation,
increasing the spacetime curvature does not necessarily
imply that the system moves closer to a phase of restored
symmetry, and we shall present an explicit example of
this. Although the example is non-trivial, it is amenable
of a quite simple explanation and anticipates the pos-
sibility of appearance of exotic changes in the phase be-
haviour of interacting quantum field theories with a num-
ber of interesting implications that we will discuss later.

The model. For the sake of concreteness, we shall con-
sider here a specific class of two dimensional interact-
ing field theoretical models of the Hubbard-type, whose
Hamiltonian H = H0 + HI is expressed as the sum of a
free part,

H0 = �t
X

r, i, �=±
u†
�(r)v�(r+ bi) + H.C.,

plus an interacting sector,

HI =
�

4

X

r, �, �0,i

(n�(r)n�0(r) + n�(r+ bi)n�0(r+ bi)) .

The above field theory is defined on an underlying lattice
that we assume for the moment to be flat with hexago-
nal cells and generated by linear combinations of a set
of basis vectors (the vectors r span the two triangu-
lar sub-lattices illustrated in Fig. 1, while the vectors
bi, i = 1, 2, 3, connect the atom in r with the three clos-
est neighbours of the opposite sub-lattice). The annihi-
lation operators of the two sub-lattices are u and v and
n�(x) = u†

�(x)u�(x) is the number operator. The quanti-
ties t and � are positive numbers describing, respectively,
the hopping and the interaction constant.

The above model is routinely used to describe many of
the properties of graphene and other layered materials,
although this fact is for the moment irrelevant. Here, the
more important aspect is that in the above model it is
easy to introduce locally a curvature by deforming the
lattice with the insertion of defects. Also, the continuum
limit is not di�cult to analyse and generalisations can
be easily imagined. Finally, although here we will be
concerned with the continuum limit, carrying out lattice
simulations should be feasible.

The specific type of symmetry breaking that we wish
to discuss here is associated with the bipartite nature of
the honeycomb lattice, that the Hubbard model above

captures in the magnetisation that we shall properly de-
fine below. Since our goal here is to scrutinise the e↵ect
of curvature on the spontaneous breakdown of the above
sub-lattice symmetry, our first task is to covariantize the
model to curved space. For this it is convenient to work
with the continuum Lagrangian counterpart that can be
obtained by expressing the original Hamiltonian in terms
of the following SU(2) vector

S =
1

2

X

�, �0

u†
�(r)~⌧�,�0u�0(r),

where ~⌧ is a vector with the Pauli matrices as com-
ponents, and then proceed by means of a Hubbard-
Stratonovich transformation. Choosing an auxiliary field
� that breaks both the SU(2) and the discrete sub-lattice
symmetry, the Hamiltonian H can be mapped, at low en-
ergies, onto the following (2+1)-dimensional field theory

L =  ̄�ı/@ � +
�
� ̄�� �

�
+
�2

2�
, (1)

where the first term is a free Dirac contribution and the
remaining terms describe the interaction sector. The
summation over repeated spin indices � = ± is un-
derstood and the four-component spinors  � are ar-
ranged as  T

� =
�
 A1
� , B1

� , A2
� , B2

�

�
, where  IJ

� =R
d2p e�ıp·rzIJ� (p) and zIJ� representing the annihila-

tion operator at sub-lattices I = A,B and Dirac points
J = 1, 2. In our case it is su�cient to use the sim-
plest possible example as described above, but, in princi-
ple, more complex patterns of symmetry breaking can be
analysed following more general procedures, as discussed,
for example, in Ref. [35].
The exchange of the sub-lattices can then be imple-

mented by the transformation  � !  0
� = �2 � along

with the simultaneous exchange x2 ! �x2 (p2 ! p2).
These leave intact the Dirac points and the spin, and the
Lagrangian (1) invariant as long as � vanishes. (Here
there is something fishy... let me suggest the following
and then we could countercheck together. The exchange
of the sub-lattices along with the simultaneous transfor-
mation xi ! �xi (pi ! pi) leave intact the Dirac points
and the spin, and the Lagrangian (1) invariant as long
as � vanishes. ) The order parameter for the above
symmetry is � = 2gh ̄� � �  ̄+ +i and it describes
the staggered magnetization, i.e., � 6= 0 indicates broken
symmetry. It is possible to arrive at the same expression
(1) following the general decomposition of the Hubbard
Hamiltonian as outlined in [35].

We introduce a spatial curvature in the model by in-
serting a disclination, namely a defect that warps the
lattice locally. There are many ways to do this, but if
we wish to isolate the interplay between quantum e↵ects
and geometry, we need to preserve the bipartite nature
of the lattice at tree level, that is avoid frustrating the
lattice. This requirement restricts the allowed deforma-
tions to those induced by defects with an even number of
sides, as these are the only that preserve the above sym-
metry at tree level. Furthermore, inserting a defect with

 IJ
� =

Z
d2p e�ıp·rzIJ� (p)
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FIG. 1: Top: the flat hexagonal lattice with a 2⇡/3 section
highlighted. Subtracting a 2⇡/3 section, one obtains a pos-
itive curved cone with a ns = 4-sides defect (bottom left).
Adding a 2⇡/3 section, instead, generates a negative curved
saddle geometry with ns = 8 (bottom right).

(p2 ! p2), leaving intact the Dirac points and the
spin, and the Lagrangian (1) invariant as long as � van-
ishes. The order parameter for the above symmetry is
� = 2�h ̄� � �  ̄+ +i and it describes the staggered
magnetization, i.e., � 6= 0 indicates broken symmetry.
The same expression (1) is obtained following the gen-
eral decomposition outlined in [43].

By means of a kirigami like procedure1 we introduce a
spatial curvature in the model by inserting a disclination
that warps the lattice locally. If we wish to isolate the
interplay between quantum e↵ects and geometry, we need
to preserve the bipartite nature of the lattice at tree level,
that is avoid frustrating the lattice. This requirement
restricts the allowed deformations to those induced by
defects with an even number of sides, as these are the only
that preserve the above symmetry classically. Inserting a
defect with ns < 6 sides in an hexagonal lattice generates
a deficit angle and a curvature that is locally positive
(see Fig. 1). In contrast, adding a defect with ns > 6
generates an excess angle and a locally negative curvature
(see Fig. 1). These lattice structures form the basis of
chiral curved poly-aromatic systems [44].

In the continuum model, the curvature can be intro-

1 Kirigami is a variation of origami that includes cutting of the
paper [58].

duced by specifying the background to be that of a man-
ifold with a conical singularity. The Riemannian geom-
etry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, in order to model such a localised curva-
ture, we use a Euclidean parametrisation for the metric
tensor

ds2 = d⌧2 + dr2 + ↵2r2d�2 (2)

with r � 0 and 0  � < 2⇡ being the polar coordinates
centred at the apex. We will not concern ourselves with
finite temperature e↵ects here, but these can be included
in a straightforward manner by using the standard imagi-
nary time formalism. Defining �̃ = ↵ �, it should be clear
that the metric is that of flat space with 0  �̃ < 2⇡↵.
If ↵ < 1, then � = 2⇡ � 2⇡↵ describes a deficit angle.
Removing the deficit angle and identifying the two sides
results in a cone with opening angle 2 arcsin↵. The closer
to unity is ↵, the flatter is the cone. If ↵ > 1, then the
deficit angle becomes an excess angle.

Since the curvature of conical manifolds diverges at
the apex, some regularisation is necessary to deal with
the singular behaviour. Here, we will regulate the geom-
etry by replacing the singular space with a sequence of
regular manifolds as done in Ref. [46, 47]. Calculations
are done in the regularised geometry and results in the
original singular space are obtained as a limit, once the
regularisation is removed at the end. In practise, this
procedure can be implemented by replacing the original
metric (2) with the following regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d�2 (3)

where ✏ represents a regularisation parameter and f✏(r) is
a smooth function satisfying the following properties: 1)
lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) = const
for r = 0. It should be noted that while the limit of
✏ ! 0 corresponds to removing the regularisation, in an
eventual comparison with a lattice simulation, ✏ should
be associated with the lattice spacing and it acquires the
status of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by
a minimal covariantization procedure, i.e. letting the
Minkowski metric, the derivatives, and the gamma matri-
ces to the corresponding quantities in curved space. We
shall not include non-minimal couplings in the present
treatment (see Ref. [48] for a discussion about this point).

The last element we need to take into account are the
boundary conditions along the cut where the two sides
of the lattice have been glued after having removed or
added a portion of the lattice to accomodate the inser-
tion of the defect. The same procedure that we shall use
below has been discussed, for example, in Ref. [22]. It
is not di�cult to realise that for a generic even-sided de-
fect, the two sub-lattices are unchanged and the fermion
wave function, after circulating around the defect, sat-
isfies the following boundary condition:  (r,' + 2⇡) =
� exp (i(6 � ns)⇡�5/2) (r,'). (Here, we follow the same
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FIG. 1: Top: the flat hexagonal lattice with a 2⇡/3 section
highlighted. Subtracting a 2⇡/3 section, one obtains a pos-
itive curved cone with a ns = 4-sides defect (bottom left).
Adding a 2⇡/3 section, instead, generates a negative curved
saddle geometry with ns = 8 (bottom right).

(p2 ! p2), leaving intact the Dirac points and the
spin, and the Lagrangian (1) invariant as long as � van-
ishes. The order parameter for the above symmetry is
� = 2�h ̄� � �  ̄+ +i and it describes the staggered
magnetization, i.e., � 6= 0 indicates broken symmetry.
The same expression (1) is obtained following the gen-
eral decomposition outlined in [43].

By means of a kirigami like procedure1 we introduce a
spatial curvature in the model by inserting a disclination
that warps the lattice locally. If we wish to isolate the
interplay between quantum e↵ects and geometry, we need
to preserve the bipartite nature of the lattice at tree level,
that is avoid frustrating the lattice. This requirement
restricts the allowed deformations to those induced by
defects with an even number of sides, as these are the only
that preserve the above symmetry classically. Inserting a
defect with ns < 6 sides in an hexagonal lattice generates
a deficit angle and a curvature that is locally positive
(see Fig. 1). In contrast, adding a defect with ns > 6
generates an excess angle and a locally negative curvature
(see Fig. 1). These lattice structures form the basis of
chiral curved poly-aromatic systems [44].

In the continuum model, the curvature can be intro-

1 Kirigami is a variation of origami that includes cutting of the
paper [58].

duced by specifying the background to be that of a man-
ifold with a conical singularity. The Riemannian geom-
etry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, in order to model such a localised curva-
ture, we use a Euclidean parametrisation for the metric
tensor

ds2 = d⌧2 + dr2 + ↵2r2d�2 (2)

with r � 0 and 0  � < 2⇡ being the polar coordinates
centred at the apex. We will not concern ourselves with
finite temperature e↵ects here, but these can be included
in a straightforward manner by using the standard imagi-
nary time formalism. Defining �̃ = ↵ �, it should be clear
that the metric is that of flat space with 0  �̃ < 2⇡↵.
If ↵ < 1, then � = 2⇡ � 2⇡↵ describes a deficit angle.
Removing the deficit angle and identifying the two sides
results in a cone with opening angle 2 arcsin↵. The closer
to unity is ↵, the flatter is the cone. If ↵ > 1, then the
deficit angle becomes an excess angle.

Since the curvature of conical manifolds diverges at
the apex, some regularisation is necessary to deal with
the singular behaviour. Here, we will regulate the geom-
etry by replacing the singular space with a sequence of
regular manifolds as done in Ref. [46, 47]. Calculations
are done in the regularised geometry and results in the
original singular space are obtained as a limit, once the
regularisation is removed at the end. In practise, this
procedure can be implemented by replacing the original
metric (2) with the following regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d�2 (3)

where ✏ represents a regularisation parameter and f✏(r) is
a smooth function satisfying the following properties: 1)
lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) = const
for r = 0. It should be noted that while the limit of
✏ ! 0 corresponds to removing the regularisation, in an
eventual comparison with a lattice simulation, ✏ should
be associated with the lattice spacing and it acquires the
status of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by
a minimal covariantization procedure, i.e. letting the
Minkowski metric, the derivatives, and the gamma matri-
ces to the corresponding quantities in curved space. We
shall not include non-minimal couplings in the present
treatment (see Ref. [48] for a discussion about this point).

The last element we need to take into account are the
boundary conditions along the cut where the two sides
of the lattice have been glued after having removed or
added a portion of the lattice to accomodate the inser-
tion of the defect. The same procedure that we shall use
below has been discussed, for example, in Ref. [22]. It
is not di�cult to realise that for a generic even-sided de-
fect, the two sub-lattices are unchanged and the fermion
wave function, after circulating around the defect, sat-
isfies the following boundary condition:  (r,' + 2⇡) =
� exp (i(6 � ns)⇡�5/2) (r,'). (Here, we follow the same
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FIG. 1: Top: the flat hexagonal lattice with a 2⇡/3 section
highlighted. Subtracting a 2⇡/3 section, one obtains a pos-
itive curved cone with a ns = 4-sides defect (bottom left).
Adding a 2⇡/3 section, instead, generates a negative curved
saddle geometry with ns = 8 (bottom right).

(p2 ! p2), leaving intact the Dirac points and the
spin, and the Lagrangian (1) invariant as long as � van-
ishes. The order parameter for the above symmetry is
� = 2�h ̄� � �  ̄+ +i and it describes the staggered
magnetization, i.e., � 6= 0 indicates broken symmetry.
The same expression (1) is obtained following the gen-
eral decomposition outlined in [43].

By means of a kirigami like procedure1 we introduce a
spatial curvature in the model by inserting a disclination
that warps the lattice locally. If we wish to isolate the
interplay between quantum e↵ects and geometry, we need
to preserve the bipartite nature of the lattice at tree level,
that is avoid frustrating the lattice. This requirement
restricts the allowed deformations to those induced by
defects with an even number of sides, as these are the only
that preserve the above symmetry classically. Inserting a
defect with ns < 6 sides in an hexagonal lattice generates
a deficit angle and a curvature that is locally positive
(see Fig. 1). In contrast, adding a defect with ns > 6
generates an excess angle and a locally negative curvature
(see Fig. 1). These lattice structures form the basis of
chiral curved poly-aromatic systems [44].

In the continuum model, the curvature can be intro-
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duced by specifying the background to be that of a man-
ifold with a conical singularity. The Riemannian geom-
etry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, in order to model such a localised curva-
ture, we use a Euclidean parametrisation for the metric
tensor

ds2 = d⌧2 + dr2 + ↵2r2d�2 (2)

with r � 0 and 0  � < 2⇡ being the polar coordinates
centred at the apex. We will not concern ourselves with
finite temperature e↵ects here, but these can be included
in a straightforward manner by using the standard imagi-
nary time formalism. Defining �̃ = ↵ �, it should be clear
that the metric is that of flat space with 0  �̃ < 2⇡↵.
If ↵ < 1, then � = 2⇡ � 2⇡↵ describes a deficit angle.
Removing the deficit angle and identifying the two sides
results in a cone with opening angle 2 arcsin↵. The closer
to unity is ↵, the flatter is the cone. If ↵ > 1, then the
deficit angle becomes an excess angle.

Since the curvature of conical manifolds diverges at
the apex, some regularisation is necessary to deal with
the singular behaviour. Here, we will regulate the geom-
etry by replacing the singular space with a sequence of
regular manifolds as done in Ref. [46, 47]. Calculations
are done in the regularised geometry and results in the
original singular space are obtained as a limit, once the
regularisation is removed at the end. In practise, this
procedure can be implemented by replacing the original
metric (2) with the following regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d�2 (3)

where ✏ represents a regularisation parameter and f✏(r) is
a smooth function satisfying the following properties: 1)
lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) = const
for r = 0. It should be noted that while the limit of
✏ ! 0 corresponds to removing the regularisation, in an
eventual comparison with a lattice simulation, ✏ should
be associated with the lattice spacing and it acquires the
status of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by
a minimal covariantization procedure, i.e. letting the
Minkowski metric, the derivatives, and the gamma matri-
ces to the corresponding quantities in curved space. We
shall not include non-minimal couplings in the present
treatment (see Ref. [48] for a discussion about this point).

The last element we need to take into account are the
boundary conditions along the cut where the two sides
of the lattice have been glued after having removed or
added a portion of the lattice to accomodate the inser-
tion of the defect. The same procedure that we shall use
below has been discussed, for example, in Ref. [22]. It
is not di�cult to realise that for a generic even-sided de-
fect, the two sub-lattices are unchanged and the fermion
wave function, after circulating around the defect, sat-
isfies the following boundary condition:  (r,' + 2⇡) =
� exp (i(6 � ns)⇡�5/2) (r,'). (Here, we follow the same

FIG. 1: Center: the flat hexagonal lattice with a 2⇡/3 sec-
tion highlighted. Subtracting a 2⇡/3 section, one obtains a
positive curved cone with a ns = 4-sides defect (left). Adding
a 2⇡/3 section, instead, generates a negative curved saddle
geometry with ns = 8 (right).

to avoid frustration. This requirement restricts the al-
lowed deformations to those induced by defects with an
even number of sides, as these are the only that preserve
the above symmetry classically. Inserting a defect with
ns < 6 sides in an hexagonal lattice generates a deficit
angle and a curvature that is locally positive (Fig. 1).
In contrast, adding a defect with ns > 6 generates an
excess angle and a locally negative curvature (Fig. 1).
These lattice structures form the basis of chiral curved
poly-aromatic systems [44].

