Can relativistic effects explain galactic dynamics without dark matter?

Filipe Costa*, José Natário*

*CAMGSD, IST- Lisbon

Based on arXiv:2312.12302 (PRD, to appear) PRD 108 (2023) 4, 044056 [arXiv:2303.17516]

EREP2024, July 2024

Missing mass problem

Galactic flat rotation curves

Gravitational lensing

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

- these effects cannot be accounted for based only on the visible baryonic matter
- ▶ for stars in galaxy, $v \leq 10^{-3} \Rightarrow \frac{d^2 \vec{x}}{dt^2} = \vec{G}_N + O(|\vec{G}_N| 10^{-6})$ ⇒ relativistic corrections one million times smaller than needed to impact rotation curves
- Can full general relativity explain them, without dark matter?

Quasi-Maxwell formalism

Stationary spacetime:
$$ds^2 = -e^{2\Phi}(dt - A_i dx^i)^2 + h_{ij} dx^i dx^j$$

Space part of time-like geodesic equation:

$$\frac{\tilde{D}\vec{U}}{d\tau} = \gamma \left[\gamma \vec{G} + \vec{U} \times \vec{H} \right] \qquad \stackrel{(\tilde{L})}{\overset{(\tilde{L})}{det}}$$

 $(ilde{D}/d au \equiv ext{covariant})$ derivative wrt to h_{ij}

Space part of null geodesic equation:

$$\frac{\tilde{D}\vec{k}}{d\lambda} = \nu \left[\nu \vec{G} + \vec{U} \times \vec{k} \right]$$

- analogous to Lorentz force $D\vec{U}/d\tau = (q/m)[\gamma\vec{E} + \vec{U} \times \vec{B}]$
- $G_i = -\Phi_{,i} \equiv$ "gravitoelectric" field
- $\blacktriangleright H^{i} = e^{\Phi} \epsilon^{ijk} \mathcal{A}_{k,j} \equiv \text{``gravitomagnetic'' field}$
- $h_{ij} \equiv$ space (or radar) metric

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

Quasi-Maxwell formalism

Stationary spacetime:
$$ds^2 = -e^{2\Phi}(dt - A_i dx^i)^2 + h_{ij} dx^i dx^j$$

Space part of time-like geodesic equation:

$$\frac{\tilde{D}\vec{U}}{d\tau} = \gamma \left[\gamma \vec{G} + \vec{U} \times \vec{H} \right] \qquad \qquad \overset{(\tilde{D}/d\tau \ \equiv \ \text{covariant}}{}_{\text{derivative wrt to } h_{ij})}$$

Space part of null geodesic equation:

$$\frac{\tilde{D}\vec{k}}{d\lambda} = \nu \left[\nu \vec{G} + \vec{U} \times \vec{k} \right]$$

- analogous to Lorentz force $D\vec{U}/d\tau = (q/m)[\gamma\vec{E} + \vec{U} \times \vec{B}]$
- $G_i = -\Phi_{,i} \equiv$ "gravitoelectric" field
- $H^{i} = e^{\Phi} \epsilon^{ijk} \mathcal{A}_{k,j} \equiv$ "gravitomagnetic" field
- $h_{ij} \equiv$ space (or radar) metric
 - \blacktriangleright $ec{G} = ec{G}_{
 m N} +$ non-linear terms
 - ▶ if GR was to explain the missing mass problem, would have to be either through \vec{H} , or the non-linear terms in \vec{G}

Gravitational lensing

- Nearly spherical lens: when the light source, lens, and observer are aligned, an Einstein ring forms in the observer's sky.
- Nearly perfect Einstein rings have been detected (e.g. "Cosmic Horseshoe", B1938+666);
- impossible to explain based only on the visible baryonic matter.
- Consistent with dark matter halos roughly spherical or moderately deformed

- The gravitomagnetic field \vec{H} cannot mimic dark matter
 - ▶ in the equatorial plane, GM "force" $\vec{v} \times \vec{H}$ deflects rays on both sides of the body in the same direction;
 - creates no convergence of rays along axis connecting source and lens

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

 \blacktriangleright The gravitomagnetic field \vec{H} cannot mimic dark matter

- ▶ in the equatorial plane, GM "force" $\vec{v} \times \vec{H}$ deflects rays on both sides of the body in the same direction;
- creates no convergence of rays along axis connecting source and lens

