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Kerr and Kerr-de Sitter in four dimensions

Kerr metric: end-state of gravitational collapse.

Geometrically privileged:

Unique stationary black hole with Λ = 0.

Locally characterized by alignment of Weyl with stationary Killing field X [Mars ’01].

Alignment property

Let F := 1
2
(dX + i (dX )⋆), W := Weyl + iWeyl⋆, ( ⋆ ≡ Hodge dual).

Aligned ⇐⇒ W = Q(F ⊗F)tf, Q complex scalar.

Kerr-de Sitter [Carter ’73] generalizes Kerr to Λ > 0 universe.

Is Kerr-de Sitter so special among Λ > 0 metrics? → Need for characterizations

No uniqueness theorem exists for Λ > 0 so far.

Kerr-de Sitter (and related metrics) also characterized by alignment [Mars, Senovilla ’14].
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Kerr-de Sitter-like class and asymptotic properties

Kerr-de Sitter-like class

Several Λ > 0-vacuum metrics satisfy alignment property : Kerr-de Sitter-like class.

Families parametrized by two consts. (a1, a2): e.g. {a1, a2 < 0} Kerr-de Sitter family.

Λ > 0→ well-posed asymptotic initial value problem (AIVP) [Friedrich’86] with data

(Σ, γ) = (I , γ) riemannian 3-manifold

Rescaled electric Weyl: D = Ω−1Weylg (ν, ·, ν, ·) |I (ν ≡ unit normal to I ).

What are the asymptotic features (i.e. data) of the Kerr-de Sitter-like class?

Asymptotic data of Kerr-de Sitter-like [Mars et al. ’16]

ξ = X |I is a conformal Killing vector (CKV) of (I , γ) and satisfies

Cot(γ) =
K1

|ξ|5 (ξ ⊗ ξ)tf , D =
K2

|ξ|5 (ξ ⊗ ξ)tf , K1,K2 ∈ R.
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Asymptotics and Kerr-de Sitter-like in all dimensions

What are the advantages of the asymptotic approach?

1. Extend analysis to all dimensional [Gibbons et al. ’05] Kerr-de Sitter metrics
(Alignment only in 4D, but AIVP well-posed in all dimensions!)

Arbitrary dimensional explicit extension of Kerr-de Sitter-like class [Mars & P.-N. ’22].

2. Key for additional characterizations of (all dimensional) Kerr-de Sitter-like.

[Mars & P.-N. ’22]: Kerr-Schild metrics + a fall-off condition

[Mars & P.-N. ’22]: 5-D algebraically special metrics with non-degenerate optical matrix
(cf. [Bernardi de Freitas, Godazgar & Reall ’15])

Aim of today’s talk: new characterization in all dim

{ Kerr-de Sitter-like } = { Algebraically special + (locally) conformally flat I }
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Conformal extensions

(M̃, g̃) n + 1 dimensional (n ≥ 3) Lorentzian (Λ > 0)-Einstein (physical) manifold

Ricg̃ = λg̃ , λ := Λ/n(n + 1) > 0. (EE)

Conformal extensions [Penrose ’65]

(M, g ; Ω) conformal extension of (M̃, g̃)

g = Ω2g̃

M̃ = Int(M) = {Ω > 0}
I := ∂M = {Ω = 0} ∩ {dΩ ̸= 0}

I ≡ asymptotic region of (M̃, g̃)

Given (M, g ,Ω)⇒ (M, ω2g ;ωΩ), ∀ω > 0, also conformal extension of (M̃, g̃).

I smooth conformal structure [γ]: each γ ∈ [γ] is a boundary metric.
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Geodesic conformal gauge

(EE) =⇒ (M, g ; Ω) conformally Einstein: (HessgΩ+ ΩSchg )tf = 0, (CEE)

Schg := 1
n−1

(Ricg − Scalg
2n

g) Schouten tensor.

(CEE) + λ > 0 =⇒ [γ] at I is spacelike.

Lemma

∀γ ∈ [γ], ∃ (M, g ; Ω) such that gradgΩ is geodesic (= geodesic conformal extension)

In Gaussian coordinates {Ω, x i} adapted to {Ω = const.}

g = −λ−1dΩ2 + gΩ, gΩ : Riemannian metrics on the leaves {Ω = const.}.

(CEE) =⇒ Fefferman-Graham (FG) asymptotic expansion for gΩ
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g = −λ−1dΩ2 + gΩ, gΩ : Riemannian metrics on the leaves {Ω = const.}.

(CEE) =⇒ Fefferman-Graham (FG) asymptotic expansion for gΩ
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Fefferman-Graham expansion

Fefferman-Graham expansion: n odd case

gΩ ∼
(n−1)/2∑

r=0
g(2r)Ω

2r +
∞∑
r=n

g(r)Ω
r


γ prescribes g(0) and generates g(2r<n).

g(n) is independent of γ except for
Trγg(n) = 0, divγg(n) = 0 (⋆)

Fefferman-Graham expansion: n even case

gΩ ∼
∞∑
r=0

g(2r)Ω
2r +

∞∑
r=n

mr∑
s=1

O(r,s)Ω
r (log Ω)s


γ prescribes g(0) and generates g(2r<n).

g(n) is independent of γ except for
Trγg(n) = a(γ), divγg(n) = b(γ) (⋆⋆)

O(γ) := O(n,1) obstruction tensor → If O(γ) = 0 all logarithmic terms vanish.

