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Our case

e Stationary solution — geodesic trajectories do not depend
on time

e Bondi-type accretion — a compact object travelling through
the interstellar medium

e Planar accretion

e Asymptotically, the gas is assumed to be homogeneous and
described by the two-dimensional Maxwell-Jiittner
distribution, boosted with a constant velocity v along the x
axis. In the Cartesian coordinates, the asymptotic
distribution function is given by

F(z,p) =ad (./—pup“ — mo) exp [ b

—(pe + vpx)] :
mo

and in spherical coordinates

F(z,p) = ad (« /—DupH — mo) exp [ p

— (pt +vcosyp pq«)} :
mo
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Particle current density
With the help of Hamilton’s formalism and action-angle

variables, it can be shown that in the vicinity of the
Schwarzschild black hole, the distribution function is given by

flz,p) =ad (\/Tup“ — mo) exp {—ﬁfy [s —evve2 —1lcos[p + eper X (&, €, A)]} },

where

X(E,6,0) = A /6 h &

0008

Additionally, components of surface particle current density
read

m2dmded)\

J#(f,tp) = g/ff ¥, m,é&, Qm)\)puﬁ-

€p=%1
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Monte Carlo approach

Consider a discrete distribution function
FO () = / 59 (w2 — att) (7)) 69 (p — (7)) dr

representing a sample of N particles moving along given trajectories
T = ( e )( ),py)(T)), i =1,...,N. The particle current density associated

with FV) ig given as
I (@ / FN (2, p)p,/—det g (z)dpodpr dpadps.

Let ¥ € M be a hypersurface, not necessarily spacelike. We choose a small
region o € ¥ (a numerical cell) such that € 0. The components of 7, are
approximated by the averages

[, 7 ns
N

where 75, denotes the volume element on .

(Tu(z)) =
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Intersections of trajectories with arcs of constant radius

For a planar stationary accretion flow in the Schwarzschild spacetime, we
select surfaces of constant » = 7 defined by

i:{(t,r,@,g@):teR, r=7,0=m/2 ¢¢cl0,2m)}
and cells
5‘:{(t,r,0,<p): tl StStQ, ’r':F7 9:71'/2, ©1 SSOSSDQ}

More precisely let ®,(z)) denote the orbit of timelike Killing vector field
' =(1,0,0,0), passing through zf at 7 = 0, i.e., Po(xg) = zy. Then & can
be expressed as the image

6' == é[tl,tQ](S)'
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The particle current surface density can now be approximated as

_ fa Juﬁi _ _ 1 Nim pftj)
_ 15 M — — . _
Jot - Mmelia =00 =00 55 o (1= 279) (143,/€%)

(Ju)

For stationary problems, the result should be independent of
the choice of ¢; and t5 in a sense that the number of trajectories
that intersects 3 should be proportional to the length to — ¢1, if
the latter is sufficiently large. In practice, we omit the factor
to — t1 and normalise the results by the number of trajectories
taken into account. Moreover, instead of considering complete
orbits in the four-dimensional spacetime, it is sufficient to work
with projections of trajectories onto surfaces of constant .
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Selection of geodesic parameters

We select the parameters {o, gogi"iw, €, Ai }, representing the radial
and the azimuthal coordinates of the initial position, the energy, and

the total angular momentum of i-th particle, respectively

The first coordinate is the same for all trajectories—all particles start
at a fixed radius ro = M&p. It is important to ensure that this value is
sufficiently large

(init

The coordinate values ¢; ) and €; are sampled from the planar

asymptotic (§ — oo) distribution function:

f(x,p) = ab (\/—pup* — m) exp [—67 (a — e\ E2 — lcosgp)] (1)

To randomise the parameters goii"it), i according to the distribution
function (1), we use the Markov Chain Monte Carlo (MCMC)

method, implemented in the Wolfram Mathematica.
Values of \; are distributed uniformly.

From the selected parameters, we choose those corresponding to the
unbound trajectories and then divide them into absorbed and
scattered

8/13



Results
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Conclusions

e We confirmed the analytical results in the case of planar
accretion

e We demonstrated that the developed Monte Carlo
simulation method can be used for cases that do not have
spherical symmetry

e Outlook:

— Preparation of a three-dimensional simulation
(P. Mach and A. Odrzywotek: 2021, 2022)

— Preparing a simulation of Vlasov gas accretion in Kerr
spacetime (A. Cieslik, P. Mach, A. Odrzywolek: 2022;
P. Rioseco, O. Sarbach: 2018, 2023)

— Generalisation to general-relativistic Vlasov systems
coupled with the electromagnetic field
(M. Thaller: 2023)
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