The lattice plays the role of geometry and its contin-
uum limit is that of a manifold with a regularized conical
singularity (see, for instance, [22, 24]). The Riemannian
geometry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, to model such a localised curvature, we
use a Euclidean parametrisation for the metric tensor

ds2 = d⌧2 + dr2 + ↵2r2d'2 (2)

with r � 0 and 0  ' < 2⇡ being the polar coordinates
centred at the apex. Setting '̃ = ↵ ', one sees that the
metric is that of flat space with 0  '̃ < 2⇡↵. If ↵ < 1,
then � = 2⇡ � 2⇡↵ describes a deficit angle. Removing
the deficit angle and identifying the two sides results in
a cone with opening angle 2 arcsin↵. The closer to unity
is ↵, the flatter is the cone. If ↵ > 1, then the deficit
angle becomes an excess angle.

Since the curvature of conical manifolds diverges at the
apex, some regularisation is necessary to deal with the
singular behaviour. Here, we will regulate the geometry
by replacing the singular space with a sequence of regular
manifolds as done in [46, 47]. Calculations are done in the
regularised geometry and results in the original singular
space can be obtained as a limit, once the regularisation is
removed at the end. This procedure can be implemented
by replacing the original metric (2) with the following
regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d'2 (3)

where ✏ represents a regularisation parameter and f✏(r)
is a smooth function satisfying the following properties:
1) lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) =

const for r = 0. Notice that while the limit of ✏ ! 0
removes the regularisation, in a comparison with a lattice
simulation, ✏ is related to the lattice spacing acquiring the
role of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by a
minimal covariantization procedure, i.e. letting metric,
derivatives, and gamma matrices to the corresponding
quantities in curved space (see [48]).

Finally, we take into account the boundary conditions
along the cut where the two sides of the lattice have
been glued. It is not di�cult to realise that for a generic
even-sided defect, the sub-lattice symmetry is preserved
and the fermion wave function, after circulating around
the defect, satisfies the following boundary condition:
 (r,' + 2⇡) = � exp (i(6 � ns)⇡�5/2) (r,'). (We fol-
low [22], and choose to work in the standard planar rep-
resentation of the �-matrices.) A way to incorporate
these boundary conditions is by re-expressing the fields as
 0(r,') = exp (�i'(6 � ns)�5/4) (r,'), and by noticing
that the primed fields obey the standard periodicity con-
dition  0(r,'+ 2⇡) = � 0(r,'). Using the above redef-
inition in the Lagrangian has the e↵ect of introducing a
non-dynamical gauge connection Aµ = ��'

µ (6�ns)�5/4.
This term will be crucial in altering the way symmetry
breaking takes place.

Methods and results. We can now examine whether
the geometry and associated boundary conditions favour
a phase of broken or restored symmetry in the region
where curvature attains a positive (ns = 4) or negative
(even ns > 6) value. As motivated at the beginning, since
the curvature in the regularized case increases (decreases)
as we approach the defect for ns = 4 (ns = 8, 10, . . . ),
the expectation is that curvature should favour symmetry
restoration in the vicinity of the defect for ns = 4, while
for ns even and larger than 6 broken symmetry should
be favoured.

Below we shall address this question by computing the
e↵ective action for the order parameter � and by nu-
merically solving the associated e↵ective equations. Our
analysis follows the large-N deformation of [43], where
we pass from 2 to N flavours of the Dirac fields. The
general form of the e↵ective action is

�̃ [�] = �
Z

d3x
p

g̃
�2

2�
+

1

2

X

p=±
log det

 
⇤̃ +

R̃

4
+ �2

p

!
,

where �2
± = �2 ±

p
g̃rr�0 and the D’Alembertian is calcu-

lated from the spinor covariant derivative D̃⌫ = r̃⌫+iA⌫ .
The tildes indicate quantities computed in the regularised
metric (3). We use heat-kernel and zeta regularization
techniques to perform the computation of the determi-
nant (see [2, 49–52] for general discussions and [16, 48]
for similar calculations in curved space). For the conve-
nience of the reader, the computation of the determinant
is described in a Supplemental Material.

The results are illustrated in Fig. 2 for cases with lo-
cally positive (ns = 4) and negative curvature (ns = 8).
The asymptotic value of the coupling constant should be
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FIG. 1: Top: the flat hexagonal lattice with a 2⇡/3 section
highlighted. Subtracting a 2⇡/3 section, one obtains a pos-
itive curved cone with a ns = 4-sides defect (bottom left).
Adding a 2⇡/3 section, instead, generates a negative curved
saddle geometry with ns = 8 (bottom right).
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spin, and the Lagrangian (1) invariant as long as � van-
ishes. The order parameter for the above symmetry is
� = 2�h ̄� � �  ̄+ +i and it describes the staggered
magnetization, i.e., � 6= 0 indicates broken symmetry.
The same expression (1) is obtained following the gen-
eral decomposition outlined in [43].

By means of a kirigami like procedure1 we introduce a
spatial curvature in the model by inserting a disclination
that warps the lattice locally. If we wish to isolate the
interplay between quantum e↵ects and geometry, we need
to preserve the bipartite nature of the lattice at tree level,
that is avoid frustrating the lattice. This requirement
restricts the allowed deformations to those induced by
defects with an even number of sides, as these are the only
that preserve the above symmetry classically. Inserting a
defect with ns < 6 sides in an hexagonal lattice generates
a deficit angle and a curvature that is locally positive
(see Fig. 1). In contrast, adding a defect with ns > 6
generates an excess angle and a locally negative curvature
(see Fig. 1). These lattice structures form the basis of
chiral curved poly-aromatic systems [44].

In the continuum model, the curvature can be intro-
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duced by specifying the background to be that of a man-
ifold with a conical singularity. The Riemannian geom-
etry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, in order to model such a localised curva-
ture, we use a Euclidean parametrisation for the metric
tensor

ds2 = d⌧2 + dr2 + ↵2r2d�2 (2)

with r � 0 and 0  � < 2⇡ being the polar coordinates
centred at the apex. We will not concern ourselves with
finite temperature e↵ects here, but these can be included
in a straightforward manner by using the standard imagi-
nary time formalism. Defining �̃ = ↵ �, it should be clear
that the metric is that of flat space with 0  �̃ < 2⇡↵.
If ↵ < 1, then � = 2⇡ � 2⇡↵ describes a deficit angle.
Removing the deficit angle and identifying the two sides
results in a cone with opening angle 2 arcsin↵. The closer
to unity is ↵, the flatter is the cone. If ↵ > 1, then the
deficit angle becomes an excess angle.

Since the curvature of conical manifolds diverges at
the apex, some regularisation is necessary to deal with
the singular behaviour. Here, we will regulate the geom-
etry by replacing the singular space with a sequence of
regular manifolds as done in Ref. [46, 47]. Calculations
are done in the regularised geometry and results in the
original singular space are obtained as a limit, once the
regularisation is removed at the end. In practise, this
procedure can be implemented by replacing the original
metric (2) with the following regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d�2 (3)

where ✏ represents a regularisation parameter and f✏(r) is
a smooth function satisfying the following properties: 1)
lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) = const
for r = 0. It should be noted that while the limit of
✏ ! 0 corresponds to removing the regularisation, in an
eventual comparison with a lattice simulation, ✏ should
be associated with the lattice spacing and it acquires the
status of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by
a minimal covariantization procedure, i.e. letting the
Minkowski metric, the derivatives, and the gamma matri-
ces to the corresponding quantities in curved space. We
shall not include non-minimal couplings in the present
treatment (see Ref. [48] for a discussion about this point).

The last element we need to take into account are the
boundary conditions along the cut where the two sides
of the lattice have been glued after having removed or
added a portion of the lattice to accomodate the inser-
tion of the defect. The same procedure that we shall use
below has been discussed, for example, in Ref. [22]. It
is not di�cult to realise that for a generic even-sided de-
fect, the two sub-lattices are unchanged and the fermion
wave function, after circulating around the defect, sat-
isfies the following boundary condition:  (r,' + 2⇡) =
� exp (i(6 � ns)⇡�5/2) (r,'). (Here, we follow the same
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FIG. 1: Top: the flat hexagonal lattice with a 2⇡/3 section
highlighted. Subtracting a 2⇡/3 section, one obtains a pos-
itive curved cone with a ns = 4-sides defect (bottom left).
Adding a 2⇡/3 section, instead, generates a negative curved
saddle geometry with ns = 8 (bottom right).

(p2 ! p2), leaving intact the Dirac points and the
spin, and the Lagrangian (1) invariant as long as � van-
ishes. The order parameter for the above symmetry is
� = 2�h ̄� � �  ̄+ +i and it describes the staggered
magnetization, i.e., � 6= 0 indicates broken symmetry.
The same expression (1) is obtained following the gen-
eral decomposition outlined in [43].

By means of a kirigami like procedure1 we introduce a
spatial curvature in the model by inserting a disclination
that warps the lattice locally. If we wish to isolate the
interplay between quantum e↵ects and geometry, we need
to preserve the bipartite nature of the lattice at tree level,
that is avoid frustrating the lattice. This requirement
restricts the allowed deformations to those induced by
defects with an even number of sides, as these are the only
that preserve the above symmetry classically. Inserting a
defect with ns < 6 sides in an hexagonal lattice generates
a deficit angle and a curvature that is locally positive
(see Fig. 1). In contrast, adding a defect with ns > 6
generates an excess angle and a locally negative curvature
(see Fig. 1). These lattice structures form the basis of
chiral curved poly-aromatic systems [44].

In the continuum model, the curvature can be intro-

1 Kirigami is a variation of origami that includes cutting of the
paper [58].

duced by specifying the background to be that of a man-
ifold with a conical singularity. The Riemannian geom-
etry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, in order to model such a localised curva-
ture, we use a Euclidean parametrisation for the metric
tensor

ds2 = d⌧2 + dr2 + ↵2r2d�2 (2)

with r � 0 and 0  � < 2⇡ being the polar coordinates
centred at the apex. We will not concern ourselves with
finite temperature e↵ects here, but these can be included
in a straightforward manner by using the standard imagi-
nary time formalism. Defining �̃ = ↵ �, it should be clear
that the metric is that of flat space with 0  �̃ < 2⇡↵.
If ↵ < 1, then � = 2⇡ � 2⇡↵ describes a deficit angle.
Removing the deficit angle and identifying the two sides
results in a cone with opening angle 2 arcsin↵. The closer
to unity is ↵, the flatter is the cone. If ↵ > 1, then the
deficit angle becomes an excess angle.

Since the curvature of conical manifolds diverges at
the apex, some regularisation is necessary to deal with
the singular behaviour. Here, we will regulate the geom-
etry by replacing the singular space with a sequence of
regular manifolds as done in Ref. [46, 47]. Calculations
are done in the regularised geometry and results in the
original singular space are obtained as a limit, once the
regularisation is removed at the end. In practise, this
procedure can be implemented by replacing the original
metric (2) with the following regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d�2 (3)

where ✏ represents a regularisation parameter and f✏(r) is
a smooth function satisfying the following properties: 1)
lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) = const
for r = 0. It should be noted that while the limit of
✏ ! 0 corresponds to removing the regularisation, in an
eventual comparison with a lattice simulation, ✏ should
be associated with the lattice spacing and it acquires the
status of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by
a minimal covariantization procedure, i.e. letting the
Minkowski metric, the derivatives, and the gamma matri-
ces to the corresponding quantities in curved space. We
shall not include non-minimal couplings in the present
treatment (see Ref. [48] for a discussion about this point).

The last element we need to take into account are the
boundary conditions along the cut where the two sides
of the lattice have been glued after having removed or
added a portion of the lattice to accomodate the inser-
tion of the defect. The same procedure that we shall use
below has been discussed, for example, in Ref. [22]. It
is not di�cult to realise that for a generic even-sided de-
fect, the two sub-lattices are unchanged and the fermion
wave function, after circulating around the defect, sat-
isfies the following boundary condition:  (r,' + 2⇡) =
� exp (i(6 � ns)⇡�5/2) (r,'). (Here, we follow the same
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FIG. 1: Top: the flat hexagonal lattice with a 2⇡/3 section
highlighted. Subtracting a 2⇡/3 section, one obtains a pos-
itive curved cone with a ns = 4-sides defect (bottom left).
Adding a 2⇡/3 section, instead, generates a negative curved
saddle geometry with ns = 8 (bottom right).

(p2 ! p2), leaving intact the Dirac points and the
spin, and the Lagrangian (1) invariant as long as � van-
ishes. The order parameter for the above symmetry is
� = 2�h ̄� � �  ̄+ +i and it describes the staggered
magnetization, i.e., � 6= 0 indicates broken symmetry.
The same expression (1) is obtained following the gen-
eral decomposition outlined in [43].

By means of a kirigami like procedure1 we introduce a
spatial curvature in the model by inserting a disclination
that warps the lattice locally. If we wish to isolate the
interplay between quantum e↵ects and geometry, we need
to preserve the bipartite nature of the lattice at tree level,
that is avoid frustrating the lattice. This requirement
restricts the allowed deformations to those induced by
defects with an even number of sides, as these are the only
that preserve the above symmetry classically. Inserting a
defect with ns < 6 sides in an hexagonal lattice generates
a deficit angle and a curvature that is locally positive
(see Fig. 1). In contrast, adding a defect with ns > 6
generates an excess angle and a locally negative curvature
(see Fig. 1). These lattice structures form the basis of
chiral curved poly-aromatic systems [44].

In the continuum model, the curvature can be intro-

1 Kirigami is a variation of origami that includes cutting of the
paper [58].

duced by specifying the background to be that of a man-
ifold with a conical singularity. The Riemannian geom-
etry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, in order to model such a localised curva-
ture, we use a Euclidean parametrisation for the metric
tensor

ds2 = d⌧2 + dr2 + ↵2r2d�2 (2)

with r � 0 and 0  � < 2⇡ being the polar coordinates
centred at the apex. We will not concern ourselves with
finite temperature e↵ects here, but these can be included
in a straightforward manner by using the standard imagi-
nary time formalism. Defining �̃ = ↵ �, it should be clear
that the metric is that of flat space with 0  �̃ < 2⇡↵.
If ↵ < 1, then � = 2⇡ � 2⇡↵ describes a deficit angle.
Removing the deficit angle and identifying the two sides
results in a cone with opening angle 2 arcsin↵. The closer
to unity is ↵, the flatter is the cone. If ↵ > 1, then the
deficit angle becomes an excess angle.

Since the curvature of conical manifolds diverges at
the apex, some regularisation is necessary to deal with
the singular behaviour. Here, we will regulate the geom-
etry by replacing the singular space with a sequence of
regular manifolds as done in Ref. [46, 47]. Calculations
are done in the regularised geometry and results in the
original singular space are obtained as a limit, once the
regularisation is removed at the end. In practise, this
procedure can be implemented by replacing the original
metric (2) with the following regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d�2 (3)

where ✏ represents a regularisation parameter and f✏(r) is
a smooth function satisfying the following properties: 1)
lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) = const
for r = 0. It should be noted that while the limit of
✏ ! 0 corresponds to removing the regularisation, in an
eventual comparison with a lattice simulation, ✏ should
be associated with the lattice spacing and it acquires the
status of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by
a minimal covariantization procedure, i.e. letting the
Minkowski metric, the derivatives, and the gamma matri-
ces to the corresponding quantities in curved space. We
shall not include non-minimal couplings in the present
treatment (see Ref. [48] for a discussion about this point).

The last element we need to take into account are the
boundary conditions along the cut where the two sides
of the lattice have been glued after having removed or
added a portion of the lattice to accomodate the inser-
tion of the defect. The same procedure that we shall use
below has been discussed, for example, in Ref. [22]. It
is not di�cult to realise that for a generic even-sided de-
fect, the two sub-lattices are unchanged and the fermion
wave function, after circulating around the defect, sat-
isfies the following boundary condition:  (r,' + 2⇡) =
� exp (i(6 � ns)⇡�5/2) (r,'). (Here, we follow the same

FIG. 1: Center: the flat hexagonal lattice with a 2⇡/3 sec-
tion highlighted. Subtracting a 2⇡/3 section, one obtains a
positive curved cone with a ns = 4-sides defect (left). Adding
a 2⇡/3 section, instead, generates a negative curved saddle
geometry with ns = 8 (right).

to avoid frustration. This requirement restricts the al-
lowed deformations to those induced by defects with an
even number of sides, as these are the only that preserve
the above symmetry classically. Inserting a defect with
ns < 6 sides in an hexagonal lattice generates a deficit
angle and a curvature that is locally positive (Fig. 1).
In contrast, adding a defect with ns > 6 generates an
excess angle and a locally negative curvature (Fig. 1).
These lattice structures form the basis of chiral curved
poly-aromatic systems [44].

