Greybody factors of d-dimensional Gauss-Bonnet black holes

Filipe Moura

Departament of Mathematics, ISCTE - University Institute of Lisbon, Instituto de Telecomunicac¸oes, Lisbon, Portugal. ˜Based on 240x.xxxxx and work to appear, with Joao Rodrigues. ˜

Work supported by projects CERN/FIS-PAR/0023/2019, 2022.08368.PTDC.

Perturbations on the(d−2)**-sphere**

- For ^a system with **spherical symmetry** (metric and all other fields);
- Metric of the type $d s^{2}=-f(r) d t^{2}$. =− $f(r) d t^2$ $^2+f^{-1}$ $^{1}(r) d r^{2}$ $^{2}+r$ 2 2 $d\,\Omega_{d}^{2}$ $d\hspace{-0.08cm}-\hspace{-0.08cm}2$;
- $a,\,b$ = $r, t; i, j, k = 1, \ldots, d$ −2
- General tensors of rank at least 2 on the $(d-\,$ can be uniquely decomposed in their **tensorial,** -2)-sphere **vectorial** and **scalar** components;
- Key point: gauge-invariant perturbation equations can be reduced to decoupled single master equations of theSchrödinger type for any kind of perturbations in thiskind of background (Ishibashi, Kodama).

The Master Equations

Each perturbation variable obeys ^a "master equation"

$$
\frac{\partial^2 \Phi}{\partial x^2} - \frac{\partial^2 \Phi}{\partial t^2} =: V \Phi.
$$

 \bullet $dx/dr = 1/f$ ("tortoise" coordinate);

- $\Phi(x,t)=e^{i\omega t}\psi(x);$ "master" variable multipole expansion in terms of ^a **multipole number** ℓ;
- $V:$ potential;
- both ⊕ and *V* depend on the type of gravitational
resturbations or field considered perturbations or field considered.
- This is also valid in the presence of **quadratic**(Gauss-Bonnet) corrections (Moura, Dotti-Gleiser)!

Higher derivative corrections

Effective action in d dimensions:

$$
\frac{1}{16\pi G_d}\int \sqrt{-g}\left[\mathcal{R}+\alpha\left(\mathcal{R}_{\mu\nu\rho\sigma}\mathcal{R}^{\mu\nu\rho\sigma}-4\mathcal{R}_{\mu\nu}\mathcal{R}^{\mu\nu}+\mathcal{R}^2\right)\right]\mathsf{d}^d x;
$$

Asymptotically flat spherically symmetric solution(Boulware-Deser 1985):

$$
f(r) = 1 + \frac{r^2}{\alpha(d-3)(d-4)} (1 - q(r)),
$$

\n
$$
q(r) = \sqrt{1 + \frac{4\alpha(d-3)(d-4)\mu}{(d-2)r^{d-1}}},
$$

\n
$$
\mu = \frac{(d-2)R_H^{d-3}}{2} \left(1 + \alpha \frac{(d-3)(d-4)}{2R_H^2}\right),
$$

\n
$$
M = \frac{(d-2)\Omega_{d-2}}{8\pi G_d} \mu.
$$

The corrected potentials

$$
V_{\mathsf{T}}[f(r)] = f(r) \left[\frac{\ell(\ell + d - 3)}{r^2} \left(3 - \frac{B(r)}{A(r)} \right) + K(r) \left(\frac{d^2 K}{dr^2} (r) + \frac{df}{dr} (r) \frac{dK}{dr} (r) \right) \right],
$$

\n
$$
V_{\mathsf{V}}[f(r)] = f(r) \left[\frac{(d - 2)c}{r^2} A(r) + K(r) \left(\frac{d^2 K}{dr^2} (r) + \frac{df}{dr} (r) \frac{dK}{dr} (r) \right) \right],
$$

\n
$$
A(r) = \frac{1}{q(r)^2} \left(\frac{1}{2} + \frac{1}{d - 3} \right) + \left(\frac{1}{2} - \frac{1}{d - 3} \right),
$$

\n
$$
K(r) = \frac{1}{\sqrt{r^{d - 2} A(r) q(r)}},
$$

\n
$$
B(r) = A(r)^2 \left(1 + \frac{1}{d - 4} \right) + \left(1 - \frac{1}{d - 4} \right),
$$

\n
$$
c = \frac{\ell(\ell + d - 3)}{d - 2} - 1.
$$

(Dotti-Gleiser 2005).