Gauss-Bonnet theorem applied to 2-surface S on the space manifold (of metric h_{ij}), bounded by C_+ and C_- :

$$\theta_{\rm R} = \iint_{\mathcal{S}} K d\mathcal{S} + \int_{C_+} \kappa_{\rm g} d\lambda - \int_{C_-} \kappa_{\rm g} d\lambda - \theta_{\rm S}$$

 $\blacktriangleright \ \kappa_{\rm g} = G^2 + (\vec{v} \times \vec{H})^2 \Rightarrow \text{gravitomagnetic contributions to } \theta_{\rm R} \text{ cancel out}$

- Kerr: rays starting at equal (in magnitude) angles will not cross along the lens-source axis (x-axis)
- those that do cross along the axis, arrive at different angles.

Dipole-like \vec{H} :

- rays with impact parameter $ec{b}$ orthogonal to the equatorial plane are deflected orthogonally to $ec{b}$
 - creates no convergence
 - deflection direction the same for $\pm \vec{b}$; but opposite to equatorial plane

(Images generated with the GYOTO ray tracing code) Kerr:

for aligned setting, ring is weakened at the poles or splits into pair of arcs.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

lmage shifted orthogonally to \vec{S} .

(Images generated with the GYOTO ray tracing code) Kerr:

- for aligned setting, ring is weakened at the poles or splits into pair of arcs.
- lmage shifted orthogonally to \vec{S} .
- for source at the primary caustic (off the optical axis), covering the whole caustic section: nearly perfect, shifted ring forms
- similar (*for source wider than caustic*) to non-aligned Schwarzschild lens

• same angular diameter $\Rightarrow \vec{H}$ does not contribute to lens power

smaller sources: rings to do not form anywhere

(Images generated with the GYOTO ray tracing code)

For $S/M^2 > 1$ (possible only for extended bodies, like stars) the ring's deformation is unavoidable

in general, the ring does not even form

▶ still H < G (typically $H \ll G$) along the ray trajectory: $H/G \sim v_{\rm rot} R/r < 1$.

(Images generated with the GYOTO ray tracing code)

For $S/M^2 > 1$ (possible only for extended bodies, like stars) the ring's deformation is unavoidable

in general, the ring does not even form

- ▶ still H < G (typically $H \ll G$) along the ray trajectory: $H/G \sim v_{\rm rot} R/r < 1.$
- But a much larger \vec{H} would be needed in order to have an impact on galactic rotation.

Space part of time-like geodesic equation:

$$rac{ ilde{D}ec{U}}{d au} = \gamma^2 \left[ec{G} + ec{v} imes ec{H}
ight] \qquad v \lesssim 10^{-3} ext{ for stars in galaxy}$$

Space part of null geodesic equation:

$$\frac{\tilde{D}\vec{k}}{d\lambda} = \nu^2 \left[\vec{G} + \vec{v} \times \vec{H}\right] \qquad v = 1 \text{ for light}$$

▶ In order for gravitomagnetic force $\vec{v} \times \vec{H}$ to have impact on rotation curves, one needs $|\vec{H}| \sim 10^3 |\vec{G}|$

 \blacktriangleright impossible for rotating body $H/G \sim v_{
m rot} R/r < 1$

$$\blacktriangleright \quad \vec{v}_{\rm f} - \vec{v}_{\rm in} \approx 2 \int_{-\infty}^{\infty} \vec{G} dt + \int_{-\infty}^{\infty} \vec{v} \times \vec{H} dt$$

 \Rightarrow bending angles orders of magnitude larger than observed!