The lattice plays the role of geometry and its contin-
uum limit is that of a manifold with a regularized conical
singularity (see, for instance, [22, 24]). The Riemannian
geometry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, to model such a localised curvature, we
use a Euclidean parametrisation for the metric tensor

ds2 = d⌧2 + dr2 + ↵2r2d'2 (2)

with r � 0 and 0  ' < 2⇡ being the polar coordinates
centred at the apex. Setting '̃ = ↵ ', one sees that the
metric is that of flat space with 0  '̃ < 2⇡↵. If ↵ < 1,
then � = 2⇡ � 2⇡↵ describes a deficit angle. Removing
the deficit angle and identifying the two sides results in
a cone with opening angle 2 arcsin↵. The closer to unity
is ↵, the flatter is the cone. If ↵ > 1, then the deficit
angle becomes an excess angle.

Since the curvature of conical manifolds diverges at the
apex, some regularisation is necessary to deal with the
singular behaviour. Here, we will regulate the geometry
by replacing the singular space with a sequence of regular
manifolds as done in [46, 47]. Calculations are done in the
regularised geometry and results in the original singular
space can be obtained as a limit, once the regularisation is
removed at the end. This procedure can be implemented
by replacing the original metric (2) with the following
regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d'2 (3)

where ✏ represents a regularisation parameter and f✏(r)
is a smooth function satisfying the following properties:
1) lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) =

const for r = 0. Notice that while the limit of ✏ ! 0
removes the regularisation, in a comparison with a lattice
simulation, ✏ is related to the lattice spacing acquiring the
role of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by a
minimal covariantization procedure, i.e. letting metric,
derivatives, and gamma matrices to the corresponding
quantities in curved space (see [48]).

Finally, we take into account the boundary conditions
along the cut where the two sides of the lattice have
been glued. It is not di�cult to realise that for a generic
even-sided defect, the sub-lattice symmetry is preserved
and the fermion wave function, after circulating around
the defect, satisfies the following boundary condition:
 (r,' + 2⇡) = � exp (i(6 � ns)⇡�5/2) (r,'). (We fol-
low [22], and choose to work in the standard planar rep-
resentation of the �-matrices.) A way to incorporate
these boundary conditions is by re-expressing the fields as
 0(r,') = exp (�i'(6 � ns)�5/4) (r,'), and by noticing
that the primed fields obey the standard periodicity con-
dition  0(r,'+ 2⇡) = � 0(r,'). Using the above redef-
inition in the Lagrangian has the e↵ect of introducing a
non-dynamical gauge connection Aµ = ��'

µ (6�ns)�5/4.
This term will be crucial in altering the way symmetry
breaking takes place.

Methods and results. We can now examine whether
the geometry and associated boundary conditions favour
a phase of broken or restored symmetry in the region
where curvature attains a positive (ns = 4) or negative
(even ns > 6) value. As motivated at the beginning, since
the curvature in the regularized case increases (decreases)
as we approach the defect for ns = 4 (ns = 8, 10, . . . ),
the expectation is that curvature should favour symmetry
restoration in the vicinity of the defect for ns = 4, while
for ns even and larger than 6 broken symmetry should
be favoured.

Below we shall address this question by computing the
e↵ective action for the order parameter � and by nu-
merically solving the associated e↵ective equations. Our
analysis follows the large-N deformation of [43], where
we pass from 2 to N flavours of the Dirac fields. The
general form of the e↵ective action is

�̃ [�] = �
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log det
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where �2
± = �2 ±

p
g̃rr�0 and the D’Alembertian is calcu-

lated from the spinor covariant derivative D̃⌫ = r̃⌫+iA⌫ .
The tildes indicate quantities computed in the regularised
metric (3). We use heat-kernel and zeta regularization
techniques to perform the computation of the determi-
nant (see [2, 49–52] for general discussions and [16, 48]
for similar calculations in curved space). For the conve-
nience of the reader, the computation of the determinant
is described in a Supplemental Material.

The results are illustrated in Fig. 2 for cases with lo-
cally positive (ns = 4) and negative curvature (ns = 8).
The asymptotic value of the coupling constant should be
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FIG. 1: Top: the flat hexagonal lattice with a 2⇡/3 section
highlighted. Subtracting a 2⇡/3 section, one obtains a pos-
itive curved cone with a ns = 4-sides defect (bottom left).
Adding a 2⇡/3 section, instead, generates a negative curved
saddle geometry with ns = 8 (bottom right).

(p2 ! p2), leaving intact the Dirac points and the
spin, and the Lagrangian (1) invariant as long as � van-
ishes. The order parameter for the above symmetry is
� = 2�h ̄� � �  ̄+ +i and it describes the staggered
magnetization, i.e., � 6= 0 indicates broken symmetry.
The same expression (1) is obtained following the gen-
eral decomposition outlined in [43].

By means of a kirigami like procedure1 we introduce a
spatial curvature in the model by inserting a disclination
that warps the lattice locally. If we wish to isolate the
interplay between quantum e↵ects and geometry, we need
to preserve the bipartite nature of the lattice at tree level,
that is avoid frustrating the lattice. This requirement
restricts the allowed deformations to those induced by
defects with an even number of sides, as these are the only
that preserve the above symmetry classically. Inserting a
defect with ns < 6 sides in an hexagonal lattice generates
a deficit angle and a curvature that is locally positive
(see Fig. 1). In contrast, adding a defect with ns > 6
generates an excess angle and a locally negative curvature
(see Fig. 1). These lattice structures form the basis of
chiral curved poly-aromatic systems [44].

In the continuum model, the curvature can be intro-

1 Kirigami is a variation of origami that includes cutting of the
paper [58].

duced by specifying the background to be that of a man-
ifold with a conical singularity. The Riemannian geom-
etry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, in order to model such a localised curva-
ture, we use a Euclidean parametrisation for the metric
tensor

ds2 = d⌧2 + dr2 + ↵2r2d�2 (2)

with r � 0 and 0  � < 2⇡ being the polar coordinates
centred at the apex. We will not concern ourselves with
finite temperature e↵ects here, but these can be included
in a straightforward manner by using the standard imagi-
nary time formalism. Defining �̃ = ↵ �, it should be clear
that the metric is that of flat space with 0  �̃ < 2⇡↵.
If ↵ < 1, then � = 2⇡ � 2⇡↵ describes a deficit angle.
Removing the deficit angle and identifying the two sides
results in a cone with opening angle 2 arcsin↵. The closer
to unity is ↵, the flatter is the cone. If ↵ > 1, then the
deficit angle becomes an excess angle.

Since the curvature of conical manifolds diverges at
the apex, some regularisation is necessary to deal with
the singular behaviour. Here, we will regulate the geom-
etry by replacing the singular space with a sequence of
regular manifolds as done in Ref. [46, 47]. Calculations
are done in the regularised geometry and results in the
original singular space are obtained as a limit, once the
regularisation is removed at the end. In practise, this
procedure can be implemented by replacing the original
metric (2) with the following regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d�2 (3)

where ✏ represents a regularisation parameter and f✏(r) is
a smooth function satisfying the following properties: 1)
lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) = const
for r = 0. It should be noted that while the limit of
✏ ! 0 corresponds to removing the regularisation, in an
eventual comparison with a lattice simulation, ✏ should
be associated with the lattice spacing and it acquires the
status of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by
a minimal covariantization procedure, i.e. letting the
Minkowski metric, the derivatives, and the gamma matri-
ces to the corresponding quantities in curved space. We
shall not include non-minimal couplings in the present
treatment (see Ref. [48] for a discussion about this point).

The last element we need to take into account are the
boundary conditions along the cut where the two sides
of the lattice have been glued after having removed or
added a portion of the lattice to accomodate the inser-
tion of the defect. The same procedure that we shall use
below has been discussed, for example, in Ref. [22]. It
is not di�cult to realise that for a generic even-sided de-
fect, the two sub-lattices are unchanged and the fermion
wave function, after circulating around the defect, sat-
isfies the following boundary condition:  (r,' + 2⇡) =
� exp (i(6 � ns)⇡�5/2) (r,'). (Here, we follow the same

3

b1

b2
b3

r

FIG. 1: Top: the flat hexagonal lattice with a 2⇡/3 section
highlighted. Subtracting a 2⇡/3 section, one obtains a pos-
itive curved cone with a ns = 4-sides defect (bottom left).
Adding a 2⇡/3 section, instead, generates a negative curved
saddle geometry with ns = 8 (bottom right).

(p2 ! p2), leaving intact the Dirac points and the
spin, and the Lagrangian (1) invariant as long as � van-
ishes. The order parameter for the above symmetry is
� = 2�h ̄� � �  ̄+ +i and it describes the staggered
magnetization, i.e., � 6= 0 indicates broken symmetry.
The same expression (1) is obtained following the gen-
eral decomposition outlined in [43].

By means of a kirigami like procedure1 we introduce a
spatial curvature in the model by inserting a disclination
that warps the lattice locally. If we wish to isolate the
interplay between quantum e↵ects and geometry, we need
to preserve the bipartite nature of the lattice at tree level,
that is avoid frustrating the lattice. This requirement
restricts the allowed deformations to those induced by
defects with an even number of sides, as these are the only
that preserve the above symmetry classically. Inserting a
defect with ns < 6 sides in an hexagonal lattice generates
a deficit angle and a curvature that is locally positive
(see Fig. 1). In contrast, adding a defect with ns > 6
generates an excess angle and a locally negative curvature
(see Fig. 1). These lattice structures form the basis of
chiral curved poly-aromatic systems [44].

In the continuum model, the curvature can be intro-

1 Kirigami is a variation of origami that includes cutting of the
paper [58].

duced by specifying the background to be that of a man-
ifold with a conical singularity. The Riemannian geom-
etry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, in order to model such a localised curva-
ture, we use a Euclidean parametrisation for the metric
tensor

ds2 = d⌧2 + dr2 + ↵2r2d�2 (2)

with r � 0 and 0  � < 2⇡ being the polar coordinates
centred at the apex. We will not concern ourselves with
finite temperature e↵ects here, but these can be included
in a straightforward manner by using the standard imagi-
nary time formalism. Defining �̃ = ↵ �, it should be clear
that the metric is that of flat space with 0  �̃ < 2⇡↵.
If ↵ < 1, then � = 2⇡ � 2⇡↵ describes a deficit angle.
Removing the deficit angle and identifying the two sides
results in a cone with opening angle 2 arcsin↵. The closer
to unity is ↵, the flatter is the cone. If ↵ > 1, then the
deficit angle becomes an excess angle.

Since the curvature of conical manifolds diverges at
the apex, some regularisation is necessary to deal with
the singular behaviour. Here, we will regulate the geom-
etry by replacing the singular space with a sequence of
regular manifolds as done in Ref. [46, 47]. Calculations
are done in the regularised geometry and results in the
original singular space are obtained as a limit, once the
regularisation is removed at the end. In practise, this
procedure can be implemented by replacing the original
metric (2) with the following regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d�2 (3)

where ✏ represents a regularisation parameter and f✏(r) is
a smooth function satisfying the following properties: 1)
lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) = const
for r = 0. It should be noted that while the limit of
✏ ! 0 corresponds to removing the regularisation, in an
eventual comparison with a lattice simulation, ✏ should
be associated with the lattice spacing and it acquires the
status of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by
a minimal covariantization procedure, i.e. letting the
Minkowski metric, the derivatives, and the gamma matri-
ces to the corresponding quantities in curved space. We
shall not include non-minimal couplings in the present
treatment (see Ref. [48] for a discussion about this point).

The last element we need to take into account are the
boundary conditions along the cut where the two sides
of the lattice have been glued after having removed or
added a portion of the lattice to accomodate the inser-
tion of the defect. The same procedure that we shall use
below has been discussed, for example, in Ref. [22]. It
is not di�cult to realise that for a generic even-sided de-
fect, the two sub-lattices are unchanged and the fermion
wave function, after circulating around the defect, sat-
isfies the following boundary condition:  (r,' + 2⇡) =
� exp (i(6 � ns)⇡�5/2) (r,'). (Here, we follow the same
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FIG. 1: Top: the flat hexagonal lattice with a 2⇡/3 section
highlighted. Subtracting a 2⇡/3 section, one obtains a pos-
itive curved cone with a ns = 4-sides defect (bottom left).
Adding a 2⇡/3 section, instead, generates a negative curved
saddle geometry with ns = 8 (bottom right).

(p2 ! p2), leaving intact the Dirac points and the
spin, and the Lagrangian (1) invariant as long as � van-
ishes. The order parameter for the above symmetry is
� = 2�h ̄� � �  ̄+ +i and it describes the staggered
magnetization, i.e., � 6= 0 indicates broken symmetry.
The same expression (1) is obtained following the gen-
eral decomposition outlined in [43].

By means of a kirigami like procedure1 we introduce a
spatial curvature in the model by inserting a disclination
that warps the lattice locally. If we wish to isolate the
interplay between quantum e↵ects and geometry, we need
to preserve the bipartite nature of the lattice at tree level,
that is avoid frustrating the lattice. This requirement
restricts the allowed deformations to those induced by
defects with an even number of sides, as these are the only
that preserve the above symmetry classically. Inserting a
defect with ns < 6 sides in an hexagonal lattice generates
a deficit angle and a curvature that is locally positive
(see Fig. 1). In contrast, adding a defect with ns > 6
generates an excess angle and a locally negative curvature
(see Fig. 1). These lattice structures form the basis of
chiral curved poly-aromatic systems [44].

In the continuum model, the curvature can be intro-
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duced by specifying the background to be that of a man-
ifold with a conical singularity. The Riemannian geom-
etry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, in order to model such a localised curva-
ture, we use a Euclidean parametrisation for the metric
tensor

ds2 = d⌧2 + dr2 + ↵2r2d�2 (2)

with r � 0 and 0  � < 2⇡ being the polar coordinates
centred at the apex. We will not concern ourselves with
finite temperature e↵ects here, but these can be included
in a straightforward manner by using the standard imagi-
nary time formalism. Defining �̃ = ↵ �, it should be clear
that the metric is that of flat space with 0  �̃ < 2⇡↵.
If ↵ < 1, then � = 2⇡ � 2⇡↵ describes a deficit angle.
Removing the deficit angle and identifying the two sides
results in a cone with opening angle 2 arcsin↵. The closer
to unity is ↵, the flatter is the cone. If ↵ > 1, then the
deficit angle becomes an excess angle.

Since the curvature of conical manifolds diverges at
the apex, some regularisation is necessary to deal with
the singular behaviour. Here, we will regulate the geom-
etry by replacing the singular space with a sequence of
regular manifolds as done in Ref. [46, 47]. Calculations
are done in the regularised geometry and results in the
original singular space are obtained as a limit, once the
regularisation is removed at the end. In practise, this
procedure can be implemented by replacing the original
metric (2) with the following regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d�2 (3)

where ✏ represents a regularisation parameter and f✏(r) is
a smooth function satisfying the following properties: 1)
lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) = const
for r = 0. It should be noted that while the limit of
✏ ! 0 corresponds to removing the regularisation, in an
eventual comparison with a lattice simulation, ✏ should
be associated with the lattice spacing and it acquires the
status of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by
a minimal covariantization procedure, i.e. letting the
Minkowski metric, the derivatives, and the gamma matri-
ces to the corresponding quantities in curved space. We
shall not include non-minimal couplings in the present
treatment (see Ref. [48] for a discussion about this point).

The last element we need to take into account are the
boundary conditions along the cut where the two sides
of the lattice have been glued after having removed or
added a portion of the lattice to accomodate the inser-
tion of the defect. The same procedure that we shall use
below has been discussed, for example, in Ref. [22]. It
is not di�cult to realise that for a generic even-sided de-
fect, the two sub-lattices are unchanged and the fermion
wave function, after circulating around the defect, sat-
isfies the following boundary condition:  (r,' + 2⇡) =
� exp (i(6 � ns)⇡�5/2) (r,'). (Here, we follow the same

FIG. 1: Center: the flat hexagonal lattice with a 2⇡/3 sec-
tion highlighted. Subtracting a 2⇡/3 section, one obtains a
positive curved cone with a ns = 4-sides defect (left). Adding
a 2⇡/3 section, instead, generates a negative curved saddle
geometry with ns = 8 (right).

to avoid frustration. This requirement restricts the al-
lowed deformations to those induced by defects with an
even number of sides, as these are the only that preserve
the above symmetry classically. Inserting a defect with
ns < 6 sides in an hexagonal lattice generates a deficit
angle and a curvature that is locally positive (Fig. 1).
In contrast, adding a defect with ns > 6 generates an
excess angle and a locally negative curvature (Fig. 1).
These lattice structures form the basis of chiral curved
poly-aromatic systems [44].

The lattice plays the role of geometry and its contin-
uum limit is that of a manifold with a regularized conical
singularity (see, for instance, [22, 24]). The Riemannian
geometry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, to model such a localised curvature, we
use a Euclidean parametrisation for the metric tensor

ds2 = d⌧2 + dr2 + ↵2r2d'2 (2)

with r � 0 and 0  ' < 2⇡ being the polar coordinates
centred at the apex. Setting '̃ = ↵ ', one sees that the
metric is that of flat space with 0  '̃ < 2⇡↵. If ↵ < 1,
then � = 2⇡ � 2⇡↵ describes a deficit angle. Removing
the deficit angle and identifying the two sides results in
a cone with opening angle 2 arcsin↵. The closer to unity
is ↵, the flatter is the cone. If ↵ > 1, then the deficit
angle becomes an excess angle.

