I-Love-*Q*, but *δM* too

Eneko Aranguren with the collaboration of

José Antonio Font, Nicolas Sanchis-Gual, Raül Vera

Background configuration + Perturbations

We consider two scenarios:

Background configuration + Perturbations

We consider two scenarios:

Isolated & Rotating to 2^{nd} order $|Tidal Field|$ to 1^{st} order

Background configuration + Perturbations

We consider two scenarios:

 $X \times Y \times Y \times Y$

*M*⁰ (Background)

Background configuration + Perturbations

We consider two scenarios:

 M_0

IS

 $X \times Y \times Y \times Y$

 $(1st order)$

IS

 λ

 M_{0}

Semi-analytical perturbative approach

Background configuration + Perturbations

We consider two scenarios:

IS

 $M_S = M_0 + \Omega_S^2 \delta M$ (2nd order) $+\, \Omega_S^2$ $=M_0 + \Omega_S^2$

 λ

Semi-analytical perturbative approach

Background configuration + Perturbations

We consider two scenarios:

IS

Semi-analytical perturbative approach

Background configuration + Perturbations

We consider two scenarios:

 $M_S = M_0 + \Omega_S^2 \delta M$

QS

$$
I_{S}
$$

QS

 \land X \land X \land X \land X X / X /

$M_{\rm S} = M_0 + \Omega_{\rm S}^2 \delta M$ (Background)

Semi-analytical perturbative approach

Background configuration + Perturbations

We consider two scenarios:

 $Isolated & Rotating \sim 100$

$$
I_{S}
$$

QS

 \land X \land X \land X \land X X / X /

M_0

 λ_S (1st order)

Semi-analytical perturbative approach

Background configuration + Perturbations

We consider two scenarios:

Isolated & Rotating $\left|\left|\left|\right|\right|\right|$

 $M_S = M_0 + \Omega_S^2 \delta M$

$$
\overline{Q} := \frac{Q_S M_0}{\Omega_S^2 I^2}
$$

$$
\bar{I} := \frac{I_S}{M_0^3}
$$

$$
\overline{\lambda_S} := \lambda_S
$$

$I :=$ I_S M_0^3 0

$$
\overline{Q} := \frac{Q_S M_0}{\Omega_S^2 I^2}
$$

"Universal" *I*-Love-*Q* relations [Yagi & Yunes (2014), …]

$$
\overline{\lambda_S} := \lambda_S
$$

$I :=$ I_S M_0^3 0

$$
\overline{Q} := \frac{Q_S M_0}{\Omega_S^2 I^2}
$$

"Universal" *I*-Love-*Q* relations [Yagi & Yunes (2014), …]

$$
\overline{\lambda_S} := \lambda_S
$$

 $\vee \wedge \wedge \vee \wedge \vee$

I := I_S M_0^3

$$
\left(Q\right) = \frac{Q_S M_0}{\Omega_S^2 I^2}
$$

$$
\overline{\lambda_S} := \lambda_S
$$

Standard approach: $M_0 = M_S$

Standard approach: $M_0 = M_S$

$$
\overline{S}\overline{M} \longrightarrow \overline{S}\overline{M} := \frac{M_S - M_0}{\Omega_S^2 \overline{I}^2 M_0^3}
$$

$$
\frac{1}{\sqrt{2\pi}} \text{Extract } \overline{\delta M} \longrightarrow \overline{\delta M} := \frac{M_S - M_0}{\Omega_S^2 \overline{I}^2 M_0^3} \longrightarrow M_0
$$

Extract
$$
\overline{\delta M}
$$
 $\longrightarrow \overline{\delta M} := \frac{M_S - M_0}{\Omega_S^2 \overline{I^2 M_0^3}}$ $\xrightarrow{\overline{\delta M_S, \Omega_S}}$ M_0

\nAnswer λ and λ are given by $\overline{I} := \frac{I_S}{M_0^3}$ and $\overline{I} := \frac{I_S}{M_0^3}$ and $\overline{Q} := \frac{Q_S M_0}{\Omega_S^2 \overline{I^2}}$

Extension: *I*-Love-*Q*-*δM*

"Universal" relations for $\overline{\delta M}$ [Reina, Sanchis-Gual, Vera, Font (2017)]

NXXXXXXX

The extended approach is more precise, but… how much?

$$
\varepsilon_X^{\text{ext}} = \frac{|X^{\star} - X^{\text{ext}}|}{X^{\star}} \qquad \varepsilon_X^{\text{std}} = \frac{|X^{\star} - X^{\text{std}}|}{X^{\star}}
$$

The extended approach is more precise, but… how much?