 \blacktriangleright \vec{H} cannot be the driver of galactic dynamics

Non-linear GR effects work against attraction

Geodesic equation for a star in a galaxy, constrained by observed lensing to be:

$$rac{ ilde{D}ec{U}}{d au}pproxec{G}~~v_{
m circ}=\sqrt{rG_r}+O(10^{-6})$$

Remains only to clarify whether non-linear effects can amplify \vec{G} in order to sustain the rotation curves without dark matter

Field equations for \vec{G} and \vec{H}	
$\begin{split} \tilde{\nabla} \cdot \vec{G} &= -4\pi (2\rho + T^{\alpha}_{\ \alpha}) + \vec{G}^2 + \frac{1}{2}\vec{H}^2 \\ \tilde{\nabla} \times \vec{H} &= -16\pi \vec{J} + 2\vec{G} \times \vec{H} \end{split}$	• time-time and time-space projections of $R_{\mu\nu} = 8\pi \left(T_{\mu\nu} - \frac{1}{2}g_{\mu\nu}T^{\alpha}_{\ \alpha}\right)$
$egin{array}{ll} ar{ abla} imes egin{array}{ll} ar{ abla} & otimes eta & otimes & otimes eta & otimes eta & otim$	► Identities

Non-linear terms \vec{G}^2 and $\vec{H}^2/2$ act as effective negative "energy" sources for \vec{G}

- counter the attractive effect of $2
 ho+{\cal T}^lpha_{\ lpha}$
 - aggravate the missing mass problem

Non-linear GR effects work *against* attraction — Post-Newtonian approximation

static point mass

$$ec{G} = -rac{M}{r^3}\left(1-rac{2M}{r}
ight)ec{r} < -rac{M}{r^3}ec{r} \equiv ec{G}_{
m N}$$

angular velocity of circular orbit:

$$\Omega_{\rm circ} = \left[\sqrt{\frac{M}{r^3}} - \frac{3}{2} \sqrt{\frac{M^3}{r^5}} \right] \ < \ \sqrt{\frac{M}{r^3}} \ \equiv \ \Omega_{\rm N}$$

 \Rightarrow non-linear term *slows down* rotation

► self gravitating disks (Mach-Malec, 2015)

$$\Omega_{\rm circ} = \Omega_{\rm N} \left[1 - \frac{2}{1-\delta} \Omega_{\rm N}^2 r^2 - \frac{4h_{\rm N}}{1-\delta} \right] - \frac{\mathcal{A}_{\phi}}{r^2(1-\delta)}$$

$$\delta \in [-\infty, 0] \setminus \{-1\}$$

;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \Rightarrow non-linear term *slows down* rotation

Balasin-Grumiller "galactic" model

$$ds^{2} = -(dt - \mathcal{A}_{\phi}(r, z)d\phi)^{2} + h_{ij}(r, z)dx^{i}dx^{j}$$
$$\mathcal{A}_{\phi}(r, z) = V_{0}(R - r_{0}) + \frac{V_{0}}{2}[d_{r_{0}} + d_{-r_{0}} - d_{R} - d_{-R}]$$
$$h_{ij}dx^{i}dx^{j} = r^{2}d\phi^{2} + e^{\nu(r, z)}(dr^{2} + dz^{2})$$

$$d_{R} \equiv \sqrt{r^{2} + (z - R)^{2}}$$
$$d_{-R} \equiv \sqrt{r^{2} + (z + R)^{2}}$$
$$d_{r_{0}} \equiv \sqrt{r^{2} + (z - r_{0})^{2}}$$
$$d_{-r_{0}} \equiv \sqrt{r^{2} + (z + r_{0})^{2}}$$

 $r_0 \equiv radius \text{ of galactic bulge}; \quad R \equiv radius \text{ of galactic disk}$ $V_0 = \text{const.} \equiv \text{dust velocity, wrt ZAMOS, in the "flat regime"}$

Claimed to describe, in *comoving coordinates*, a rotating dust with a flat velocity profile matching the Milky Way's. But:

- ► $g_{\alpha\beta}$ time-independent \Rightarrow dust at rest in rigid frame \Rightarrow incompatible with flat rotation curve (demands non-constant $\vec{\Omega}$)
- $\vec{G} = 0$, $\lim_{r \to \infty} \vec{H} = 0 \Rightarrow$ asymptotically inertial rigid frame
 - dust static with respect the asymptotic inertial frame (Costa et al, 2023)

 \Rightarrow non-rotating with respect to the distant quasars

Cannot describe any galaxy.