Since the curvature of conical manifolds diverges at the
apex, some regularisation is necessary to deal with the
singular behaviour. Here, we will regulate the geometry
by replacing the singular space with a sequence of regular
manifolds as done in [46, 47]. Calculations are done in the
regularised geometry and results in the original singular
space can be obtained as a limit, once the regularisation is
removed at the end. This procedure can be implemented
by replacing the original metric (2) with the following
regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d'2 (3)

where ✏ represents a regularisation parameter and f✏(r)
is a smooth function satisfying the following properties:
1) lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) =

const for r = 0. Notice that while the limit of ✏ ! 0
removes the regularisation, in a comparison with a lattice
simulation, ✏ is related to the lattice spacing acquiring the
role of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by a
minimal covariantization procedure, i.e. letting metric,
derivatives, and gamma matrices to the corresponding
quantities in curved space (see [48]).

Finally, we take into account the boundary conditions
along the cut where the two sides of the lattice have
been glued. It is not di�cult to realise that for a generic
even-sided defect, the sub-lattice symmetry is preserved
and the fermion wave function, after circulating around
the defect, satisfies the following boundary condition:
 (r,' + 2⇡) = � exp (i(6 � ns)⇡�5/2) (r,'). (We fol-
low [22], and choose to work in the standard planar rep-
resentation of the �-matrices.) A way to incorporate
these boundary conditions is by re-expressing the fields as
 0(r,') = exp (�i'(6 � ns)�5/4) (r,'), and by noticing
that the primed fields obey the standard periodicity con-
dition  0(r,'+ 2⇡) = � 0(r,'). Using the above redef-
inition in the Lagrangian has the e↵ect of introducing a
non-dynamical gauge connection Aµ = ��'

µ (6�ns)�5/4.
This term will be crucial in altering the way symmetry
breaking takes place.

Methods and results. We can now examine whether
the geometry and associated boundary conditions favour
a phase of broken or restored symmetry in the region
where curvature attains a positive (ns = 4) or negative
(even ns > 6) value. As motivated at the beginning, since
the curvature in the regularized case increases (decreases)
as we approach the defect for ns = 4 (ns = 8, 10, . . . ),
the expectation is that curvature should favour symmetry
restoration in the vicinity of the defect for ns = 4, while
for ns even and larger than 6 broken symmetry should
be favoured.

Below we shall address this question by computing the
e↵ective action for the order parameter � and by nu-
merically solving the associated e↵ective equations. Our
analysis follows the large-N deformation of [43], where
we pass from 2 to N flavours of the Dirac fields. The
general form of the e↵ective action is
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where �2
± = �2 ±

p
g̃rr�0 and the D’Alembertian is calcu-

lated from the spinor covariant derivative D̃⌫ = r̃⌫+iA⌫ .
The tildes indicate quantities computed in the regularised
metric (3). We use heat-kernel and zeta regularization
techniques to perform the computation of the determi-
nant (see [2, 49–52] for general discussions and [16, 48]
for similar calculations in curved space). For the conve-
nience of the reader, the computation of the determinant
is described in a Supplemental Material.

The results are illustrated in Fig. 2 for cases with lo-
cally positive (ns = 4) and negative curvature (ns = 8).
The asymptotic value of the coupling constant should be
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FIG. 1: Top: the flat hexagonal lattice with a 2⇡/3 section
highlighted. Subtracting a 2⇡/3 section, one obtains a pos-
itive curved cone with a ns = 4-sides defect (bottom left).
Adding a 2⇡/3 section, instead, generates a negative curved
saddle geometry with ns = 8 (bottom right).

(p2 ! p2), leaving intact the Dirac points and the
spin, and the Lagrangian (1) invariant as long as � van-
ishes. The order parameter for the above symmetry is
� = 2�h ̄� � �  ̄+ +i and it describes the staggered
magnetization, i.e., � 6= 0 indicates broken symmetry.
The same expression (1) is obtained following the gen-
eral decomposition outlined in [43].

By means of a kirigami like procedure1 we introduce a
spatial curvature in the model by inserting a disclination
that warps the lattice locally. If we wish to isolate the
interplay between quantum e↵ects and geometry, we need
to preserve the bipartite nature of the lattice at tree level,
that is avoid frustrating the lattice. This requirement
restricts the allowed deformations to those induced by
defects with an even number of sides, as these are the only
that preserve the above symmetry classically. Inserting a
defect with ns < 6 sides in an hexagonal lattice generates
a deficit angle and a curvature that is locally positive
(see Fig. 1). In contrast, adding a defect with ns > 6
generates an excess angle and a locally negative curvature
(see Fig. 1). These lattice structures form the basis of
chiral curved poly-aromatic systems [44].

In the continuum model, the curvature can be intro-

1 Kirigami is a variation of origami that includes cutting of the
paper [58].

duced by specifying the background to be that of a man-
ifold with a conical singularity. The Riemannian geom-
etry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, in order to model such a localised curva-
ture, we use a Euclidean parametrisation for the metric
tensor

ds2 = d⌧2 + dr2 + ↵2r2d�2 (2)

with r � 0 and 0  � < 2⇡ being the polar coordinates
centred at the apex. We will not concern ourselves with
finite temperature e↵ects here, but these can be included
in a straightforward manner by using the standard imagi-
nary time formalism. Defining �̃ = ↵ �, it should be clear
that the metric is that of flat space with 0  �̃ < 2⇡↵.
If ↵ < 1, then � = 2⇡ � 2⇡↵ describes a deficit angle.
Removing the deficit angle and identifying the two sides
results in a cone with opening angle 2 arcsin↵. The closer
to unity is ↵, the flatter is the cone. If ↵ > 1, then the
deficit angle becomes an excess angle.

Since the curvature of conical manifolds diverges at
the apex, some regularisation is necessary to deal with
the singular behaviour. Here, we will regulate the geom-
etry by replacing the singular space with a sequence of
regular manifolds as done in Ref. [46, 47]. Calculations
are done in the regularised geometry and results in the
original singular space are obtained as a limit, once the
regularisation is removed at the end. In practise, this
procedure can be implemented by replacing the original
metric (2) with the following regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d�2 (3)

where ✏ represents a regularisation parameter and f✏(r) is
a smooth function satisfying the following properties: 1)
lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) = const
for r = 0. It should be noted that while the limit of
✏ ! 0 corresponds to removing the regularisation, in an
eventual comparison with a lattice simulation, ✏ should
be associated with the lattice spacing and it acquires the
status of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by
a minimal covariantization procedure, i.e. letting the
Minkowski metric, the derivatives, and the gamma matri-
ces to the corresponding quantities in curved space. We
shall not include non-minimal couplings in the present
treatment (see Ref. [48] for a discussion about this point).

The last element we need to take into account are the
boundary conditions along the cut where the two sides
of the lattice have been glued after having removed or
added a portion of the lattice to accomodate the inser-
tion of the defect. The same procedure that we shall use
below has been discussed, for example, in Ref. [22]. It
is not di�cult to realise that for a generic even-sided de-
fect, the two sub-lattices are unchanged and the fermion
wave function, after circulating around the defect, sat-
isfies the following boundary condition:  (r,' + 2⇡) =
� exp (i(6 � ns)⇡�5/2) (r,'). (Here, we follow the same
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FIG. 1: Top: the flat hexagonal lattice with a 2⇡/3 section
highlighted. Subtracting a 2⇡/3 section, one obtains a pos-
itive curved cone with a ns = 4-sides defect (bottom left).
Adding a 2⇡/3 section, instead, generates a negative curved
saddle geometry with ns = 8 (bottom right).

(p2 ! p2), leaving intact the Dirac points and the
spin, and the Lagrangian (1) invariant as long as � van-
ishes. The order parameter for the above symmetry is
� = 2�h ̄� � �  ̄+ +i and it describes the staggered
magnetization, i.e., � 6= 0 indicates broken symmetry.
The same expression (1) is obtained following the gen-
eral decomposition outlined in [43].

By means of a kirigami like procedure1 we introduce a
spatial curvature in the model by inserting a disclination
that warps the lattice locally. If we wish to isolate the
interplay between quantum e↵ects and geometry, we need
to preserve the bipartite nature of the lattice at tree level,
that is avoid frustrating the lattice. This requirement
restricts the allowed deformations to those induced by
defects with an even number of sides, as these are the only
that preserve the above symmetry classically. Inserting a
defect with ns < 6 sides in an hexagonal lattice generates
a deficit angle and a curvature that is locally positive
(see Fig. 1). In contrast, adding a defect with ns > 6
generates an excess angle and a locally negative curvature
(see Fig. 1). These lattice structures form the basis of
chiral curved poly-aromatic systems [44].

In the continuum model, the curvature can be intro-

1 Kirigami is a variation of origami that includes cutting of the
paper [58].

duced by specifying the background to be that of a man-
ifold with a conical singularity. The Riemannian geom-
etry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, in order to model such a localised curva-
ture, we use a Euclidean parametrisation for the metric
tensor

ds2 = d⌧2 + dr2 + ↵2r2d�2 (2)

with r � 0 and 0  � < 2⇡ being the polar coordinates
centred at the apex. We will not concern ourselves with
finite temperature e↵ects here, but these can be included
in a straightforward manner by using the standard imagi-
nary time formalism. Defining �̃ = ↵ �, it should be clear
that the metric is that of flat space with 0  �̃ < 2⇡↵.
If ↵ < 1, then � = 2⇡ � 2⇡↵ describes a deficit angle.
Removing the deficit angle and identifying the two sides
results in a cone with opening angle 2 arcsin↵. The closer
to unity is ↵, the flatter is the cone. If ↵ > 1, then the
deficit angle becomes an excess angle.

Since the curvature of conical manifolds diverges at
the apex, some regularisation is necessary to deal with
the singular behaviour. Here, we will regulate the geom-
etry by replacing the singular space with a sequence of
regular manifolds as done in Ref. [46, 47]. Calculations
are done in the regularised geometry and results in the
original singular space are obtained as a limit, once the
regularisation is removed at the end. In practise, this
procedure can be implemented by replacing the original
metric (2) with the following regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d�2 (3)

where ✏ represents a regularisation parameter and f✏(r) is
a smooth function satisfying the following properties: 1)
lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) = const
for r = 0. It should be noted that while the limit of
✏ ! 0 corresponds to removing the regularisation, in an
eventual comparison with a lattice simulation, ✏ should
be associated with the lattice spacing and it acquires the
status of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by
a minimal covariantization procedure, i.e. letting the
Minkowski metric, the derivatives, and the gamma matri-
ces to the corresponding quantities in curved space. We
shall not include non-minimal couplings in the present
treatment (see Ref. [48] for a discussion about this point).

The last element we need to take into account are the
boundary conditions along the cut where the two sides
of the lattice have been glued after having removed or
added a portion of the lattice to accomodate the inser-
tion of the defect. The same procedure that we shall use
below has been discussed, for example, in Ref. [22]. It
is not di�cult to realise that for a generic even-sided de-
fect, the two sub-lattices are unchanged and the fermion
wave function, after circulating around the defect, sat-
isfies the following boundary condition:  (r,' + 2⇡) =
� exp (i(6 � ns)⇡�5/2) (r,'). (Here, we follow the same
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FIG. 1: Top: the flat hexagonal lattice with a 2⇡/3 section
highlighted. Subtracting a 2⇡/3 section, one obtains a pos-
itive curved cone with a ns = 4-sides defect (bottom left).
Adding a 2⇡/3 section, instead, generates a negative curved
saddle geometry with ns = 8 (bottom right).

(p2 ! p2), leaving intact the Dirac points and the
spin, and the Lagrangian (1) invariant as long as � van-
ishes. The order parameter for the above symmetry is
� = 2�h ̄� � �  ̄+ +i and it describes the staggered
magnetization, i.e., � 6= 0 indicates broken symmetry.
The same expression (1) is obtained following the gen-
eral decomposition outlined in [43].

By means of a kirigami like procedure1 we introduce a
spatial curvature in the model by inserting a disclination
that warps the lattice locally. If we wish to isolate the
interplay between quantum e↵ects and geometry, we need
to preserve the bipartite nature of the lattice at tree level,
that is avoid frustrating the lattice. This requirement
restricts the allowed deformations to those induced by
defects with an even number of sides, as these are the only
that preserve the above symmetry classically. Inserting a
defect with ns < 6 sides in an hexagonal lattice generates
a deficit angle and a curvature that is locally positive
(see Fig. 1). In contrast, adding a defect with ns > 6
generates an excess angle and a locally negative curvature
(see Fig. 1). These lattice structures form the basis of
chiral curved poly-aromatic systems [44].

In the continuum model, the curvature can be intro-

1 Kirigami is a variation of origami that includes cutting of the
paper [58].

duced by specifying the background to be that of a man-
ifold with a conical singularity. The Riemannian geom-
etry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, in order to model such a localised curva-
ture, we use a Euclidean parametrisation for the metric
tensor

ds2 = d⌧2 + dr2 + ↵2r2d�2 (2)

with r � 0 and 0  � < 2⇡ being the polar coordinates
centred at the apex. We will not concern ourselves with
finite temperature e↵ects here, but these can be included
in a straightforward manner by using the standard imagi-
nary time formalism. Defining �̃ = ↵ �, it should be clear
that the metric is that of flat space with 0  �̃ < 2⇡↵.
If ↵ < 1, then � = 2⇡ � 2⇡↵ describes a deficit angle.
Removing the deficit angle and identifying the two sides
results in a cone with opening angle 2 arcsin↵. The closer
to unity is ↵, the flatter is the cone. If ↵ > 1, then the
deficit angle becomes an excess angle.

Since the curvature of conical manifolds diverges at
the apex, some regularisation is necessary to deal with
the singular behaviour. Here, we will regulate the geom-
etry by replacing the singular space with a sequence of
regular manifolds as done in Ref. [46, 47]. Calculations
are done in the regularised geometry and results in the
original singular space are obtained as a limit, once the
regularisation is removed at the end. In practise, this
procedure can be implemented by replacing the original
metric (2) with the following regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d�2 (3)

where ✏ represents a regularisation parameter and f✏(r) is
a smooth function satisfying the following properties: 1)
lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) = const
for r = 0. It should be noted that while the limit of
✏ ! 0 corresponds to removing the regularisation, in an
eventual comparison with a lattice simulation, ✏ should
be associated with the lattice spacing and it acquires the
status of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by
a minimal covariantization procedure, i.e. letting the
Minkowski metric, the derivatives, and the gamma matri-
ces to the corresponding quantities in curved space. We
shall not include non-minimal couplings in the present
treatment (see Ref. [48] for a discussion about this point).

The last element we need to take into account are the
boundary conditions along the cut where the two sides
of the lattice have been glued after having removed or
added a portion of the lattice to accomodate the inser-
tion of the defect. The same procedure that we shall use
below has been discussed, for example, in Ref. [22]. It
is not di�cult to realise that for a generic even-sided de-
fect, the two sub-lattices are unchanged and the fermion
wave function, after circulating around the defect, sat-
isfies the following boundary condition:  (r,' + 2⇡) =
� exp (i(6 � ns)⇡�5/2) (r,'). (Here, we follow the same

FIG. 1: Center: the flat hexagonal lattice with a 2⇡/3 sec-
tion highlighted. Subtracting a 2⇡/3 section, one obtains a
positive curved cone with a ns = 4-sides defect (left). Adding
a 2⇡/3 section, instead, generates a negative curved saddle
geometry with ns = 8 (right).

to avoid frustration. This requirement restricts the al-
lowed deformations to those induced by defects with an
even number of sides, as these are the only that preserve
the above symmetry classically. Inserting a defect with
ns < 6 sides in an hexagonal lattice generates a deficit
angle and a curvature that is locally positive (Fig. 1).
In contrast, adding a defect with ns > 6 generates an
excess angle and a locally negative curvature (Fig. 1).
These lattice structures form the basis of chiral curved
poly-aromatic systems [44].

The lattice plays the role of geometry and its contin-
uum limit is that of a manifold with a regularized conical
singularity (see, for instance, [22, 24]). The Riemannian
geometry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, to model such a localised curvature, we
use a Euclidean parametrisation for the metric tensor

ds2 = d⌧2 + dr2 + ↵2r2d'2 (2)

with r � 0 and 0  ' < 2⇡ being the polar coordinates
centred at the apex. Setting '̃ = ↵ ', one sees that the
metric is that of flat space with 0  '̃ < 2⇡↵. If ↵ < 1,
then � = 2⇡ � 2⇡↵ describes a deficit angle. Removing
the deficit angle and identifying the two sides results in
a cone with opening angle 2 arcsin↵. The closer to unity
is ↵, the flatter is the cone. If ↵ > 1, then the deficit
angle becomes an excess angle.

Since the curvature of conical manifolds diverges at the
apex, some regularisation is necessary to deal with the
singular behaviour. Here, we will regulate the geometry
by replacing the singular space with a sequence of regular
manifolds as done in [46, 47]. Calculations are done in the
regularised geometry and results in the original singular
space can be obtained as a limit, once the regularisation is
removed at the end. This procedure can be implemented
by replacing the original metric (2) with the following
regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d'2 (3)

where ✏ represents a regularisation parameter and f✏(r)
is a smooth function satisfying the following properties:
1) lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) =

const for r = 0. Notice that while the limit of ✏ ! 0
removes the regularisation, in a comparison with a lattice
simulation, ✏ is related to the lattice spacing acquiring the
role of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by a
minimal covariantization procedure, i.e. letting metric,
derivatives, and gamma matrices to the corresponding
quantities in curved space (see [48]).