O(γ) = 0 if γ locally conformally flat.

(g(0), g(n)) seed data FG expansion → Asymptotic data:

{
(Σ, γ) ≡ Riemannian n-manifold
gn ≡ 2-tensor satisfying (⋆)/(⋆⋆)
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Asymptotic initial value problem in n + 1 dimensions

General theorem from multiple contributions: [Friedrich ’86, Anderson ’05, Anderson & Chruściel

’05, Kamiński ’21, Rodnianksi & Shlapentokh-Rothman ’18, Hintz ’23]

Asymptotic initial value problem at spacelike I

Given (Σ, γ, gn) ⇒ ∃ unique λ > 0-vacuum (n + 1)-manifold (M̃, g̃) admitting a geodesic
(M, g ; Ω) with prescribed seed data for the FG expansion (g(0) = γ, g(n) = gn).

Asymptotic data (Σ, γ, gn) is not completely geometric:

 (Σ, γ) = (I , γ)

gn = ∂n
ΩgΩ |Ω=0

Geometric identification of asymptotic data [ Mars & P.-N. ’21, Hollands et al. ’05]

Let (I , γ) be locally conformally flat. Then and only then

D := Ω2−nWeylg (ν, ·, ν, ·) |Ω=0 (ν ≡ unit normal I ) is regular and g(n) = D

(Σ, γ, gn) ←→ (Σ, γ,D) iff γ locally conformally flat
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’05, Kamiński ’21, Rodnianksi & Shlapentokh-Rothman ’18, Hintz ’23]

Asymptotic initial value problem at spacelike I

Given (Σ, γ, gn) ⇒ ∃ unique λ > 0-vacuum (n + 1)-manifold (M̃, g̃) admitting a geodesic
(M, g ; Ω) with prescribed seed data for the FG expansion (g(0) = γ, g(n) = gn).

Asymptotic data (Σ, γ, gn) is not completely geometric:

 (Σ, γ) = (I , γ)

gn = ∂n
ΩgΩ |Ω=0

Geometric identification of asymptotic data [ Mars & P.-N. ’21, Hollands et al. ’05]

Let (I , γ) be locally conformally flat. Then and only then

D := Ω2−nWeylg (ν, ·, ν, ·) |Ω=0 (ν ≡ unit normal I ) is regular and g(n) = D

(Σ, γ, gn) ←→ (Σ, γ,D) iff γ locally conformally flat

7 / 11



Asymptotic initial value problem in n + 1 dimensions

General theorem from multiple contributions: [Friedrich ’86, Anderson ’05, Anderson & Chruściel
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Kerr-de Sitter & Kerr-de Sitter-like

We have all the ingredients to calculate the asymptotic data of [Gibbons et al. ’05] Kerr-de Sitter:

g̃KdS = g̃dS +Hk ⊗ k, g̃dS : de Sitter metric, k null covector.

Depends on mass m and {a1, · · · , a[n/2]} rotation parameters.

Asymptotic data of Kerr-de Sitter [Mars, P.-N. ’21]

Locally conformally flat (I , γ),

D = DξKdS = κ
|ξKdS|n+2 (ξKdS ⊗ ξKdS)tf , ξKdS ∝ ι⋆I (k) is a CKV of γ.

Substituting ξKdS → “any CKV ξ of γ” generates (Σ, γ,Dξ) ̸≃ (Σ, γ,DξKdS )

n + 1-dimensional Kerr-de Sitter-like class (with loc. conformally flat (I , γ))

(M̃, g̃) with asymptotic data (Σ, γ,Dξ)

γ locally conformally flat Dξ = κ
|ξ|n+2 (ξ ⊗ ξ)tf any CKV ξ of γ

Conformal properties of ξ → generate all Kerr-de Sitter-like metrics as limits or analytic
extensions of Kerr-de Sitter.
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Theorem. The Kerr-de Sitter-like class in all dimensions

g̃ = g̃dS + H̃k̃ ⊗ k̃, must have H̃ =
2Mρn−2

Ξ
∏q
i=1(1 + ρ2a2

i )
, M ∈ R,

and

a) Kerr-de Sitter family,

g̃dS = −W (ρ2 − λ)

ρ2
dt2 +

Ξ

ρ2 − λ
dρ2

ρ2
+ δp,q

dα2
p+1

ρ2
+

q∑

i=1

1 + ρ2a2
i

ρ2

(
dα2

i + α2
i dφ

2
i

)
+

(ρ2 − λ)

λWρ2

dW 2

4
.

