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o Kerr-de Sitter [Carter '73] generalizes Kerr to A > 0 universe.

Is Kerr-de Sitter so special among A > 0 metrics? — Need for characterizations

@ No uniqueness theorem exists for A > 0 so far.
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Ki

- fx€e”, D= Ko cwe) Kk eR

Cot(v)
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1. Extend analysis to all dimensional [Gibbons et al. '05] Kerr-de Sitter metrics
(Alignment only in 4D, but AIVP well-posed in all dimensions!)

o Arbitrary dimensional explicit extension of Kerr-de Sitter-like class [Mars & P.-N. '22].

2. Key for additional characterizations of (all dimensional) Kerr-de Sitter-like.
o [Mars & P.-N. '22]: Kerr-Schild metrics + a fall-off condition

o [Mars & P.-N. '22]: 5-D algebraically special metrics with non-degenerate optical matrix
(cf. [Bernardi de Freitas, Godazgar & Reall '15])

of today’s talk: new characterization in all dim

{ Kerr-de Sitter-like } = { Algebraically special + (locally) conformally flat .# }
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# = asymptotic region of (I\7I,§)

e Given (M,g,Q) = (M,w?g;wR), Yw > 0, also conformal extension of (I\7I,§).

o .# smooth conformal structure [y]: each v € [y] is a boundary metric.
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o In Gaussian coordinates {Q, x'} adapted to {Q = const.}

g=-2"1dQ% + go, ga : Riemannian metrics on the leaves {Q = const.}.
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o O(v) =0 if v locally conformally flat.
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D := Q2_"Wey|g(y7 V) la=o (v = unit normal .#) s regular and g,y = D
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(I\7I,§) with asymptotic data (X, ~, D)
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Conformal properties of £ — generate all Kerr-de Sitter-like metrics as limits or analytic
extensions of Kerr-de Sitter.
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Theorem. The Kerr-de Sitter-like class in all dimensions

T ~ 202
g=gas + Hk @k, must have H = i

7, M eR,
ETTL (1 + pa?) '

and

a) Kerr-de Sitter family,

_ 2\ = dp? da?
dus = - N g y p‘; Bra—

1 :
+Z +p of da%Jrafd(ﬁ?)Jr

AW
b) {a; — co}-limit-Kerr-de Sitter,
c.1) Wick-rotated-Kerr-de Sitter for n even,
gas = )\/27 - fdp—p: + ; L +pp af L (da? + afde?) — Wlpz dzﬂ
c.2) Wick-rotated-Kerr-de Sitter for n odd,
Gus = (/J +/\>dt2— %dpﬁ B do:;l +Z; 1+pp a? (da? + a2dg?) + (/))\zv;rp?) d;:vz

(p? = X) dW?

4

=

Z(y doy;

i=1

) |



Case Constraint on {o;} w = k
a) S 1+ Aad)a2 = 1 Srtla? ':I ll:;"’zz 2 iéa,a?d@,
b) i+ 30 Aafad =1 oy i+ Z sz za Wdt+5dp— lé a;a?de;
c.1) Epﬂ )\a2(y2 1 Zf? (12 p§ 1:‘:2&2 az %dp - 1:24:1 b,a?d@
02) | oy = D= Aad)a? =1 | ot~ X af | oy - 3 1 Mhe? | Wi+ izl 3 wotdo
i= i=

Table 1: Functions defining the Kerr-Schild-de Sitter families.
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Algebraically special metrics

@ [Colley et al. '04] extends Petrov’s 4D classification of Weyl tensor to all dimensions.
@ Based on existence of a principal Weyl Aligned Null Direction (WAND) #.

o £ WAND & 3 semi-null frame {£,7¢, {m(,-)};’;ll} such that (not trivial if dim > 4)

o Cojoj = Caugyﬁam(*;)féﬁm&) =0 — Algebraic type I
o Cpi0i := Caug,,éo‘f“/éﬁmf’i) =0 —— Algebraic type I,

o % WAND is multiple < 3 semi-null frame {%,7, {m(,»)}lf’;ll} such that

o Cojjk := Cauﬁyéam(‘t)mé)m(”k) =0 — Algebraic type I (= 1, in 4 dim)

o Further cases: IlI, N, O.

o Secondary classification: same algebraic types also on 7

o e.g. Type D & £,7 both multiple WANDs.
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Theorem [Mars & P.-N/]

Let (I\7I,§) be a A > 0-vacuum spacetime satisfying:

o Algebraic type at least I, @ Locally conformally flat .#.
Then and only then (M, Z) belongs to the Kerr-de Sitter-like class.

o Strategy: Impose algebraic type I, + conformally flat (&, ~)

o Identify spacetime via asymptotic data: D = Q2*"Weylg(y, wv,) |z

o Type I, intertwines D with rest of components of QZ*"Weng

We show regularity of QZ_"Weng |y <= s locally conformally flat or dim= 4. J

o Analyze leading and subleading orders of type I, equation shows

o D= (& ® &)t where ¢ is a CKV of 7.

_1
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10/11



Conclusions & outlook

o {Kerr-de Sitter-like} «— {Type I, + locally conformally flat .#}

11/11



Conclusions & outlook

o {Kerr-de Sitter-like} «— {Type I, + locally conformally flat .#}

o Kerr-de Sitter-like is type D! — too strong hypothesis?

11/11



Conclusions & outlook

o {Kerr-de Sitter-like} «— {Type I, + locally conformally flat .#}

o Kerr-de Sitter-like is type D! — too strong hypothesis?

@ Previous 5d characterization [Mars & P.-N.] (cf. [Bernardi de Freitas, Godazgar & Reall '15]):

{Kerr-de Sitter-like} «— {Type II 4+ non-degenerate optical matrix}

11/11



Conclusions & outlook

o {Kerr-de Sitter-like} «— {Type I, + locally conformally flat .#}

o Kerr-de Sitter-like is type D! — too strong hypothesis?

@ Previous 5d characterization [Mars & P.-N.] (cf. [Bernardi de Freitas, Godazgar & Reall '15]):

{Kerr-de Sitter-like} «— {Type II 4+ non-degenerate optical matrix}

o { Type II + non-degenerate optical matrix } characterization does not hold in 4 dim.

11/11



Conclusions & outlook

o {Kerr-de Sitter-like} «— {Type I, + locally conformally flat .#}

o Kerr-de Sitter-like is type D! — too strong hypothesis?

@ Previous 5d characterization [Mars & P.-N.] (cf. [Bernardi de Freitas, Godazgar & Reall '15]):

{Kerr-de Sitter-like} «— {Type II 4+ non-degenerate optical matrix}

o { Type II + non-degenerate optical matrix } characterization does not hold in 4 dim.

o { Type I, + locally conformally flat .# } holds in all dim > 4.

11/11



Conclusions & outlook

o {Kerr-de Sitter-like} «— {Type I, + locally conformally flat .#}

o Kerr-de Sitter-like is type D! — too strong hypothesis?

@ Previous 5d characterization [Mars & P.-N.] (cf. [Bernardi de Freitas, Godazgar & Reall '15]):

{Kerr-de Sitter-like} «— {Type II 4+ non-degenerate optical matrix}

o { Type II + non-degenerate optical matrix } characterization does not hold in 4 dim.

o { Type I, + locally conformally flat .# } holds in all dim > 4.

Thank you for your attention
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