Balasin-Grumiller "galactic" model — non-linearity

$$ds^{2} = -(dt - \mathcal{A}_{\phi}(r, z)d\phi)^{2} + h_{ij}(r, z)dx^{i}dx^{j}$$
$$\mathcal{A}_{\phi}(r, z) = V_{0}(R - r_{0}) + \frac{V_{0}}{2}[d_{r_{0}} + d_{-r_{0}} - d_{R} - d_{-R}]$$
$$h_{ij}dx^{i}dx^{j} = r^{2}d\phi^{2} + e^{\nu(r, z)}(dr^{2} + dz^{2})$$

$$d_{R} \equiv \sqrt{r^{2} + (z - R)^{2}}$$
$$d_{-R} \equiv \sqrt{r^{2} + (z + R)^{2}}$$
$$d_{r_{0}} \equiv \sqrt{r^{2} + (z - r_{0})^{2}}$$
$$d_{-r_{0}} \equiv \sqrt{r^{2} + (z + r_{0})^{2}}$$

 $r_0 \equiv radius \text{ of galactic bulge}; \quad R \equiv radius \text{ of galactic disk}$ $V_0 = \text{const.} \equiv \text{dust velocity, wrt ZAMOS, in the "flat regime"}$

►
$$\vec{G} = 0$$
 and $\vec{J} = 0$ (comoving coordinates):
 $\tilde{\nabla} \cdot \vec{G} = -4\pi\rho + \frac{1}{2}\vec{H}^2 = 0$

 \blacktriangleright Linearizing yields empty space equation ho= 0

 purely non-linear solution (no linear, or Newtonian limit)

• extreme repulsive action of $\vec{H}^2/2$ cancels out exactly the attractive effect of the dust's energy density ρ ("freezes" the dust!)

Balasin-Grumiller "galactic" model — non-linearity

$$ds^{2} = -(dt - \mathcal{A}_{\phi}(r, z)d\phi)^{2} + h_{ij}(r, z)dx^{i}dx^{j}$$
$$\mathcal{A}_{\phi}(r, z) = V_{0}(R - r_{0}) + \frac{V_{0}}{2}[d_{r_{0}} + d_{-r_{0}} - d_{R} - d_{-R}]$$
$$h_{ij}dx^{i}dx^{j} = r^{2}d\phi^{2} + e^{\nu(r, z)}(dr^{2} + dz^{2})$$

$$d_{R} \equiv \sqrt{r^{2} + (z - R)^{2}}$$
$$d_{-R} \equiv \sqrt{r^{2} + (z + R)^{2}}$$
$$d_{r_{0}} \equiv \sqrt{r^{2} + (z - r_{0})^{2}}$$
$$d_{-r_{0}} \equiv \sqrt{r^{2} + (z + r_{0})^{2}}$$

 $r_0 \equiv radius \text{ of galactic bulge}; \quad R \equiv radius \text{ of galactic disk}$ $V_0 = \text{const.} \equiv \text{dust velocity, wrt ZAMOS, in the "flat regime"}$

•
$$\vec{G} = 0$$
 and $\vec{J} = 0$ (comoving coordinates):

$$\tilde{\nabla} \cdot \vec{G} = -4\pi\rho + \frac{1}{2}\vec{H}^2 = 0$$

- \blacktriangleright Linearizing yields empty space equation ho= 0
 - purely non-linear solution (no linear, or Newtonian limit)
- extreme repulsive action of $\vec{H}^2/2$ cancels out exactly the attractive effect of the dust's energy density ρ ("freezes" the dust!)
- \blacktriangleright \vec{H} generated by singularities along the axis, not by motion of matter.

BG "galactic" model — gravitomagnetic field \vec{H}

This is the gravitomagnetic field of a pair of oppositely charged NUT rods along z-axis, of gravitomagnetic charges

$$Q_{\text{NUT}} = \frac{1}{4\pi} \int_{\mathcal{S}} d\boldsymbol{\mathcal{A}} = \frac{1}{4\pi} \int_{\mathcal{S}} \vec{H} \cdot \vec{dS} = \mp V_0 (R - r_0)/2$$

► matches the magnetic field \vec{B}_{rods} of a pair of magnetically charged rods, identifying $V_0/2$ with charge density λ_M : $(B_{rods})_i \stackrel{\lambda_M \to V_0/2}{=} H_i$. (length of the rods approximately equal to galactic diameter...)