Finally, we take into account the boundary conditions
along the cut where the two sides of the lattice have
been glued. It is not di�cult to realise that for a generic
even-sided defect, the sub-lattice symmetry is preserved
and the fermion wave function, after circulating around
the defect, satisfies the following boundary condition:
 (r,' + 2⇡) = � exp (i(6 � ns)⇡�5/2) (r,'). (We fol-
low [22], and choose to work in the standard planar rep-
resentation of the �-matrices.) A way to incorporate
these boundary conditions is by re-expressing the fields as
 0(r,') = exp (�i'(6 � ns)�5/4) (r,'), and by noticing
that the primed fields obey the standard periodicity con-
dition  0(r,'+ 2⇡) = � 0(r,'). Using the above redef-
inition in the Lagrangian has the e↵ect of introducing a
non-dynamical gauge connection Aµ = ��'

µ (6�ns)�5/4.
This term will be crucial in altering the way symmetry
breaking takes place.

Methods and results. We can now examine whether
the geometry and associated boundary conditions favour
a phase of broken or restored symmetry in the region
where curvature attains a positive (ns = 4) or negative
(even ns > 6) value. As motivated at the beginning, since
the curvature in the regularized case increases (decreases)
as we approach the defect for ns = 4 (ns = 8, 10, . . . ),
the expectation is that curvature should favour symmetry
restoration in the vicinity of the defect for ns = 4, while
for ns even and larger than 6 broken symmetry should
be favoured.

Below we shall address this question by computing the
e↵ective action for the order parameter � and by nu-
merically solving the associated e↵ective equations. Our
analysis follows the large-N deformation of [43], where
we pass from 2 to N flavours of the Dirac fields. The
general form of the e↵ective action is
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where �2
± = �2 ±

p
g̃rr�0 and the D’Alembertian is calcu-

lated from the spinor covariant derivative D̃⌫ = r̃⌫+iA⌫ .
The tildes indicate quantities computed in the regularised
metric (3). We use heat-kernel and zeta regularization
techniques to perform the computation of the determi-
nant (see [2, 49–52] for general discussions and [16, 48]
for similar calculations in curved space). For the conve-
nience of the reader, the computation of the determinant
is described in a Supplemental Material.

The results are illustrated in Fig. 2 for cases with lo-
cally positive (ns = 4) and negative curvature (ns = 8).
The asymptotic value of the coupling constant should be
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ns < 6 sides in an hexagonal lattice (or equivalently ns

pentagonal defects glued together [18]) generates a deficit
angle and a curvature that is locally positive (see Fig. 1).
In contrast, adding a defect with ns > 6 (or otherwise
ns heptagonal defects) generates an excess angle and a
locally negative curvature (see Fig. 1).

In the continuum model, the curvature can be intro-
duced by specifying the background metric to be that of
a manifold with a conical singularity. The Riemannian
geometry of such manifolds is studied since, at least, [36].
Ref. [37, 38] gives details and additional bibliography on
the topic. Here, in order to model such a localised curva-
ture, we use a Euclidean parametrisation for the metric
tensor

ds2 = d⌧2 + dr2 + ↵2r2d✓2 (2)

with r � 0 and 0  ✓ < 2⇡ being the polar coordinates
centred at the apex. We will not concern ourselves with
finite temperature e↵ects here, but these can be included
in a straightforward manner by using the standard imagi-
nary time formalism. Defining ✓̃ = ↵ ✓, it should be clear
that the metric is that of flat space with 0  ✓̃ < 2⇡↵.
If ↵ < 1, then � = 2⇡ � 2⇡↵ describes a deficit angle.
Removing the deficit angle and identifying the two sides
results in a cone with opening angle 2 arcsin↵. The closer
to unity is ↵, the flatter is the cone. If ↵ > 1, then the
deficit angle becomes an excess angle.

Since the curvature of conical manifolds diverges at
the apex, some regularisation is necessary to deal with
the singular behaviour. Here, we will regulate the geom-
etry by replacing the singular space with a sequence of
regular manifolds analogously to Ref. [37, 38]. Calcula-
tions are done in the regularised geometry and results in
the original singular space are obtained as a limit, once
the regularisation is removed at the end. In practise, this
procedure can be implemented by replacing the original
metric (2) with the following regular one:

ds̃2 = d⌧2 + f✏(r)dr
2 + ↵2r2d✓2 (3)

where ✏ represents a regularisation parameter and f✏(r) is
a smooth function satisfying the following properties: 1)
lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) = const
for r = 0. It should be noted that while the limit of
✏ ! 0 corresponds to removing the regularisation, in an
eventual comparison with a lattice simulation, ✏ should
be associated with the lattice spacing and it acquires the
status of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by
a minimal covariantization procedure, i.e. letting the
Minkowski metric, the derivatives, and the gamma matri-
ces to the corresponding quantities in curved space. We
shall not include non-minimal couplings in the present
treatment (see Ref. [39] for a discussion about this point).

The last element we need to take into account are
the boundary conditions along the cut where the two
sides of the lattice have been glued after having re-
moved or added a portion of the lattice to accomodate

the insertion of the defect. The same procedure that
we shall use below has been discussed, for example, in
Ref. [18]. It is not di�cult to realise that ⇠⇠⇠XXXsince for a
generic even-sided defect, the two sub-lattices are un-
changed and the fermion wave function, after circulat-
ing around the defect, satisfies the following boundary
condition:  (r,'+ 2⇡) = � exp (i(6� ns)⇡�5/2) (r,').
(Here, we follow the same conventions as Ref. [18],
and choose to work in the standard planar represen-
tation of the Cli↵ord algebra of �-matrices, where �0
is diagonal). A transparent way to incorporate these
boundary conditions is by re-expressing the fields as
 0(r,') = exp (�i'(6� ns)�5/4) (r,')(watch out, this
formula was not correct in the previous version), and by
noticing that the primed fields obey the standard peri-
odicity condition  0(r,' + 2⇡) = � 0(r,'). It is simple
to prove that the e↵ect of the above redefinition is to
augment the Lagrangian by a non-dynamical gauge con-
nection Aµ = ��'µ (6� ns)�5/4.
Methods and results. With all of the above in hands,

we can examine whether the geometry and associated
boundary conditions, which we have implemented as de-
scribed in the preceding section, favour a phase of broken
or restored symmetry in the region where curvature at-
tains a positive (in the case of ns = 4 and deficit angle)
or negative (in the case of defects with even ns > 6 and
excess angle) value. As we have motivated at the be-
ginning, since the curvature increases (decreases) as we
approach the defect for ns = 4 (ns = 8, 10, . . . ), then the
expectation is that curvature should favour symmetry
restoration close the defect for ns = 4, while for ns even
and larger than 6 broken symmetry should be favoured.

Below we shall address this question by computing the
e↵ective action for the order parameter � and by numer-
ically solving the associated e↵ective equations. There
are a few technical steps that we should clarify in order
to allow anyone to reproduce our results. First of all,
our analysis follows the large-N deformation of Ref. [35],
where we pass from 2 to N flavours of the Dirac fields:
 ̄+ + !

PN/2
�=1  ̄� � and  ̄� � !

PN
�=N/2+1  ̄� �.

Then, the e↵ective action at mean-field level can be ex-
pressed as
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X

p=±
log det
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where �2± = �2±
p
g̃rr�0 and the D’Alembertian is calcu-

lated from the spinor covariant derivative D̃⌫ = r̃⌫+iA⌫ .
The tildes indicate that quantities are computed using
the regularised metric (3).
Heat-kernel methods and zeta regularization tech-

niques are used to perform the computation of the de-
terminant above. The interested reader is referred to
Refs. [2, 40–43]) for general background and to Refs. [15,
39] where similar calculation has been done in the context
of interacting fermion e↵ective field theories in curved
space. The algebra is handled by computer symbolic
manipulation, here we summarise the essential steps: 1)

3
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pentagonal defects glued together [18]) generates a deficit
angle and a curvature that is locally positive (see Fig. 1).
In contrast, adding a defect with ns > 6 (or otherwise
ns heptagonal defects) generates an excess angle and a
locally negative curvature (see Fig. 1).

In the continuum model, the curvature can be intro-
duced by specifying the background metric to be that of
a manifold with a conical singularity. The Riemannian
geometry of such manifolds is studied since, at least, [36].
Ref. [37, 38] gives details and additional bibliography on
the topic. Here, in order to model such a localised curva-
ture, we use a Euclidean parametrisation for the metric
tensor

ds2 = d⌧2 + dr2 + ↵2r2d✓2 (2)

with r � 0 and 0  ✓ < 2⇡ being the polar coordinates
centred at the apex. We will not concern ourselves with
finite temperature e↵ects here, but these can be included
in a straightforward manner by using the standard imagi-
nary time formalism. Defining ✓̃ = ↵ ✓, it should be clear
that the metric is that of flat space with 0  ✓̃ < 2⇡↵.
If ↵ < 1, then � = 2⇡ � 2⇡↵ describes a deficit angle.
Removing the deficit angle and identifying the two sides
results in a cone with opening angle 2 arcsin↵. The closer
to unity is ↵, the flatter is the cone. If ↵ > 1, then the
deficit angle becomes an excess angle.

Since the curvature of conical manifolds diverges at
the apex, some regularisation is necessary to deal with
the singular behaviour. Here, we will regulate the geom-
etry by replacing the singular space with a sequence of
regular manifolds analogously to Ref. [37, 38]. Calcula-
tions are done in the regularised geometry and results in
the original singular space are obtained as a limit, once
the regularisation is removed at the end. In practise, this
procedure can be implemented by replacing the original
metric (2) with the following regular one:

ds̃2 = d⌧2 + f✏(r)dr
2 + ↵2r2d✓2 (3)

where ✏ represents a regularisation parameter and f✏(r) is
a smooth function satisfying the following properties: 1)
lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) = const
for r = 0. It should be noted that while the limit of
✏ ! 0 corresponds to removing the regularisation, in an
eventual comparison with a lattice simulation, ✏ should
be associated with the lattice spacing and it acquires the
status of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by
a minimal covariantization procedure, i.e. letting the
Minkowski metric, the derivatives, and the gamma matri-
ces to the corresponding quantities in curved space. We
shall not include non-minimal couplings in the present
treatment (see Ref. [39] for a discussion about this point).

The last element we need to take into account are
the boundary conditions along the cut where the two
sides of the lattice have been glued after having re-
moved or added a portion of the lattice to accomodate

the insertion of the defect. The same procedure that
we shall use below has been discussed, for example, in
Ref. [18]. It is not di�cult to realise that ⇠⇠⇠XXXsince for a
generic even-sided defect, the two sub-lattices are un-
changed and the fermion wave function, after circulat-
ing around the defect, satisfies the following boundary
condition:  (r,'+ 2⇡) = � exp (i(6� ns)⇡�5/2) (r,').
(Here, we follow the same conventions as Ref. [18],
and choose to work in the standard planar represen-
tation of the Cli↵ord algebra of �-matrices, where �0
is diagonal). A transparent way to incorporate these
boundary conditions is by re-expressing the fields as
 0(r,') = exp (�i'(6� ns)�5/4) (r,')(watch out, this
formula was not correct in the previous version), and by
noticing that the primed fields obey the standard peri-
odicity condition  0(r,' + 2⇡) = � 0(r,'). It is simple
to prove that the e↵ect of the above redefinition is to
augment the Lagrangian by a non-dynamical gauge con-
nection Aµ = ��'µ (6� ns)�5/4.
Methods and results. With all of the above in hands,

we can examine whether the geometry and associated
boundary conditions, which we have implemented as de-
scribed in the preceding section, favour a phase of broken
or restored symmetry in the region where curvature at-
tains a positive (in the case of ns = 4 and deficit angle)
or negative (in the case of defects with even ns > 6 and
excess angle) value. As we have motivated at the be-
ginning, since the curvature increases (decreases) as we
approach the defect for ns = 4 (ns = 8, 10, . . . ), then the
expectation is that curvature should favour symmetry
restoration close the defect for ns = 4, while for ns even
and larger than 6 broken symmetry should be favoured.

Below we shall address this question by computing the
e↵ective action for the order parameter � and by numer-
ically solving the associated e↵ective equations. There
are a few technical steps that we should clarify in order
to allow anyone to reproduce our results. First of all,
our analysis follows the large-N deformation of Ref. [35],
where we pass from 2 to N flavours of the Dirac fields:
 ̄+ + !

PN/2
�=1  ̄� � and  ̄� � !
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where �2± = �2±
p
g̃rr�0 and the D’Alembertian is calcu-

lated from the spinor covariant derivative D̃⌫ = r̃⌫+iA⌫ .
The tildes indicate that quantities are computed using
the regularised metric (3).
Heat-kernel methods and zeta regularization tech-

niques are used to perform the computation of the de-
terminant above. The interested reader is referred to
Refs. [2, 40–43]) for general background and to Refs. [15,
39] where similar calculation has been done in the context
of interacting fermion e↵ective field theories in curved
space. The algebra is handled by computer symbolic
manipulation, here we summarise the essential steps: 1)
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FIG. 1: Top: the flat hexagonal lattice with a 2⇡/3 section
highlighted. Subtracting a 2⇡/3 section, one obtains a pos-
itive curved cone with a ns = 4-sides defect (bottom left).
Adding a 2⇡/3 section, instead, generates a negative curved
saddle geometry with ns = 8 (bottom right).

(p2 ! p2), leaving intact the Dirac points and the
spin, and the Lagrangian (1) invariant as long as � van-
ishes. The order parameter for the above symmetry is
� = 2�h ̄� � �  ̄+ +i and it describes the staggered
magnetization, i.e., � 6= 0 indicates broken symmetry.
The same expression (1) is obtained following the gen-
eral decomposition outlined in [43].

By means of a kirigami like procedure1 we introduce a
spatial curvature in the model by inserting a disclination
that warps the lattice locally. If we wish to isolate the
interplay between quantum e↵ects and geometry, we need
to preserve the bipartite nature of the lattice at tree level,
that is avoid frustrating the lattice. This requirement
restricts the allowed deformations to those induced by
defects with an even number of sides, as these are the only
that preserve the above symmetry classically. Inserting a
defect with ns < 6 sides in an hexagonal lattice generates
a deficit angle and a curvature that is locally positive
(see Fig. 1). In contrast, adding a defect with ns > 6
generates an excess angle and a locally negative curvature
(see Fig. 1). These lattice structures form the basis of
chiral curved poly-aromatic systems [44].

In the continuum model, the curvature can be intro-

1 Kirigami is a variation of origami that includes cutting of the
paper [58].

duced by specifying the background to be that of a man-
ifold with a conical singularity. The Riemannian geom-
etry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, in order to model such a localised curva-
ture, we use a Euclidean parametrisation for the metric
tensor

ds2 = d⌧2 + dr2 + ↵2r2d�2 (2)

with r � 0 and 0  � < 2⇡ being the polar coordinates
centred at the apex. We will not concern ourselves with
finite temperature e↵ects here, but these can be included
in a straightforward manner by using the standard imagi-
nary time formalism. Defining �̃ = ↵ �, it should be clear
that the metric is that of flat space with 0  �̃ < 2⇡↵.
If ↵ < 1, then � = 2⇡ � 2⇡↵ describes a deficit angle.
Removing the deficit angle and identifying the two sides
results in a cone with opening angle 2 arcsin↵. The closer
to unity is ↵, the flatter is the cone. If ↵ > 1, then the
deficit angle becomes an excess angle.

Since the curvature of conical manifolds diverges at
the apex, some regularisation is necessary to deal with
the singular behaviour. Here, we will regulate the geom-
etry by replacing the singular space with a sequence of
regular manifolds as done in Ref. [46, 47]. Calculations
are done in the regularised geometry and results in the
original singular space are obtained as a limit, once the
regularisation is removed at the end. In practise, this
procedure can be implemented by replacing the original
metric (2) with the following regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d�2 (3)

where ✏ represents a regularisation parameter and f✏(r) is
a smooth function satisfying the following properties: 1)
lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) = const
for r = 0. It should be noted that while the limit of
✏ ! 0 corresponds to removing the regularisation, in an
eventual comparison with a lattice simulation, ✏ should
be associated with the lattice spacing and it acquires the
status of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by
a minimal covariantization procedure, i.e. letting the
Minkowski metric, the derivatives, and the gamma matri-
ces to the corresponding quantities in curved space. We
shall not include non-minimal couplings in the present
treatment (see Ref. [48] for a discussion about this point).

The last element we need to take into account are the
boundary conditions along the cut where the two sides
of the lattice have been glued after having removed or
added a portion of the lattice to accomodate the inser-
tion of the defect. The same procedure that we shall use
below has been discussed, for example, in Ref. [22]. It
is not di�cult to realise that for a generic even-sided de-
fect, the two sub-lattices are unchanged and the fermion
wave function, after circulating around the defect, sat-
isfies the following boundary condition:  (r,' + 2⇡) =
� exp (i(6 � ns)⇡�5/2) (r,'). (Here, we follow the same
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FIG. 1: Top: the flat hexagonal lattice with a 2⇡/3 section
highlighted. Subtracting a 2⇡/3 section, one obtains a pos-
itive curved cone with a ns = 4-sides defect (bottom left).
Adding a 2⇡/3 section, instead, generates a negative curved
saddle geometry with ns = 8 (bottom right).