The corrected potentials

$$
V_{S}[f(r)] = \frac{f(r)U(r)}{64r^{2}(d-3)^{2}A(r)^{2}q(r)^{8}(4cq(r) + (d-1)R(q(r)^{2} - 1))^{2}},
$$

\n
$$
R(r) = \frac{r^{2}}{\alpha(d-3)(d-4)},
$$

\n
$$
U(r) = 5(d-1)R(r)^{2}(R(r) + 1) - 3(d-1)^{5}R(r)q(r) (24c(R(r) + 1) + (d-1)R(r)^{2}) +
$$

\n
$$
2(d-1)^{4}q(r)^{2} (168c^{2}(R(r) + 1) + 24c(d-1)R(r)^{2} - (d-1)R(r)^{2}(7d(R(r) + 1) +
$$

\n
$$
+2(d-1)^{4}R(r)q(r)^{3} (c(84d(R(r) + 1) + 44R(r) - 84) - 184 2c + (d-1)(d+13) +
$$

\n
$$
+ (d-1)^{3} (384c^{3} - 48c((3d-5)d+2)R(r)^{2} + 192c^{2} ((d-15)R(r)^{2} + d-11) +
$$

\n
$$
+ (d-1)R(r)^{2}(d(7d(R(r) + 1) + 106R(r) + 26) - 3(55R(r) + 7))) q(r)^{4} +
$$

\n
$$
+ (d-1)^{3}R(r) (-64c^{2}(d-38) + (d-1)((7d-90)d+71)R(r)^{2} +
$$

\n
$$
+ 16c (13d^{2}(R(r) + 1) - 2d(81R(r) + 73) + 255R(r) + 303)) q(r)^{5} +
$$

\n
$$
+ 4(d-1)^{2} (96c^{3}(d-7) - 8c(d-1) (6d^{2} - 74d + 145) R(r)^{2} -
$$

\n
$$
-8c^{2}(d(11d(R(r) + 1) - 34R(r) - 58) - 175R(r) + 9) + (d-1)R(r)^{2}(-5(23R(r) +
$$

\n
$$
+ d(d(7d(R(r
$$

The corrected potentials

$$
-4(d - 1)^{2}R(r) \left(8c^{2}(d(72 - 13d) + 43) + (d - 1)(d(d(5d - 49) + 99) - 63) + R(r)^{2} ++4c(d(d(17d(R(r) + 1) - 107R(r) - 123) - 39R(r) + 121) + 465R(r) + 321))q(r)^{7} ++ (d - 1) (128c^{3}(d - 9)(d - 5) + 32c(d - 1)(d(d(8d - 55) + 9) + 246)R(r)^{2} ++ 64c^{2}(d - 5) (d^{2} + ((d - 4)d + 49)R(r) - 3) --(d - 1)R(r)^{2}(d(d(d(45d(R(r) + 1) - 452R(r) - 548) + 6(217R(r) + 393)) --4(349R(r) + 997)) + 565R(r) + 1173)) q(r)^{8} ++ (d - 1)R(r) (-64c^{2}(d - 5)(d(3d - 13) + 36) + (d - 1)(d(3d(d(9d - 92) + 294) - 1204) +- 8c(d - 5)(d(d(d - 79)R(r) + d - 47) + 191R(r) + 127) + 31R(r) + 63))q(r)^{9} ++ 2d - 5 (64c^{3}(d - 5)(d - 3) + 8c(d - 1)(d((d - 43)d + 141) - 27)R(r)^{2} ++ 8c^{2}(d - 5)(d((d - 18)R(r) + d - 2) + 77R(r) - 3) + (d - 1)^{2}R(r)^{2}(-33(R(r) - 7) ++ d(d(9d(R(r) + 1) - 35R(r) - 59) + 43R(r) + 59)))q(r)^{10} -- 2d - 5R(r) (24c^{2}(d - 11)(d - 5)(d - 3) + (d - 1)^{2}(d((7d - 39)d + 81) - 65)R(r)^{2} ++ 12c(d - 7)(d - 5)(d - 3)(d - 1)(R(r) + 1))q(r
$$