BG "galactic" model — gravitomagnetic field \vec{H}

This is the gravitomagnetic field of a pair of oppositely charged NUT rods along z-axis, of gravitomagnetic charges

$$Q_{\text{NUT}} = \frac{1}{4\pi} \int_{\mathcal{S}} d\boldsymbol{\mathcal{A}} = \frac{1}{4\pi} \int_{\mathcal{S}} \vec{H} \cdot \vec{dS} = \mp V_0 (R - r_0)/2$$

- ▶ matches the magnetic field \vec{B}_{rods} of a pair of magnetically charged rods, identifying $V_0/2$ with charge density λ_M : $(B_{rods})_i \stackrel{\lambda_M \to V_0/2}{=} H_i$. (length of the rods approximately equal to galactic diameter...)
- Plus a curl-free term in $\mathcal{A} \Rightarrow$ potential of an infinite spinning cosmic string, of angular momentum per unit mass $j = -V_0(R_p r_0)/4$.

(Images generated with the GYOTO ray tracing code)

- Rays do not cross along optical axis for aligned setting
- Multiple images at equator for y > 0, where light rays cross
- No Einstein rings

(Images generated with the GYOTO ray tracing code)

▶ Deflection angles much larger than observed (spherical lens with Milky Way's mass $M = 10^{12} M_{\odot}$, yields Einstein ring 18arcsec wide).

BG "galactic" model — origin of claimed rotation curves

BG velocity is measured wrt zero angular momentum observers (ZAMOs) (azimuthal angular momentum: u_{ϕ})

- **ZAMOs**: $(u_Z)_{\phi} = 0$
- have angular velocity $\Omega_{Z} \equiv \frac{u_{Z}^{\phi}}{u_{Z}^{0}} = -\frac{g_{0i}}{g_{00}} = \frac{e^{2\Phi} \mathcal{A}_{\phi}}{g_{\phi\phi}}$ relative to asympt. inertial frame
- \blacktriangleright are *dragged* by ${\cal A}$

Kerr spacetime

 at the horizon, ZAMO angular velocity coincides with that of the horizon (ZAMO comoves with the horizon)

$$\Omega_{\mathrm{Z}}(r_{+}) = rac{a}{r_{+}^{2}+a^{2}} = \Omega_{\mathrm{H}}$$

by confusing the ZAMOs with observers at rest relative to distant stars, one would conclude that Kerr black holes do not rotate!

BG "galactic" model — origin of claimed rotation curves

BG velocity is measured wrt zero angular momentum observers (ZAMOs) (azimuthal angular momentum: u_{ϕ})

- **>** ZAMOs: $(u_Z)_{\phi} = 0$
- ► have angular velocity $\Omega_Z \equiv \frac{u_Z^{\phi}}{u_Z^0} = -\frac{g_{0i}}{g_{00}} = \frac{e^{2\Phi} \mathcal{A}_{\phi}}{g_{\phi\phi}}$ relative to asympt. inertial frame
- \blacktriangleright are "dragged" by $oldsymbol{\mathcal{A}}$

- \blacktriangleright artificially large gm potential ${\cal A}$ created by the singularities
- ZAMOs misunderstood as at rest relative to the axis' asymptotic rest frame
- ► the velocity curve obtained: $v_{\rm rZ}^{\phi} = -\sqrt{-g^{00}}\Omega_Z$ is but minus the velocity of the ZAMOs with respect to the rigid asymptotic inertial frame
- Is the ZAMOs, not the dust (static in such frame), that rotates

Conclusions

We have demonstrated that, in light of the experimentally measured galactic rotation curves and gravitational lensing, relativistic effects cannot resolve (or even be relevant) to the missing mass problem

- gravitational lensing rules out the gravitomagnetic field as a player;
- non-linear effects only aggravate the need for dark matter (besides negligible in realistic models)
- general relativistic "galactic" models in the literature originate from pathologies:
 - unphysical singularities, generating artificially large gravitomagnetic fields (ruled out by the observed gravitational lensing);
 - in "exact" models, rotation curves moreover computed relative to unsuitable reference observers — the ZAMOs, being dragged by the singularities

Thank you! 🔊 🖉

(e.g. BG model is actually static, does not even rotate!)

References:

```
Costa-Natário arXiv:2312.12302 (PRD to appear),
Costa et al PRD 108 (2023) 4, 044056 [arXiv:2303.17516]
```