(p2 ! p2), leaving intact the Dirac points and the
spin, and the Lagrangian (1) invariant as long as � van-
ishes. The order parameter for the above symmetry is
� = 2�h ̄� � �  ̄+ +i and it describes the staggered
magnetization, i.e., � 6= 0 indicates broken symmetry.
The same expression (1) is obtained following the gen-
eral decomposition outlined in [43].

By means of a kirigami like procedure1 we introduce a
spatial curvature in the model by inserting a disclination
that warps the lattice locally. If we wish to isolate the
interplay between quantum e↵ects and geometry, we need
to preserve the bipartite nature of the lattice at tree level,
that is avoid frustrating the lattice. This requirement
restricts the allowed deformations to those induced by
defects with an even number of sides, as these are the only
that preserve the above symmetry classically. Inserting a
defect with ns < 6 sides in an hexagonal lattice generates
a deficit angle and a curvature that is locally positive
(see Fig. 1). In contrast, adding a defect with ns > 6
generates an excess angle and a locally negative curvature
(see Fig. 1). These lattice structures form the basis of
chiral curved poly-aromatic systems [44].

In the continuum model, the curvature can be intro-

1 Kirigami is a variation of origami that includes cutting of the
paper [58].

duced by specifying the background to be that of a man-
ifold with a conical singularity. The Riemannian geom-
etry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, in order to model such a localised curva-
ture, we use a Euclidean parametrisation for the metric
tensor

ds2 = d⌧2 + dr2 + ↵2r2d�2 (2)

with r � 0 and 0  � < 2⇡ being the polar coordinates
centred at the apex. We will not concern ourselves with
finite temperature e↵ects here, but these can be included
in a straightforward manner by using the standard imagi-
nary time formalism. Defining �̃ = ↵ �, it should be clear
that the metric is that of flat space with 0  �̃ < 2⇡↵.
If ↵ < 1, then � = 2⇡ � 2⇡↵ describes a deficit angle.
Removing the deficit angle and identifying the two sides
results in a cone with opening angle 2 arcsin↵. The closer
to unity is ↵, the flatter is the cone. If ↵ > 1, then the
deficit angle becomes an excess angle.

Since the curvature of conical manifolds diverges at
the apex, some regularisation is necessary to deal with
the singular behaviour. Here, we will regulate the geom-
etry by replacing the singular space with a sequence of
regular manifolds as done in Ref. [46, 47]. Calculations
are done in the regularised geometry and results in the
original singular space are obtained as a limit, once the
regularisation is removed at the end. In practise, this
procedure can be implemented by replacing the original
metric (2) with the following regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d�2 (3)

where ✏ represents a regularisation parameter and f✏(r) is
a smooth function satisfying the following properties: 1)
lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) = const
for r = 0. It should be noted that while the limit of
✏ ! 0 corresponds to removing the regularisation, in an
eventual comparison with a lattice simulation, ✏ should
be associated with the lattice spacing and it acquires the
status of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by
a minimal covariantization procedure, i.e. letting the
Minkowski metric, the derivatives, and the gamma matri-
ces to the corresponding quantities in curved space. We
shall not include non-minimal couplings in the present
treatment (see Ref. [48] for a discussion about this point).

The last element we need to take into account are the
boundary conditions along the cut where the two sides
of the lattice have been glued after having removed or
added a portion of the lattice to accomodate the inser-
tion of the defect. The same procedure that we shall use
below has been discussed, for example, in Ref. [22]. It
is not di�cult to realise that for a generic even-sided de-
fect, the two sub-lattices are unchanged and the fermion
wave function, after circulating around the defect, sat-
isfies the following boundary condition:  (r,' + 2⇡) =
� exp (i(6 � ns)⇡�5/2) (r,'). (Here, we follow the same
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FIG. 1: Top: the flat hexagonal lattice with a 2⇡/3 section
highlighted. Subtracting a 2⇡/3 section, one obtains a pos-
itive curved cone with a ns = 4-sides defect (bottom left).
Adding a 2⇡/3 section, instead, generates a negative curved
saddle geometry with ns = 8 (bottom right).

(p2 ! p2), leaving intact the Dirac points and the
spin, and the Lagrangian (1) invariant as long as � van-
ishes. The order parameter for the above symmetry is
� = 2�h ̄� � �  ̄+ +i and it describes the staggered
magnetization, i.e., � 6= 0 indicates broken symmetry.
The same expression (1) is obtained following the gen-
eral decomposition outlined in [43].

By means of a kirigami like procedure1 we introduce a
spatial curvature in the model by inserting a disclination
that warps the lattice locally. If we wish to isolate the
interplay between quantum e↵ects and geometry, we need
to preserve the bipartite nature of the lattice at tree level,
that is avoid frustrating the lattice. This requirement
restricts the allowed deformations to those induced by
defects with an even number of sides, as these are the only
that preserve the above symmetry classically. Inserting a
defect with ns < 6 sides in an hexagonal lattice generates
a deficit angle and a curvature that is locally positive
(see Fig. 1). In contrast, adding a defect with ns > 6
generates an excess angle and a locally negative curvature
(see Fig. 1). These lattice structures form the basis of
chiral curved poly-aromatic systems [44].

In the continuum model, the curvature can be intro-

1 Kirigami is a variation of origami that includes cutting of the
paper [58].

duced by specifying the background to be that of a man-
ifold with a conical singularity. The Riemannian geom-
etry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, in order to model such a localised curva-
ture, we use a Euclidean parametrisation for the metric
tensor

ds2 = d⌧2 + dr2 + ↵2r2d�2 (2)

with r � 0 and 0  � < 2⇡ being the polar coordinates
centred at the apex. We will not concern ourselves with
finite temperature e↵ects here, but these can be included
in a straightforward manner by using the standard imagi-
nary time formalism. Defining �̃ = ↵ �, it should be clear
that the metric is that of flat space with 0  �̃ < 2⇡↵.
If ↵ < 1, then � = 2⇡ � 2⇡↵ describes a deficit angle.
Removing the deficit angle and identifying the two sides
results in a cone with opening angle 2 arcsin↵. The closer
to unity is ↵, the flatter is the cone. If ↵ > 1, then the
deficit angle becomes an excess angle.

Since the curvature of conical manifolds diverges at
the apex, some regularisation is necessary to deal with
the singular behaviour. Here, we will regulate the geom-
etry by replacing the singular space with a sequence of
regular manifolds as done in Ref. [46, 47]. Calculations
are done in the regularised geometry and results in the
original singular space are obtained as a limit, once the
regularisation is removed at the end. In practise, this
procedure can be implemented by replacing the original
metric (2) with the following regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d�2 (3)

where ✏ represents a regularisation parameter and f✏(r) is
a smooth function satisfying the following properties: 1)
lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) = const
for r = 0. It should be noted that while the limit of
✏ ! 0 corresponds to removing the regularisation, in an
eventual comparison with a lattice simulation, ✏ should
be associated with the lattice spacing and it acquires the
status of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by
a minimal covariantization procedure, i.e. letting the
Minkowski metric, the derivatives, and the gamma matri-
ces to the corresponding quantities in curved space. We
shall not include non-minimal couplings in the present
treatment (see Ref. [48] for a discussion about this point).

The last element we need to take into account are the
boundary conditions along the cut where the two sides
of the lattice have been glued after having removed or
added a portion of the lattice to accomodate the inser-
tion of the defect. The same procedure that we shall use
below has been discussed, for example, in Ref. [22]. It
is not di�cult to realise that for a generic even-sided de-
fect, the two sub-lattices are unchanged and the fermion
wave function, after circulating around the defect, sat-
isfies the following boundary condition:  (r,' + 2⇡) =
� exp (i(6 � ns)⇡�5/2) (r,'). (Here, we follow the same

FIG. 1: Center: the flat hexagonal lattice with a 2⇡/3 sec-
tion highlighted. Subtracting a 2⇡/3 section, one obtains a
positive curved cone with a ns = 4-sides defect (left). Adding
a 2⇡/3 section, instead, generates a negative curved saddle
geometry with ns = 8 (right).

to avoid frustration. This requirement restricts the al-
lowed deformations to those induced by defects with an
even number of sides, as these are the only that preserve
the above symmetry classically. Inserting a defect with
ns < 6 sides in an hexagonal lattice generates a deficit
angle and a curvature that is locally positive (Fig. 1).
In contrast, adding a defect with ns > 6 generates an
excess angle and a locally negative curvature (Fig. 1).
These lattice structures form the basis of chiral curved
poly-aromatic systems [44].

The lattice plays the role of geometry and its contin-
uum limit is that of a manifold with a regularized conical
singularity (see, for instance, [22, 24]). The Riemannian
geometry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, to model such a localised curvature, we
use a Euclidean parametrisation for the metric tensor

ds2 = d⌧2 + dr2 + ↵2r2d'2 (2)

with r � 0 and 0  ' < 2⇡ being the polar coordinates
centred at the apex. Setting '̃ = ↵ ', one sees that the
metric is that of flat space with 0  '̃ < 2⇡↵. If ↵ < 1,
then � = 2⇡ � 2⇡↵ describes a deficit angle. Removing
the deficit angle and identifying the two sides results in
a cone with opening angle 2 arcsin↵. The closer to unity
is ↵, the flatter is the cone. If ↵ > 1, then the deficit
angle becomes an excess angle.

Since the curvature of conical manifolds diverges at the
apex, some regularisation is necessary to deal with the
singular behaviour. Here, we will regulate the geometry
by replacing the singular space with a sequence of regular
manifolds as done in [46, 47]. Calculations are done in the
regularised geometry and results in the original singular
space can be obtained as a limit, once the regularisation is
removed at the end. This procedure can be implemented
by replacing the original metric (2) with the following
regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d'2 (3)

where ✏ represents a regularisation parameter and f✏(r)
is a smooth function satisfying the following properties:
1) lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) =

const for r = 0. Notice that while the limit of ✏ ! 0
removes the regularisation, in a comparison with a lattice
simulation, ✏ is related to the lattice spacing acquiring the
role of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by a
minimal covariantization procedure, i.e. letting metric,
derivatives, and gamma matrices to the corresponding
quantities in curved space (see [48]).

Finally, we take into account the boundary conditions
along the cut where the two sides of the lattice have
been glued. It is not di�cult to realise that for a generic
even-sided defect, the sub-lattice symmetry is preserved
and the fermion wave function, after circulating around
the defect, satisfies the following boundary condition:
 (r,' + 2⇡) = � exp (i(6 � ns)⇡�5/2) (r,'). (We fol-
low [22], and choose to work in the standard planar rep-
resentation of the �-matrices.) A way to incorporate
these boundary conditions is by re-expressing the fields as
 0(r,') = exp (�i'(6 � ns)�5/4) (r,'), and by noticing
that the primed fields obey the standard periodicity con-
dition  0(r,'+ 2⇡) = � 0(r,'). Using the above redef-
inition in the Lagrangian has the e↵ect of introducing a
non-dynamical gauge connection Aµ = ��'

µ (6�ns)�5/4.
This term will be crucial in altering the way symmetry
breaking takes place.

Methods and results. We can now examine whether
the geometry and associated boundary conditions favour
a phase of broken or restored symmetry in the region
where curvature attains a positive (ns = 4) or negative
(even ns > 6) value. As motivated at the beginning, since
the curvature in the regularized case increases (decreases)
as we approach the defect for ns = 4 (ns = 8, 10, . . . ),
the expectation is that curvature should favour symmetry
restoration in the vicinity of the defect for ns = 4, while
for ns even and larger than 6 broken symmetry should
be favoured.

Below we shall address this question by computing the
e↵ective action for the order parameter � and by nu-
merically solving the associated e↵ective equations. Our
analysis follows the large-N deformation of [43], where
we pass from 2 to N flavours of the Dirac fields. The
general form of the e↵ective action is
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log det
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where �2
± = �2 ±

p
g̃rr�0 and the D’Alembertian is calcu-

lated from the spinor covariant derivative D̃⌫ = r̃⌫+iA⌫ .
The tildes indicate quantities computed in the regularised
metric (3). We use heat-kernel and zeta regularization
techniques to perform the computation of the determi-
nant (see [2, 49–52] for general discussions and [16, 48]
for similar calculations in curved space). For the conve-
nience of the reader, the computation of the determinant
is described in a Supplemental Material.

The results are illustrated in Fig. 2 for cases with lo-
cally positive (ns = 4) and negative curvature (ns = 8).
The asymptotic value of the coupling constant should be
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FIG. 1: Top: the flat hexagonal lattice with a 2⇡/3 section
highlighted. Subtracting a 2⇡/3 section, one obtains a pos-
itive curved cone with a ns = 4-sides defect (bottom left).
Adding a 2⇡/3 section, instead, generates a negative curved
saddle geometry with ns = 8 (bottom right).

(p2 ! p2), leaving intact the Dirac points and the
spin, and the Lagrangian (1) invariant as long as � van-
ishes. The order parameter for the above symmetry is
� = 2�h ̄� � �  ̄+ +i and it describes the staggered
magnetization, i.e., � 6= 0 indicates broken symmetry.
The same expression (1) is obtained following the gen-
eral decomposition outlined in [43].

By means of a kirigami like procedure1 we introduce a
spatial curvature in the model by inserting a disclination
that warps the lattice locally. If we wish to isolate the
interplay between quantum e↵ects and geometry, we need
to preserve the bipartite nature of the lattice at tree level,
that is avoid frustrating the lattice. This requirement
restricts the allowed deformations to those induced by
defects with an even number of sides, as these are the only
that preserve the above symmetry classically. Inserting a
defect with ns < 6 sides in an hexagonal lattice generates
a deficit angle and a curvature that is locally positive
(see Fig. 1). In contrast, adding a defect with ns > 6
generates an excess angle and a locally negative curvature
(see Fig. 1). These lattice structures form the basis of
chiral curved poly-aromatic systems [44].

In the continuum model, the curvature can be intro-

1 Kirigami is a variation of origami that includes cutting of the
paper [58].

duced by specifying the background to be that of a man-
ifold with a conical singularity. The Riemannian geom-
etry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, in order to model such a localised curva-
ture, we use a Euclidean parametrisation for the metric
tensor

ds2 = d⌧2 + dr2 + ↵2r2d�2 (2)

with r � 0 and 0  � < 2⇡ being the polar coordinates
centred at the apex. We will not concern ourselves with
finite temperature e↵ects here, but these can be included
in a straightforward manner by using the standard imagi-
nary time formalism. Defining �̃ = ↵ �, it should be clear
that the metric is that of flat space with 0  �̃ < 2⇡↵.
If ↵ < 1, then � = 2⇡ � 2⇡↵ describes a deficit angle.
Removing the deficit angle and identifying the two sides
results in a cone with opening angle 2 arcsin↵. The closer
to unity is ↵, the flatter is the cone. If ↵ > 1, then the
deficit angle becomes an excess angle.

Since the curvature of conical manifolds diverges at
the apex, some regularisation is necessary to deal with
the singular behaviour. Here, we will regulate the geom-
etry by replacing the singular space with a sequence of
regular manifolds as done in Ref. [46, 47]. Calculations
are done in the regularised geometry and results in the
original singular space are obtained as a limit, once the
regularisation is removed at the end. In practise, this
procedure can be implemented by replacing the original
metric (2) with the following regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d�2 (3)

where ✏ represents a regularisation parameter and f✏(r) is
a smooth function satisfying the following properties: 1)
lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) = const
for r = 0. It should be noted that while the limit of
✏ ! 0 corresponds to removing the regularisation, in an
eventual comparison with a lattice simulation, ✏ should
be associated with the lattice spacing and it acquires the
status of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by
a minimal covariantization procedure, i.e. letting the
Minkowski metric, the derivatives, and the gamma matri-
ces to the corresponding quantities in curved space. We
shall not include non-minimal couplings in the present
treatment (see Ref. [48] for a discussion about this point).

The last element we need to take into account are the
boundary conditions along the cut where the two sides
of the lattice have been glued after having removed or
added a portion of the lattice to accomodate the inser-
tion of the defect. The same procedure that we shall use
below has been discussed, for example, in Ref. [22]. It
is not di�cult to realise that for a generic even-sided de-
fect, the two sub-lattices are unchanged and the fermion
wave function, after circulating around the defect, sat-
isfies the following boundary condition:  (r,' + 2⇡) =
� exp (i(6 � ns)⇡�5/2) (r,'). (Here, we follow the same

3

b1

b2
b3

r

FIG. 1: Top: the flat hexagonal lattice with a 2⇡/3 section
highlighted. Subtracting a 2⇡/3 section, one obtains a pos-
itive curved cone with a ns = 4-sides defect (bottom left).
Adding a 2⇡/3 section, instead, generates a negative curved
saddle geometry with ns = 8 (bottom right).

(p2 ! p2), leaving intact the Dirac points and the
spin, and the Lagrangian (1) invariant as long as � van-
ishes. The order parameter for the above symmetry is
� = 2�h ̄� � �  ̄+ +i and it describes the staggered
magnetization, i.e., � 6= 0 indicates broken symmetry.
The same expression (1) is obtained following the gen-
eral decomposition outlined in [43].