Large black hole limit

$$
\lambda := \frac{\alpha}{\mu^{\frac{2}{d-3}}} \ll 1;
$$
\n
$$
f(r) = f_0(r)(1 + \lambda \delta f(r)),
$$
\n
$$
f_0(r) = 1 - \frac{2\mu}{(d-2)r^{d-3}},
$$
\n
$$
\delta f(r) = \frac{2(d-4)(d-3)}{(1 - 2\mu r^{3-d}(d-2)^{-1})(d-2)^2} \frac{\mu^{2\frac{d-2}{d-3}}}{r^{2d-4}},
$$
\n
$$
R_H = \left(\frac{2\mu}{d-2}\right)^{\frac{1}{d-3}} - 2^{\frac{1}{3-d}-1}(d-4)\lambda((d-2)\mu)^{\frac{1}{d-3}},
$$
\n
$$
T_H = \frac{d-3}{4\pi} \left(\frac{d-2}{2\mu}\right)^{\frac{1}{d-3}} \left(1 - \lambda \frac{(d-4)(d-2)}{2}\right).
$$

Greybody factor

Field equation is written in the Schrödinger form

$$
\left[-\frac{d^2}{dx^2} + V\right]\psi(x) = \omega^2\psi(x).
$$

Hawking radiation spectrum:

$$
\langle n(\omega) \rangle = \frac{\gamma(\omega)}{e^{\frac{\omega}{T_{\mathcal{H}}}} \pm 1};
$$

- Greybody factor: $\gamma(\omega);$
- real frequency **emission** rate;
- imaginary frequency **decay** rate.

Computing the greybody factor

Hawking radiation transmitted and reflected by the blackhole potential:

$$
\psi(x) \sim T(\omega)e^{i\omega x}, r \to R_H^+,
$$

$$
\psi(x) \sim e^{i\omega x} + R(\omega)e^{-i\omega x}, r \to +\infty;
$$

- $T(\omega), R(\omega)$: **transmission** and **reflection** coefficients.
- Complex frequency: must also consider $\omega \leftrightarrow -\omega;$
- $\widetilde{R}(\omega)=R(\mathcal{E})$ $-\omega),\, \widetilde{T}(\omega)=T(% \widetilde{T}_{0})\omega, \label{eq:4}$ $\omega);$
- $\gamma(\omega)=T(\omega)\widetilde{T}(\omega)$: transmission probability of the \mathbf{a} Hawking radiation emitted from black hole;
- Asymptotically flat spacetimes: $R(\omega)\widetilde{R}(\omega)+\gamma(\omega)=1.$

Operational problem

- Outgoing wave at infinity ($V=0$): exponentially small and exponentially large terms.
- Solution analytic continuation to the complex r -plane.
- Highly damped regime: $|\mathrm{Im}\,(\omega)|\gg|\mathrm{Re}\,(\omega)|$;
- **Stokes line**:

.

$$
\text{Im}(\omega x) = 0 \Rightarrow \text{Re}(x) = 0
$$

- In a contour along a Stokes line, $|e^{\pm i \omega x}$ asymptotic behavior of $e^{\pm i \omega x}$ is alv $\vert = 1 :$ the $^{\pm i\omega x}$ is always oscillatory.
- Imposing the boundary condition at infinity does not pose ^a problem in this case.

Monodromy method

- We pick two closed homotopic curves in the complex $r\text{-plane, enclosing the event horizon. We consider the$ monodromy of the perturbation associated with ^a full loop around these curves.
- In one monodromy, we encode the information of the boundary condition in the event horizon. In the otherone, we encode the information of the boundarycondition in spatial infinity.
- **Monodromy theorem**: homotopic curves share thesame monodromy.
- Equating the monodromies allows us to solve for $R(\omega), \widetilde{R}(\omega)$ (Neitzke 2003, Harmark-Natário-Schiappa 2007).

The contours and Stokes lines

Schematic depiction of the small (orange) and big (blue)contours. The orange contour is to be interpreted asarbitrarily close to $R_H.$ Some Stokes lines are depicted by red curves.

