José Antonio Font, Nicolas Sanchis-Gual, Raül Vera

I-Love-Q, but δM too

Eneko Aranguren with the collaboration of

Background configuration + Perturbations

We consider two scenarios:

Background configuration + Perturbations

We consider two scenarios:

Isolated & Rotating | to 2nd order

Background configuration + Perturbations

We consider two scenarios:

Isolated & Rotating

 M_0

 \times

(Background)

Background configuration + Perturbations

We consider two scenarios:

Isolated & Rotating

 M_0

 \times

(1st order)

Background configuration + Perturbations

We consider two scenarios:

Isolated & Rotating

 M_0

 I_{S}

 \times

Background configuration + Perturbations

We consider two scenarios:

Isolated & Rotating

 I_{S}

 $M_S = M_0 + \Omega_S^2 \delta M$ (2nd order)

 $X \times X \to II$

Background configuration + Perturbations

We consider two scenarios:

Isolated & Rotating

 $M_S = M_0 + \Omega_S^2 \ \delta M$

 I_{S}

Background configuration + Perturbations

We consider two scenarios:

Isolated & Rotating

 $M_S = M_0 + \Omega_S^2 \ \delta M$

 I_{S}

(Background) M_0

Background configuration + Perturbations

We consider two scenarios:

Isolated & Rotating

 $M_S = M_0 + \Omega_S^2 \ \delta M$

 I_{S}

M_0

(1st order)

$$\bar{I} := \frac{I_S}{M_0^3}$$

$$\overline{\lambda_S} := \lambda_S$$

$$\overline{Q} := \frac{Q_S M_0}{\Omega_S^2 I^2}$$

$\bar{I} := \frac{I_S}{M_0^3}$

$$\overline{\lambda_S} := \lambda_S$$

$$\overline{Q} := \frac{Q_S M_0}{\Omega_S^2 I^2}$$

"Universal" *I*-Love-*Q* relations

[Yagi & Yunes (2014), ...]

 $\land \land \land \land \land$

 $\land \land$

$\bar{I} := \frac{I_S}{M_0^3}$

$$\overline{\lambda_S} := \lambda_S$$

$$\overline{Q} := \frac{Q_S M_0}{\Omega_S^2 I^2}$$

"Universal" *I*-Love-*Q* relations

ve-*Q* relations [Yagi & Yunes (2014), ...]

$\overline{I} = \frac{I_S}{M_0^3}$

$$\overline{\lambda_S} := \lambda_S$$

$$(\overline{Q}) = \frac{Q_S M_0}{\Omega_S^2 I^2}$$

Standard approach: $M_0 = M_S$

Standard approach: $M_0 = M_S$

"Universal" relations for $\overline{\delta M}$

"Universal" relations for $\overline{\delta M}$ [Rei

"Universal" relations for $\overline{\delta M}$

"Universal" relations for $\overline{\delta M}$

$$\overline{\delta M} \longrightarrow \overline{\delta M} := \frac{M_S - M_0}{\Omega_S^2 \, \overline{I}^2 \, M_0^3}$$

"Universal" relations for $\overline{\delta M}$

$$\overline{\delta M} \longrightarrow \overline{\delta M} := \frac{M_S - M_0}{\Omega_S^2 \, \overline{I}^2 \, M_0^3} \xrightarrow{M_0} M_0$$

"Universal" relations for $\overline{\delta M}$

[Reina, Sanchis-Gual, Vera, Font (2017)]

$$\overline{\delta M} \longrightarrow \overline{\delta M} := \frac{M_S - M_0}{\Omega_S^2 \overline{I^2} M_0^3} \xrightarrow{M_0} M_0$$

$$\overline{I} := \frac{I_S}{M_0^3} \xrightarrow{M_0} \overline{Q} := \frac{Q_S M_0}{\Omega_S^2 I^2} \xrightarrow{M_0} \xrightarrow{M_0} \overline{Q} := \frac{Q_S M_0}{\Omega_S^2 I^2} \xrightarrow{M_0} \xrightarrow{M_0}$$

"Universal" relations for $\overline{\delta M}$

The extended approach is more precise, but... how much?

The extended approach is more precise, but... how much?

1) Compare the relative errors: $\varepsilon_x^{\text{ext}}$

The extended approach is more precise, but... how much?

exact value

The extended approach is more precise, but... how much?

exact value

The extended approach is more precise, but... how much?

exact value

The extended approach is more precise, but... how much?

exact value

2) Infer the EoS and compare

The extended approach is more precise, but... how much?

2) Infer the EoS and compare

exact value

Polytropic EoS:

 $P = K \rho^{\gamma}$

Spin-parameter:

$$\chi_S := \frac{I_S \Omega_S}{M_0^2}$$

X

$K = 100 \ \gamma = 2$

Polytropic EoS:

 $P = K \rho^{\gamma}$

Spin-parameter:

$$\chi_S := \frac{I_S \Omega_S}{M_0^2}$$

Polytropic EoS:

 $P = K \rho^{\gamma}$

Spin-parameter:

$$\chi_S := \frac{I_S \Omega_S}{M_0^2}$$

The extended approach is more precise, but... how much?

exact value

2) Infer the EoS and compare

Extended vs Standard

The extended approach is more precise, but... how much?

exact value

2) Infer the EoS and compare

5

Inferring the EoS

1) Assume the observed star has a polytropic EoS

2) Measure λ_S , M_S and Ω_S

4) See which combinations of P_c , γ and K provide $M_S, \lambda_S + I_S, M_0, Q_S$

3) Extract I_S , M_0 and Q_S using the universal relations

Inferring the EoS K = 100

Free γP_c

Conclusions

- 1. properties, including the EoS
- 2. The extended approach enables the inference of 5 (not only 4) quantities of the EoS

The inclusion of δM paves the way into a more accurate inference of stellar

Conclusions

- properties, including the EoS
- 2. The extended approach enables the inference of 5 (not only 4) quantities of the EoS Example: Piecewise polytropic stellar configurations with two regions

The inclusion of δM paves the way into a more accurate inference of stellar

Conclusions

- properties, including the EoS
- 2. The extended approach enables the inference of 5 (not only 4) quantities of the EoS Example: Piecewise polytropic stellar configurations with two regions

The inclusion of δM paves the way into a more accurate inference of stellar

Conclusions

- properties, including the EoS
- 2. The extended approach enables the inference of 5 (not only 4) quantities of the EoS Example: Piecewise polytropic stellar configurations with two regions

Conclusions

- properties, including the EoS
- The extended approach enables the inference of 5 (not only 4) quantities of the EoS Example: Piecewise polytropic stellar configurations with two regions

Standard: $(\lambda_2^{\star}, M_S^{\star}) + (I_S^{\text{std}}, Q_S^{\text{std}})$ Extended: $(\lambda_2^{\star}, M_S^{\star}) + (I_S^{\text{ext}}, Q_S^{\text{ext}}, M_0^{\text{ext}})$