By means of a kirigami like procedure1 we introduce a
spatial curvature in the model by inserting a disclination
that warps the lattice locally. If we wish to isolate the
interplay between quantum e↵ects and geometry, we need
to preserve the bipartite nature of the lattice at tree level,
that is avoid frustrating the lattice. This requirement
restricts the allowed deformations to those induced by
defects with an even number of sides, as these are the only
that preserve the above symmetry classically. Inserting a
defect with ns < 6 sides in an hexagonal lattice generates
a deficit angle and a curvature that is locally positive
(see Fig. 1). In contrast, adding a defect with ns > 6
generates an excess angle and a locally negative curvature
(see Fig. 1). These lattice structures form the basis of
chiral curved poly-aromatic systems [44].

In the continuum model, the curvature can be intro-

1 Kirigami is a variation of origami that includes cutting of the
paper [58].

duced by specifying the background to be that of a man-
ifold with a conical singularity. The Riemannian geom-
etry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, in order to model such a localised curva-
ture, we use a Euclidean parametrisation for the metric
tensor

ds2 = d⌧2 + dr2 + ↵2r2d�2 (2)

with r � 0 and 0  � < 2⇡ being the polar coordinates
centred at the apex. We will not concern ourselves with
finite temperature e↵ects here, but these can be included
in a straightforward manner by using the standard imagi-
nary time formalism. Defining �̃ = ↵ �, it should be clear
that the metric is that of flat space with 0  �̃ < 2⇡↵.
If ↵ < 1, then � = 2⇡ � 2⇡↵ describes a deficit angle.
Removing the deficit angle and identifying the two sides
results in a cone with opening angle 2 arcsin↵. The closer
to unity is ↵, the flatter is the cone. If ↵ > 1, then the
deficit angle becomes an excess angle.

Since the curvature of conical manifolds diverges at
the apex, some regularisation is necessary to deal with
the singular behaviour. Here, we will regulate the geom-
etry by replacing the singular space with a sequence of
regular manifolds as done in Ref. [46, 47]. Calculations
are done in the regularised geometry and results in the
original singular space are obtained as a limit, once the
regularisation is removed at the end. In practise, this
procedure can be implemented by replacing the original
metric (2) with the following regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d�2 (3)

where ✏ represents a regularisation parameter and f✏(r) is
a smooth function satisfying the following properties: 1)
lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) = const
for r = 0. It should be noted that while the limit of
✏ ! 0 corresponds to removing the regularisation, in an
eventual comparison with a lattice simulation, ✏ should
be associated with the lattice spacing and it acquires the
status of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by
a minimal covariantization procedure, i.e. letting the
Minkowski metric, the derivatives, and the gamma matri-
ces to the corresponding quantities in curved space. We
shall not include non-minimal couplings in the present
treatment (see Ref. [48] for a discussion about this point).

The last element we need to take into account are the
boundary conditions along the cut where the two sides
of the lattice have been glued after having removed or
added a portion of the lattice to accomodate the inser-
tion of the defect. The same procedure that we shall use
below has been discussed, for example, in Ref. [22]. It
is not di�cult to realise that for a generic even-sided de-
fect, the two sub-lattices are unchanged and the fermion
wave function, after circulating around the defect, sat-
isfies the following boundary condition:  (r,' + 2⇡) =
� exp (i(6 � ns)⇡�5/2) (r,'). (Here, we follow the same

3

b1

b2
b3

r

FIG. 1: Top: the flat hexagonal lattice with a 2⇡/3 section
highlighted. Subtracting a 2⇡/3 section, one obtains a pos-
itive curved cone with a ns = 4-sides defect (bottom left).
Adding a 2⇡/3 section, instead, generates a negative curved
saddle geometry with ns = 8 (bottom right).

(p2 ! p2), leaving intact the Dirac points and the
spin, and the Lagrangian (1) invariant as long as � van-
ishes. The order parameter for the above symmetry is
� = 2�h ̄� � �  ̄+ +i and it describes the staggered
magnetization, i.e., � 6= 0 indicates broken symmetry.
The same expression (1) is obtained following the gen-
eral decomposition outlined in [43].

By means of a kirigami like procedure1 we introduce a
spatial curvature in the model by inserting a disclination
that warps the lattice locally. If we wish to isolate the
interplay between quantum e↵ects and geometry, we need
to preserve the bipartite nature of the lattice at tree level,
that is avoid frustrating the lattice. This requirement
restricts the allowed deformations to those induced by
defects with an even number of sides, as these are the only
that preserve the above symmetry classically. Inserting a
defect with ns < 6 sides in an hexagonal lattice generates
a deficit angle and a curvature that is locally positive
(see Fig. 1). In contrast, adding a defect with ns > 6
generates an excess angle and a locally negative curvature
(see Fig. 1). These lattice structures form the basis of
chiral curved poly-aromatic systems [44].

In the continuum model, the curvature can be intro-

1 Kirigami is a variation of origami that includes cutting of the
paper [58].

duced by specifying the background to be that of a man-
ifold with a conical singularity. The Riemannian geom-
etry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, in order to model such a localised curva-
ture, we use a Euclidean parametrisation for the metric
tensor

ds2 = d⌧2 + dr2 + ↵2r2d�2 (2)

with r � 0 and 0  � < 2⇡ being the polar coordinates
centred at the apex. We will not concern ourselves with
finite temperature e↵ects here, but these can be included
in a straightforward manner by using the standard imagi-
nary time formalism. Defining �̃ = ↵ �, it should be clear
that the metric is that of flat space with 0  �̃ < 2⇡↵.
If ↵ < 1, then � = 2⇡ � 2⇡↵ describes a deficit angle.
Removing the deficit angle and identifying the two sides
results in a cone with opening angle 2 arcsin↵. The closer
to unity is ↵, the flatter is the cone. If ↵ > 1, then the
deficit angle becomes an excess angle.

Since the curvature of conical manifolds diverges at
the apex, some regularisation is necessary to deal with
the singular behaviour. Here, we will regulate the geom-
etry by replacing the singular space with a sequence of
regular manifolds as done in Ref. [46, 47]. Calculations
are done in the regularised geometry and results in the
original singular space are obtained as a limit, once the
regularisation is removed at the end. In practise, this
procedure can be implemented by replacing the original
metric (2) with the following regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d�2 (3)

where ✏ represents a regularisation parameter and f✏(r) is
a smooth function satisfying the following properties: 1)
lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) = const
for r = 0. It should be noted that while the limit of
✏ ! 0 corresponds to removing the regularisation, in an
eventual comparison with a lattice simulation, ✏ should
be associated with the lattice spacing and it acquires the
status of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by
a minimal covariantization procedure, i.e. letting the
Minkowski metric, the derivatives, and the gamma matri-
ces to the corresponding quantities in curved space. We
shall not include non-minimal couplings in the present
treatment (see Ref. [48] for a discussion about this point).

The last element we need to take into account are the
boundary conditions along the cut where the two sides
of the lattice have been glued after having removed or
added a portion of the lattice to accomodate the inser-
tion of the defect. The same procedure that we shall use
below has been discussed, for example, in Ref. [22]. It
is not di�cult to realise that for a generic even-sided de-
fect, the two sub-lattices are unchanged and the fermion
wave function, after circulating around the defect, sat-
isfies the following boundary condition:  (r,' + 2⇡) =
� exp (i(6 � ns)⇡�5/2) (r,'). (Here, we follow the same

FIG. 1: Center: the flat hexagonal lattice with a 2⇡/3 sec-
tion highlighted. Subtracting a 2⇡/3 section, one obtains a
positive curved cone with a ns = 4-sides defect (left). Adding
a 2⇡/3 section, instead, generates a negative curved saddle
geometry with ns = 8 (right).

to avoid frustration. This requirement restricts the al-
lowed deformations to those induced by defects with an
even number of sides, as these are the only that preserve
the above symmetry classically. Inserting a defect with
ns < 6 sides in an hexagonal lattice generates a deficit
angle and a curvature that is locally positive (Fig. 1).
In contrast, adding a defect with ns > 6 generates an
excess angle and a locally negative curvature (Fig. 1).
These lattice structures form the basis of chiral curved
poly-aromatic systems [44].

The lattice plays the role of geometry and its contin-
uum limit is that of a manifold with a regularized conical
singularity (see, for instance, [22, 24]). The Riemannian
geometry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, to model such a localised curvature, we
use a Euclidean parametrisation for the metric tensor

ds2 = d⌧2 + dr2 + ↵2r2d'2 (2)

with r � 0 and 0  ' < 2⇡ being the polar coordinates
centred at the apex. Setting '̃ = ↵ ', one sees that the
metric is that of flat space with 0  '̃ < 2⇡↵. If ↵ < 1,
then � = 2⇡ � 2⇡↵ describes a deficit angle. Removing
the deficit angle and identifying the two sides results in
a cone with opening angle 2 arcsin↵. The closer to unity
is ↵, the flatter is the cone. If ↵ > 1, then the deficit
angle becomes an excess angle.

Since the curvature of conical manifolds diverges at the
apex, some regularisation is necessary to deal with the
singular behaviour. Here, we will regulate the geometry
by replacing the singular space with a sequence of regular
manifolds as done in [46, 47]. Calculations are done in the
regularised geometry and results in the original singular
space can be obtained as a limit, once the regularisation is
removed at the end. This procedure can be implemented
by replacing the original metric (2) with the following
regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d'2 (3)

where ✏ represents a regularisation parameter and f✏(r)
is a smooth function satisfying the following properties:
1) lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) =

const for r = 0. Notice that while the limit of ✏ ! 0
removes the regularisation, in a comparison with a lattice
simulation, ✏ is related to the lattice spacing acquiring the
role of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by a
minimal covariantization procedure, i.e. letting metric,
derivatives, and gamma matrices to the corresponding
quantities in curved space (see [48]).

Finally, we take into account the boundary conditions
along the cut where the two sides of the lattice have
been glued. It is not di�cult to realise that for a generic
even-sided defect, the sub-lattice symmetry is preserved
and the fermion wave function, after circulating around
the defect, satisfies the following boundary condition:
 (r,' + 2⇡) = � exp (i(6 � ns)⇡�5/2) (r,'). (We fol-
low [22], and choose to work in the standard planar rep-
resentation of the �-matrices.) A way to incorporate
these boundary conditions is by re-expressing the fields as
 0(r,') = exp (�i'(6 � ns)�5/4) (r,'), and by noticing
that the primed fields obey the standard periodicity con-
dition  0(r,'+ 2⇡) = � 0(r,'). Using the above redef-
inition in the Lagrangian has the e↵ect of introducing a
non-dynamical gauge connection Aµ = ��'

µ (6�ns)�5/4.
This term will be crucial in altering the way symmetry
breaking takes place.

Methods and results. We can now examine whether
the geometry and associated boundary conditions favour
a phase of broken or restored symmetry in the region
where curvature attains a positive (ns = 4) or negative
(even ns > 6) value. As motivated at the beginning, since
the curvature in the regularized case increases (decreases)
as we approach the defect for ns = 4 (ns = 8, 10, . . . ),
the expectation is that curvature should favour symmetry
restoration in the vicinity of the defect for ns = 4, while
for ns even and larger than 6 broken symmetry should
be favoured.

Below we shall address this question by computing the
e↵ective action for the order parameter � and by nu-
merically solving the associated e↵ective equations. Our
analysis follows the large-N deformation of [43], where
we pass from 2 to N flavours of the Dirac fields. The
general form of the e↵ective action is
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where �2
± = �2 ±

p
g̃rr�0 and the D’Alembertian is calcu-

lated from the spinor covariant derivative D̃⌫ = r̃⌫+iA⌫ .
The tildes indicate quantities computed in the regularised
metric (3). We use heat-kernel and zeta regularization
techniques to perform the computation of the determi-
nant (see [2, 49–52] for general discussions and [16, 48]
for similar calculations in curved space). For the conve-
nience of the reader, the computation of the determinant
is described in a Supplemental Material.

The results are illustrated in Fig. 2 for cases with lo-
cally positive (ns = 4) and negative curvature (ns = 8).
The asymptotic value of the coupling constant should be
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FIG. 1: Top: the flat hexagonal lattice with a 2⇡/3 section
highlighted. Subtracting a 2⇡/3 section, one obtains a pos-
itive curved cone with a ns = 4-sides defect (bottom left).
Adding a 2⇡/3 section, instead, generates a negative curved
saddle geometry with ns = 8 (bottom right).

(p2 ! p2), leaving intact the Dirac points and the
spin, and the Lagrangian (1) invariant as long as � van-
ishes. The order parameter for the above symmetry is
� = 2�h ̄� � �  ̄+ +i and it describes the staggered
magnetization, i.e., � 6= 0 indicates broken symmetry.
The same expression (1) is obtained following the gen-
eral decomposition outlined in [43].

By means of a kirigami like procedure1 we introduce a
spatial curvature in the model by inserting a disclination
that warps the lattice locally. If we wish to isolate the
interplay between quantum e↵ects and geometry, we need
to preserve the bipartite nature of the lattice at tree level,
that is avoid frustrating the lattice. This requirement
restricts the allowed deformations to those induced by
defects with an even number of sides, as these are the only
that preserve the above symmetry classically. Inserting a
defect with ns < 6 sides in an hexagonal lattice generates
a deficit angle and a curvature that is locally positive
(see Fig. 1). In contrast, adding a defect with ns > 6
generates an excess angle and a locally negative curvature
(see Fig. 1). These lattice structures form the basis of
chiral curved poly-aromatic systems [44].

In the continuum model, the curvature can be intro-

1 Kirigami is a variation of origami that includes cutting of the
paper [58].

duced by specifying the background to be that of a man-
ifold with a conical singularity. The Riemannian geom-
etry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, in order to model such a localised curva-
ture, we use a Euclidean parametrisation for the metric
tensor

ds2 = d⌧2 + dr2 + ↵2r2d�2 (2)

with r � 0 and 0  � < 2⇡ being the polar coordinates
centred at the apex. We will not concern ourselves with
finite temperature e↵ects here, but these can be included
in a straightforward manner by using the standard imagi-
nary time formalism. Defining �̃ = ↵ �, it should be clear
that the metric is that of flat space with 0  �̃ < 2⇡↵.
If ↵ < 1, then � = 2⇡ � 2⇡↵ describes a deficit angle.
Removing the deficit angle and identifying the two sides
results in a cone with opening angle 2 arcsin↵. The closer
to unity is ↵, the flatter is the cone. If ↵ > 1, then the
deficit angle becomes an excess angle.

Since the curvature of conical manifolds diverges at
the apex, some regularisation is necessary to deal with
the singular behaviour. Here, we will regulate the geom-
etry by replacing the singular space with a sequence of
regular manifolds as done in Ref. [46, 47]. Calculations
are done in the regularised geometry and results in the
original singular space are obtained as a limit, once the
regularisation is removed at the end. In practise, this
procedure can be implemented by replacing the original
metric (2) with the following regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d�2 (3)

where ✏ represents a regularisation parameter and f✏(r) is
a smooth function satisfying the following properties: 1)
lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) = const
for r = 0. It should be noted that while the limit of
✏ ! 0 corresponds to removing the regularisation, in an
eventual comparison with a lattice simulation, ✏ should
be associated with the lattice spacing and it acquires the
status of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by
a minimal covariantization procedure, i.e. letting the
Minkowski metric, the derivatives, and the gamma matri-
ces to the corresponding quantities in curved space. We
shall not include non-minimal couplings in the present
treatment (see Ref. [48] for a discussion about this point).

The last element we need to take into account are the
boundary conditions along the cut where the two sides
of the lattice have been glued after having removed or
added a portion of the lattice to accomodate the inser-
tion of the defect. The same procedure that we shall use
below has been discussed, for example, in Ref. [22]. It
is not di�cult to realise that for a generic even-sided de-
fect, the two sub-lattices are unchanged and the fermion
wave function, after circulating around the defect, sat-
isfies the following boundary condition:  (r,' + 2⇡) =
� exp (i(6 � ns)⇡�5/2) (r,'). (Here, we follow the same
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FIG. 1: Top: the flat hexagonal lattice with a 2⇡/3 section
highlighted. Subtracting a 2⇡/3 section, one obtains a pos-
itive curved cone with a ns = 4-sides defect (bottom left).
Adding a 2⇡/3 section, instead, generates a negative curved
saddle geometry with ns = 8 (bottom right).

(p2 ! p2), leaving intact the Dirac points and the
spin, and the Lagrangian (1) invariant as long as � van-
ishes. The order parameter for the above symmetry is
� = 2�h ̄� � �  ̄+ +i and it describes the staggered
magnetization, i.e., � 6= 0 indicates broken symmetry.
The same expression (1) is obtained following the gen-
eral decomposition outlined in [43].

By means of a kirigami like procedure1 we introduce a
spatial curvature in the model by inserting a disclination
that warps the lattice locally. If we wish to isolate the
interplay between quantum e↵ects and geometry, we need
to preserve the bipartite nature of the lattice at tree level,
that is avoid frustrating the lattice. This requirement
restricts the allowed deformations to those induced by
defects with an even number of sides, as these are the only
that preserve the above symmetry classically. Inserting a
defect with ns < 6 sides in an hexagonal lattice generates
a deficit angle and a curvature that is locally positive
(see Fig. 1). In contrast, adding a defect with ns > 6
generates an excess angle and a locally negative curvature
(see Fig. 1). These lattice structures form the basis of
chiral curved poly-aromatic systems [44].