b) {ai →∞}-limit-Kerr-de Sitter,

g̃dS =
λα2

p+1

ρ2
dt2 − Ξ

λ

dρ2

ρ2
+ δp+1,q

α2
p+1dφ2

q

ρ2
+

p∑

i=1

1 + ρ2a2
i

ρ2

(
dα2

i + α2
i dφ

2
i

)
+

(
1

λ
+

∑p
i=1 α

2
i

ρ2α̂2
p+1

)
dα2

p+1 −
2dαp+1

ρ2αp+1

(
p∑

i=1

αidαi

)
.

c.1) Wick-rotated-Kerr-de Sitter for n even,

g̃dS =
λW

ρ2
dt2 − Ξ

λ

dρ2

ρ2
+

q∑

i=1

1 + ρ2a2
i

ρ2

(
dα2

i + α2
i dφ

2
i

)
− 1

Wρ2

dW 2

4
.

c.2) Wick-rotated-Kerr-de Sitter for n odd,

g̃dS = W
(ρ2 + λ)

ρ2
dt2 − Ξ

ρ2 + λ

dρ2

ρ2
−

dα2
p+1

ρ2
+

p∑

i=1

1 + ρ2a2
i

ρ2

(
dα2

i + α2
i dφ

2
i

)
+

(ρ2 + λ)

λWρ2

dW 2

4
.

1



and

Case Constraint on {αi} W Ξ k̃

a)
∑p+1

i=1 (1 + λa2
i )α

2
i = 1

∑p+1
i=1 α

2
i

p+1∑
i=1

1+λa2i
1+ρ2a2i

α2
i Wdt− Ξ

ρ2−λdρ−
q∑
i=1

aiα
2
i dφi

b) α2
p+1 +

∑p
i=1 λa

2
iα

2
i = 1 α2

p+1 α2
p+1 +

p∑
i=1

λa2i
1+ρ2a2i

α2
i Wdt+ Ξ

λdρ−
p∑
i=1

aiα
2
i dφi

c.1)
∑p+1

i=1 λa
2
iα

2
i = 1

∑p+1
i=1 α

2
i

p+1∑
i=1

λa2i
1+ρ2a2i

α2
i

Ξ
λdρ−

q∑
i=1

biα
2
i dφi

c.2) α2
p+1 −

∑p
i=1(1− λa2

i )α
2
i = 1 α2

p+1 −
∑p

i=1 α
2
i α2

p+1 −
p∑
i=1

1−λa2i
1+ρ2a2i

α2
i Wdt+ Ξ

ρ2+λ
dρ−

q∑
i=1

aiα
2
i dφi

Table 1: Functions defining the Kerr-Schild-de Sitter families.
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Algebraically special metrics

[Colley et al. ’04] extends Petrov’s 4D classification of Weyl tensor to all dimensions.

Based on existence of a principal Weyl Aligned Null Direction (WAND) k.

k WAND ⇔ ∃ semi-null frame {k, l, {m(i)}n−1
i=1 } such that (not trivial if dim > 4)

C0i0j := Cαµβνk
αm

µ
(i)
kβmν

(j)
= 0 −→ Algebraic type I

C010i := Cαµβνk
αlµkβmν

(i)
= 0 −→ Algebraic type Ia

k WAND is multiple ⇔ ∃ semi-null frame {k, l, {m(i)}n−1
i=1 } such that

C0ijk := Cαµβνk
αm

µ
(i)
m

β
(j)
mν

(k)
= 0 −→ Algebraic type II (= Ia in 4 dim)

Further cases: III ,N,O.

Secondary classification: same algebraic types also on l

e.g. Type D⇔ k, l both multiple WANDs.
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Algebraically special metrics & Kerr-de Sitter-like

Theorem [Mars & P.-N.]

Let (M̃, g̃) be a λ > 0-vacuum spacetime satisfying:

Algebraic type at least Ia Locally conformally flat I .

Then and only then (M̃, g̃) belongs to the Kerr-de Sitter-like class.

Strategy: Impose algebraic type Ia + conformally flat (I , γ)

Identify spacetime via asymptotic data: D = Ω2−nWeylg (ν, ·, ν, ·) |I .

Type Ia intertwines D with rest of components of Ω2−nWeylg

We show regularity of Ω2−nWeylg |I ⇐⇒ I is locally conformally flat or dim= 4.

Analyze leading and subleading orders of type Ia equation shows

D = 1

|ξ|n+1
γ

(ξ ⊗ ξ)tf where ξ is a CKV of γ.
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Conclusions & outlook

{Kerr-de Sitter-like} ←→ {Type Ia + locally conformally flat I }

Kerr-de Sitter-like is type D! −→ too strong hypothesis?

Previous 5d characterization [Mars & P.-N.] (cf. [Bernardi de Freitas, Godazgar & Reall ’15]):

{Kerr-de Sitter-like} ←→ {Type II + non-degenerate optical matrix}

{ Type II + non-degenerate optical matrix } characterization does not hold in 4 dim.

{ Type Ia + locally conformally flat I } holds in all dim ≥ 4.

Thank you for your attention
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