Perturbative approach

$$
\psi(z) = \psi_0 + \lambda \psi_1; \nV(z) = V_0(z) + \lambda V_1(z); \ndz = \frac{dr}{f_0(r)}, \ x \mapsto z; \n\frac{d^2 \psi_0}{dz^2}(z) + (\omega^2 - V_0(z))\psi_0(z) = 0; \n\frac{d^2 \psi_1}{dz^2}(z) + (\omega^2 - V_0(z))\psi_1(z) = \xi(z); \n\xi = \xi_1 \frac{d^2 \psi_0}{dz^2} + \xi_2 \frac{d\psi_0}{dz} + \xi_3 \psi_0; \n\xi_1(r) = -2\delta f(r), \ \xi_2(r) = -\frac{d(\delta f)}{dr}(r) f(r), \ \xi_3(r) = V_a^1(r).
$$

Near the origin

$$
\bullet \ \ V^0_{\mathsf{T}} = V^0_{\mathsf{S}} \neq V^0_{\mathsf{V}};
$$

 $\textbf{asymptotically}$ we also have $V_\texttt{T}^\texttt{l}$ $V^1_\mathsf{T}=V^1_\mathsf{S}$ $\varsigma^1\neq V^1_{\sf V}$ V.

$$
\frac{d^2\psi_0}{dz^2} + \left(\omega^2 - \frac{j^2 - 1}{4z^2}\right)\psi_0 = 0, \ j = 0(\mathbf{T}, \mathbf{S}), \ j = 2(\mathsf{V});
$$

$$
\psi_0(z) = A_+ \sqrt{2\pi} \sqrt{\omega z} J_{\frac{j}{2}}(\omega z) + A_- \sqrt{2\pi} \sqrt{\omega z} J_{-\frac{j}{2}}(\omega z).
$$

- Procedure: solve the differential equation for arbitrary j ; at the end take the limit $j\rightarrow 0$ or $j\rightarrow 2.$
- Boundary condition gives two algebraic conditionsrelating $A_+, A_-, R(\omega)$.
- **Equating the monodromies gives extra condition and** allows to solve for $A_+, A_-, R(\omega)$.

Near the origin

Variation of constants:

$$
\psi_1(z) = 2\pi \sqrt{\omega z} \left(J_{-\frac{j}{2}}(\omega z) \int \sqrt{\omega z} J_{\frac{j}{2}}(\omega z) \frac{\xi(z)}{W} dz - J_{\frac{j}{2}}(\omega z) \int \sqrt{\omega z} J_{-\frac{j}{2}}(\omega z) \frac{\xi(z)}{W} dz \right)
$$

$$
W = \frac{d}{dz} \left(\sqrt{2\pi} J_{-\frac{j}{2}}(\omega z) \right) \sqrt{2\pi} J_{\frac{j}{2}} - \frac{d}{dz} \left(\sqrt{2\pi} J_{\frac{j}{2}}(\omega z) \right) \sqrt{2\pi} J_{-\frac{j}{2}} = -4\omega \sin\left(\frac{\pi j}{2}\right).
$$

$$
\bullet \quad z \sim -\frac{1}{d-2} \frac{r^{d-2}}{R_H^{d-3}}.
$$

- We take a $\frac{3}{d}$ n +k π $d\hspace{-0.08cm}-\hspace{-0.08cm}2$ $\frac{1}{2}$ rotation in the complex r -plane $\Rightarrow 3\pi$ rotation in the complex z -plane.
- We need to compute the changes of ψ_0 $_0$ and ψ_1 $_1$ under this rotation.

Closing the big contour

Known asymptotic expansions of ψ agree with the WKB approximation!

$$
\psi(z) = \psi_0(z) + \lambda' \psi_1(z) \sim \sum_{k=1}^3 \left(\Omega_k^+ e^{i\omega z} + \Omega_k^- e^{-i\omega z} \right).
$$

- As we abandon the Stokes line we can no longer rely on the coefficient multiplying the $e^{i\omega z}$ term.
- Small corrections become important given that $|e^{i\omega z}| \ll 1.$
- WKB theory tells us that the dominant term(proportional to $e^{-i\omega z}$) remains unchanged.
- Using this information we can finally close the contourand compute the monodromy of $\psi.$