In the continuum model, the curvature can be intro-

1 Kirigami is a variation of origami that includes cutting of the
paper [58].

duced by specifying the background to be that of a man-
ifold with a conical singularity. The Riemannian geom-
etry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, in order to model such a localised curva-
ture, we use a Euclidean parametrisation for the metric
tensor

ds2 = d⌧2 + dr2 + ↵2r2d�2 (2)

with r � 0 and 0  � < 2⇡ being the polar coordinates
centred at the apex. We will not concern ourselves with
finite temperature e↵ects here, but these can be included
in a straightforward manner by using the standard imagi-
nary time formalism. Defining �̃ = ↵ �, it should be clear
that the metric is that of flat space with 0  �̃ < 2⇡↵.
If ↵ < 1, then � = 2⇡ � 2⇡↵ describes a deficit angle.
Removing the deficit angle and identifying the two sides
results in a cone with opening angle 2 arcsin↵. The closer
to unity is ↵, the flatter is the cone. If ↵ > 1, then the
deficit angle becomes an excess angle.

Since the curvature of conical manifolds diverges at
the apex, some regularisation is necessary to deal with
the singular behaviour. Here, we will regulate the geom-
etry by replacing the singular space with a sequence of
regular manifolds as done in Ref. [46, 47]. Calculations
are done in the regularised geometry and results in the
original singular space are obtained as a limit, once the
regularisation is removed at the end. In practise, this
procedure can be implemented by replacing the original
metric (2) with the following regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d�2 (3)

where ✏ represents a regularisation parameter and f✏(r) is
a smooth function satisfying the following properties: 1)
lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) = const
for r = 0. It should be noted that while the limit of
✏ ! 0 corresponds to removing the regularisation, in an
eventual comparison with a lattice simulation, ✏ should
be associated with the lattice spacing and it acquires the
status of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by
a minimal covariantization procedure, i.e. letting the
Minkowski metric, the derivatives, and the gamma matri-
ces to the corresponding quantities in curved space. We
shall not include non-minimal couplings in the present
treatment (see Ref. [48] for a discussion about this point).

The last element we need to take into account are the
boundary conditions along the cut where the two sides
of the lattice have been glued after having removed or
added a portion of the lattice to accomodate the inser-
tion of the defect. The same procedure that we shall use
below has been discussed, for example, in Ref. [22]. It
is not di�cult to realise that for a generic even-sided de-
fect, the two sub-lattices are unchanged and the fermion
wave function, after circulating around the defect, sat-
isfies the following boundary condition:  (r,' + 2⇡) =
� exp (i(6 � ns)⇡�5/2) (r,'). (Here, we follow the same

3

b1

b2
b3

r

FIG. 1: Top: the flat hexagonal lattice with a 2⇡/3 section
highlighted. Subtracting a 2⇡/3 section, one obtains a pos-
itive curved cone with a ns = 4-sides defect (bottom left).
Adding a 2⇡/3 section, instead, generates a negative curved
saddle geometry with ns = 8 (bottom right).

(p2 ! p2), leaving intact the Dirac points and the
spin, and the Lagrangian (1) invariant as long as � van-
ishes. The order parameter for the above symmetry is
� = 2�h ̄� � �  ̄+ +i and it describes the staggered
magnetization, i.e., � 6= 0 indicates broken symmetry.
The same expression (1) is obtained following the gen-
eral decomposition outlined in [43].

By means of a kirigami like procedure1 we introduce a
spatial curvature in the model by inserting a disclination
that warps the lattice locally. If we wish to isolate the
interplay between quantum e↵ects and geometry, we need
to preserve the bipartite nature of the lattice at tree level,
that is avoid frustrating the lattice. This requirement
restricts the allowed deformations to those induced by
defects with an even number of sides, as these are the only
that preserve the above symmetry classically. Inserting a
defect with ns < 6 sides in an hexagonal lattice generates
a deficit angle and a curvature that is locally positive
(see Fig. 1). In contrast, adding a defect with ns > 6
generates an excess angle and a locally negative curvature
(see Fig. 1). These lattice structures form the basis of
chiral curved poly-aromatic systems [44].

In the continuum model, the curvature can be intro-

1 Kirigami is a variation of origami that includes cutting of the
paper [58].

duced by specifying the background to be that of a man-
ifold with a conical singularity. The Riemannian geom-
etry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, in order to model such a localised curva-
ture, we use a Euclidean parametrisation for the metric
tensor

ds2 = d⌧2 + dr2 + ↵2r2d�2 (2)

with r � 0 and 0  � < 2⇡ being the polar coordinates
centred at the apex. We will not concern ourselves with
finite temperature e↵ects here, but these can be included
in a straightforward manner by using the standard imagi-
nary time formalism. Defining �̃ = ↵ �, it should be clear
that the metric is that of flat space with 0  �̃ < 2⇡↵.
If ↵ < 1, then � = 2⇡ � 2⇡↵ describes a deficit angle.
Removing the deficit angle and identifying the two sides
results in a cone with opening angle 2 arcsin↵. The closer
to unity is ↵, the flatter is the cone. If ↵ > 1, then the
deficit angle becomes an excess angle.

Since the curvature of conical manifolds diverges at
the apex, some regularisation is necessary to deal with
the singular behaviour. Here, we will regulate the geom-
etry by replacing the singular space with a sequence of
regular manifolds as done in Ref. [46, 47]. Calculations
are done in the regularised geometry and results in the
original singular space are obtained as a limit, once the
regularisation is removed at the end. In practise, this
procedure can be implemented by replacing the original
metric (2) with the following regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d�2 (3)

where ✏ represents a regularisation parameter and f✏(r) is
a smooth function satisfying the following properties: 1)
lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) = const
for r = 0. It should be noted that while the limit of
✏ ! 0 corresponds to removing the regularisation, in an
eventual comparison with a lattice simulation, ✏ should
be associated with the lattice spacing and it acquires the
status of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by
a minimal covariantization procedure, i.e. letting the
Minkowski metric, the derivatives, and the gamma matri-
ces to the corresponding quantities in curved space. We
shall not include non-minimal couplings in the present
treatment (see Ref. [48] for a discussion about this point).

The last element we need to take into account are the
boundary conditions along the cut where the two sides
of the lattice have been glued after having removed or
added a portion of the lattice to accomodate the inser-
tion of the defect. The same procedure that we shall use
below has been discussed, for example, in Ref. [22]. It
is not di�cult to realise that for a generic even-sided de-
fect, the two sub-lattices are unchanged and the fermion
wave function, after circulating around the defect, sat-
isfies the following boundary condition:  (r,' + 2⇡) =
� exp (i(6 � ns)⇡�5/2) (r,'). (Here, we follow the same

FIG. 1: Center: the flat hexagonal lattice with a 2⇡/3 sec-
tion highlighted. Subtracting a 2⇡/3 section, one obtains a
positive curved cone with a ns = 4-sides defect (left). Adding
a 2⇡/3 section, instead, generates a negative curved saddle
geometry with ns = 8 (right).

to avoid frustration. This requirement restricts the al-
lowed deformations to those induced by defects with an
even number of sides, as these are the only that preserve
the above symmetry classically. Inserting a defect with
ns < 6 sides in an hexagonal lattice generates a deficit
angle and a curvature that is locally positive (Fig. 1).
In contrast, adding a defect with ns > 6 generates an
excess angle and a locally negative curvature (Fig. 1).
These lattice structures form the basis of chiral curved
poly-aromatic systems [44].

The lattice plays the role of geometry and its contin-
uum limit is that of a manifold with a regularized conical
singularity (see, for instance, [22, 24]). The Riemannian
geometry of such manifolds is studied since, at least, [45].
Refs. [46, 47] give details and additional bibliography on
the topic. Here, to model such a localised curvature, we
use a Euclidean parametrisation for the metric tensor

ds2 = d⌧2 + dr2 + ↵2r2d'2 (2)

with r � 0 and 0  ' < 2⇡ being the polar coordinates
centred at the apex. Setting '̃ = ↵ ', one sees that the
metric is that of flat space with 0  '̃ < 2⇡↵. If ↵ < 1,
then � = 2⇡ � 2⇡↵ describes a deficit angle. Removing
the deficit angle and identifying the two sides results in
a cone with opening angle 2 arcsin↵. The closer to unity
is ↵, the flatter is the cone. If ↵ > 1, then the deficit
angle becomes an excess angle.

Since the curvature of conical manifolds diverges at the
apex, some regularisation is necessary to deal with the
singular behaviour. Here, we will regulate the geometry
by replacing the singular space with a sequence of regular
manifolds as done in [46, 47]. Calculations are done in the
regularised geometry and results in the original singular
space can be obtained as a limit, once the regularisation is
removed at the end. This procedure can be implemented
by replacing the original metric (2) with the following
regular one:

ds̃2 = d⌧2 + f✏(r)dr2 + ↵2r2d'2 (3)

where ✏ represents a regularisation parameter and f✏(r)
is a smooth function satisfying the following properties:
1) lim✏!0 f✏(r) = 1; 2) f✏(r) ⇡ 1 for r � ✏; 3) f✏(r) =

const for r = 0. Notice that while the limit of ✏ ! 0
removes the regularisation, in a comparison with a lattice
simulation, ✏ is related to the lattice spacing acquiring the
role of a physical cut-o↵.

The Lagrangian (1) is extended to curved space by a
minimal covariantization procedure, i.e. letting metric,
derivatives, and gamma matrices to the corresponding
quantities in curved space (see [48]).

Finally, we take into account the boundary conditions
along the cut where the two sides of the lattice have
been glued. It is not di�cult to realise that for a generic
even-sided defect, the sub-lattice symmetry is preserved
and the fermion wave function, after circulating around
the defect, satisfies the following boundary condition:
 (r,' + 2⇡) = � exp (i(6 � ns)⇡�5/2) (r,'). (We fol-
low [22], and choose to work in the standard planar rep-
resentation of the �-matrices.) A way to incorporate
these boundary conditions is by re-expressing the fields as
 0(r,') = exp (�i'(6 � ns)�5/4) (r,'), and by noticing
that the primed fields obey the standard periodicity con-
dition  0(r,'+ 2⇡) = � 0(r,'). Using the above redef-
inition in the Lagrangian has the e↵ect of introducing a
non-dynamical gauge connection Aµ = ��'

µ (6�ns)�5/4.
This term will be crucial in altering the way symmetry
breaking takes place.

Methods and results. We can now examine whether
the geometry and associated boundary conditions favour
a phase of broken or restored symmetry in the region
where curvature attains a positive (ns = 4) or negative
(even ns > 6) value. As motivated at the beginning, since
the curvature in the regularized case increases (decreases)
as we approach the defect for ns = 4 (ns = 8, 10, . . . ),
the expectation is that curvature should favour symmetry
restoration in the vicinity of the defect for ns = 4, while
for ns even and larger than 6 broken symmetry should
be favoured.

Below we shall address this question by computing the
e↵ective action for the order parameter � and by nu-
merically solving the associated e↵ective equations. Our
analysis follows the large-N deformation of [43], where
we pass from 2 to N flavours of the Dirac fields. The
general form of the e↵ective action is

�̃ [�] = �
Z

d3x
p

g̃
�2

2�
+

1

2

X

p=±
log det

 
⇤̃ +

R̃

4
+ �2

p

!
,

where �2
± = �2 ±

p
g̃rr�0 and the D’Alembertian is calcu-

lated from the spinor covariant derivative D̃⌫ = r̃⌫+iA⌫ .
The tildes indicate quantities computed in the regularised
metric (3). We use heat-kernel and zeta regularization
techniques to perform the computation of the determi-
nant (see [2, 49–52] for general discussions and [16, 48]
for similar calculations in curved space). For the conve-
nience of the reader, the computation of the determinant
is described in a Supplemental Material.

The results are illustrated in Fig. 2 for cases with lo-
cally positive (ns = 4) and negative curvature (ns = 8).
The asymptotic value of the coupling constant should be



The effective action

�̃ [�] = �
Z

d3x
p

g̃
�2

2�
+

1

2

X

p=±
log det

 
⇤̃+

R̃

4
+ �2 ±

p
g̃rr�0

!

�̃ [�] = �
Z

d3x
p

g̃
�2

2�
+Tr log

⇣
ı�µD̃µ ± �

⌘

M
arch

31,
2018

20:57
W

S
P
C
/IN

S
T
R
U
C
T
IO

N
F
IL
E

G
R
F

3

H
ere

w
e
w
ill

in
stead

con
centrate

on
geom

etrical
e↵

ects,
an

d
h
ow

th
ese

ch
allen

ge
th
e

vacu
u
m

stab
ility

of
a
th
eory

w
ith

fou
r
ferm

ion
s
interaction

s
2.

M
any

are
th
e
con

fi
gu

ration
s
in

w
h
ich

geom
etry

a↵
ects

th
e
sym

m
etry

b
reakin

g
of

stron
gly

interactin
g
system

s:
in

fl
at

sp
acetim

e
w
ith

R
3⇥

S
1
top

ology
an

d
p
eri-

od
ic
b
ou

n
d
ary

con
d
ition

s,
for

exam
p
le,

th
e
con

sequ
en

ces
of

th
e
n
on

-trivial
top

ology
are

very
sim

ilar
to

th
ose

of
n
on

zero
tem

p
eratu

re
3;

on
th
e
oth

er
h
an

d
,
in

cu
rved

sp
acetim

e
th
e
e↵

ects
of

extern
al

gravitation
al

fi
eld

s
resem

b
le

th
ose

of
an

e↵
ective

extra
m
ass

4.
T
h
e
com

b
in
ation

of
th
ese

extern
al

factors,
an

d
in

p
articu

lar
top

ol-
ogy,

n
on

zero
tem

p
eratu

re,
an

d
cu

rvatu
re,

actin
g
on

self-interactin
g
th
eories

is
likely

to
h
ave

b
een

of
con

sid
erab

le
im

p
ortan

ce
in

th
e
early

stages
of

th
e
evolu

tion
of

th
e
u
n
iverse.

D
u
rin

g
th
ose

eras
a
sp
ontan

eou
s
b
reakin

g
of

an
intern

al
sym

m
etry

grou
p

resu
lts

in
th
e
p
rod

u
ction

of
top

ological
d
efects

–
th
e
w
ell-kn

ow
n

K
ib
b
le–

Z
u
rek

m
ech

an
ism

5
,6.

S
u
p
p
ose

th
e
d
yn

am
ical

sym
m
etry

b
reakin

g
for

som
e
p
article

m
od

el
to

b
e
at

th
e
origin

of
th
e
form

ation
of

a
static

straight
cosm

ic
strin

g
7
,8
,9
,1
0
lyin

g
alon

g
th
e

z-axis,
n
am

ely
an

in
fi
n
itely

lon
g
th
in

tu
b
e
of

false
vacu

u
m

gen
erated

in
th
e
su
d
d
en

tem
p
eratu

re-d
riven

tran
sition

from
a
p
h
ase

to
an

oth
er

(h
ere,

th
e
tran

sverse
size

of
th
e
cosm

ic
strin

g
is

n
eglected

w
h
ile

‘su
d
d
en

tran
sition

’
m
ean

s
a
tran

sition
w
ith

a
rate

th
at

is
fast

if
com

p
ared

w
ith

th
e
size

of
th
e
system

).
A
w
ay

from
th
e
d
efect,

th
e
sp
acetim

e
associated

w
ith

th
e
gravitatin

g
strin

g
is

accu
rately

d
escrib

ed
by

th
e

vacu
u
m

E
in
stein

equ
ation

s.
It

tu
rn
s
ou

t
th
at

at
large

d
istan

ce
from

th
e
strin

g,
th
e

geom
etry

is
locally

fl
at,

ds
2co

n
=

dt 2
�

dz
2
�

dr
2
�

r
2d✓

2,
b
u
t
w
ith

an
im

p
ortant

caveat:
it

is
n
ot

glob
ally

E
u
clid

ean
,
sin

ce
th
e
an

gu
lar

coord
in
ate

d
oes

n
ot

ru
n
on

th
e
entire

2⇡
circle;

in
stead

,
0


✓
<

2⇡
�

�
,
w
ith

�
>

0
(�

<
0)

b
ein

g
th
e
d
efi

cit
(excess)

an
gle:

su
rfaces

at
con

stant
t
an

d
z
are

con
es,

n
ot

p
lan

es.
T
h
is

is
a
rem

em
b
ran

ce
of

d
efects

in
sertion

in
crystal

lattices:
startin

g
from

a

E
x
tr

a
c
tio

n

In
se

r
tio

n

F
ig
.
1
.

T
h
e
fl
a
t
sp

ace
is

m
o
d
ifi
ed

th
ro
u
g
h

th
e
in
sertio

n
o
r
th

e
ex

tra
ctio

n
o
f
a
p
iece

o
f
la
ttice.

A
d
d
in
g
a
section

w
ith

a
given

an
gle,

on
e
fi
n
d
s
a
sad

d
le;

su
b
tractin

g
th

e
sam

e
section

,
an

d
th

en
sew

in
g
o
n
th

e
cu

t,
a
co

n
e.

Castro, Flachi, Ribeiro & me, PRL (2018)
Flachi & me, PRD (2019)