1) Compare the relative errors:

The extended approach is more precise, but… how much?

1) Compare the relative errors:

exact value

The extended approach is more precise, but... how much?

1) Compare the relative errors:

The extended approach is more precise, but... how much?

1) Compare the relative errors:

 $\left(\left(\left.\right\rangle \right)\right)\left(\left.\right\rangle \right)\left(\left.\right\rangle \right)\left(\left.\right$

2) Infer the EoS and compare

The extended approach is more precise, but… how much?

1) Compare the relative errors:

IXXXXXXXXXXXXXXXXXXX

IXXXXXXXXXXXXXXXXXXX

Extended vs Standard

2) Infer the EoS and compare

The extended approach is more precise, but… how much?

1) Compare the relative errors:

$$
\chi_S := \frac{I_S \Omega_S}{M_0^2}
$$

 χ

Spin-parameter:

Polytropic EoS:

 $P = K\rho^{\gamma}$

$$
\chi_S := \frac{I_S \Omega_S}{M_0^2}
$$

Spin-parameter:

Polytropic EoS:

 $P = K\rho^{\gamma}$

$$
\chi_S := \frac{I_S \Omega_S}{M_0^2}
$$

Spin-parameter:

Polytropic EoS:

 $P = K\rho^{\gamma}$

IXXXXXXXXXXXXXXXXXXX

2) Infer the EoS and compare

Extended vs Standard

The extended approach is more precise, but… how much?

1) Compare the relative errors:

IXXXXXXXXXXXXXXXXXXX

2) Infer the EoS and compare

Extended vs Standard

The extended approach is more precise, but… how much?

1) Compare the relative errors:

Inferring the EoS

1) Assume the observed star has a polytropic EoS

2) Measure λ_S , M_S and Ω_S

4) See which combinations of P_c , γ and K provide M_S , λ_S + I_S , M_0 , Q_S

3) Extract I_s , M_0 and Q_s using the universal relations

 $\left(\left.\right\rangle \right)\left.\right\rangle \left.\left\langle \right\rangle \right\rangle \left.\left\langle \right\rangle \left\langle \right\rangle \left\langle$

 $\int \int \int$

Inferring the EoS $K = 100$

Free γ P_c

Conclusions

- 1. The inclusion of $δM$ paves the way into a more accurate inference of stellar properties, including the EoS
- 2. The extended approach enables the inference of 5 (not only 4) quantities of the EoS

Conclusions

- 1. The inclusion of $δM$ paves the way into a more accurate inference of stellar properties, including the EoS
- 2. The extended approach enables the inference of 5 (not only 4) quantities of the EoS Example: Piecewise polytropic stellar configurations with two regions

Conclusions

- properties, including the EoS
- 2. The extended approach enables the inference of 5 (not only 4) quantities of the EoS Example: Piecewise polytropic stellar configurations with two regions

Conclusions

- properties, including the EoS
- 2. The extended approach enables the inference of 5 (not only 4) quantities of the EoS Example: Piecewise polytropic stellar configurations with two regions

Conclusions

- properties, including the EoS
- The extended approach enables the inference of 5 (not only 4) quantities of the EoS Example: Piecewise polytropic stellar configurations with two regions

 $\text{Standard: } (\lambda_2^{\star}, M_S^{\star}) + (I_S^{\text{std}}, Q_S^{\text{std}})$ K_2, γ_2 Extended: $(\lambda_2^{\star}, M_S^{\star}) + (I_S^{\text{ext}}, Q_S^{\text{ext}}, M_0^{\text{ext}})$