Monodromy of the big contour

Each Ω^{\pm}_L coefficients multiplying each ξ_k , but always involving \boldsymbol{k} $\frac{x}{k}$ has a different form, because of the different Gamma functions (depending on j and $d)$ in the form

$$
\mathcal{H}(m,n,k):=\frac{\Gamma\left(\frac{1}{2}-\frac{k}{2}\right)\Gamma\left(-\frac{k}{2}\right)\Gamma\left(\frac{k}{2}+\frac{m}{2}+\frac{n}{2}+\frac{1}{2}\right)}{2\sqrt{\pi}\Gamma\left(-\frac{k}{2}+\frac{m}{2}-\frac{n}{2}+\frac{1}{2}\right)\Gamma\left(-\frac{k}{2}+\frac{n}{2}-\frac{m}{2}+\frac{1}{2}\right)\Gamma\left(-\frac{k}{2}+\frac{m}{2}+\frac{n}{2}+\frac{1}{2}\right)}.
$$

- The complete expression for each monodromy is a sum of 96 of these terms, all with different coefficients.
- **•** After a huge amount of work, each monodromy can be simplified using the properties $\Gamma(x+1) = x\Gamma(x), \ \Gamma(x)\Gamma(1-x)$ − $x)=\frac{\pi}{\sin(\pi)}$ $\sin(\pi x)$.
- Rather surprisingly, because of taking $j = 2$, despite $(\xi_{\sf V})_3\neq(\xi_{\sf T})_3,\,(\xi_{\sf S})_3,$ the monodromy is $\neq (\xi_{\texttt{T}})_3,\, (\xi_{\texttt{S}})_3,$ the monodromy is equal in all cases!

Monodromy of the small contour

- Near $r=R_H,$ $V(z)\approx 0\implies$ harmonic oscillator.
- Imposing the boundary condition,

$$
z = r + \frac{1}{2} \sum_{n=0}^{d-4} \frac{\exp\left(\frac{2\pi in}{d-3}\right)}{d-3} \log\left(1 - \frac{r}{R_H} \exp\left(-\frac{2\pi in}{d-3}\right)\right).
$$

The tortoise has a branch point in the event horizon R_H from which we can compute the monodromy of ψ around the small contour.

Equating monodromies

$$
\gamma_a(\omega) = 1 - R_a(\omega)\tilde{R}_a(\omega) = (\gamma_0)_a(\omega)(1 + \lambda(\delta\gamma)_a(\omega)),
$$

\n
$$
(\gamma_0)_a(\omega) = \frac{e^{\frac{\omega}{T_{\mathcal{H}}}} - 1}{3 + e^{\frac{\omega}{T_{\mathcal{H}}}}},
$$

\n
$$
(\delta\gamma)_a(\omega) = -\frac{4}{3 + e^{\frac{\omega}{T_{\mathcal{H}}}}}\left[\frac{3}{16}(d - 4)(d - 2)\frac{\omega}{T_{\mathcal{H}}} + \left(\frac{\omega}{T_{\mathcal{H}}}\right)^{\frac{d - 1}{d - 2}}\left(\frac{d - 3}{4\pi}\right)^{\frac{d - 1}{d - 2}}\varrho_a\right],
$$

\n
$$
\varrho_a = e^{-\frac{2\pi i}{d - 2}}\frac{\pi^{\frac{3}{2}}(d - 2)^{-\left(\frac{1}{d - 2} + 1\right)}(d - 4)((d - 5)d + 2)\Gamma\left(\frac{1}{2(d - 2)}\right)}{(d - 1)\Gamma\left(\frac{1}{2} + \frac{1}{2(d - 2)}\right)^3}\sin\left(\frac{\pi}{2(d - 2)}\right),
$$

 $a =$ tensorial, vectorial, scalar.

Because of the $\mathrm{e}^{-\frac{2\pi i}{d-2}}$ $\overline{-2}$ term the λ correction is **complex**.

Conclusions

 λ corrections depend strongly on the dimension $d.$

- In Einstein gravity, all types of gravitational perturbations give rise to the same greybody factor inthe highly damped limit.
- The d -dimensional Gauss-Bonnet correction preserves this property up to first order in λ (perturbative regime).
- **•** This result agrees with the isospectrality of quasinormal modes of all types of gravitational perturbations, for thesame solution and same order in λ in the same limit (Moura-Rodrigues 2023).
- **These corrections match the analogous result for** tensorial gravitational perturbations of theCallan-Myers-Perry d -dimensional black hole in string theory.