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Perturbations on the (d− 2)-sphere

For a system with spherical symmetry (metric and all
other fields);

Metric of the type
d s2 = −f(r) d t2 + f−1(r) d r2 + r2 dΩ2

d−2;

a, b = r, t; i, j, k = 1, . . . , d− 2

General tensors of rank at least 2 on the (d− 2)-sphere
can be uniquely decomposed in their tensorial,
vectorial and scalar components;

Key point: gauge-invariant perturbation equations can
be reduced to decoupled single master equations of the
Schrödinger type for any kind of perturbations in this
kind of background (Ishibashi, Kodama).
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The Master Equations

Each perturbation variable obeys a "master equation"

∂2Φ

∂x2
− ∂2Φ

∂t2
=: V Φ.

d x/d r = 1/f ("tortoise" coordinate);

Φ(x, t) = eiωtψ(x); "master" variable - multipole
expansion in terms of a multipole number ℓ;

V : potential;

both Φ and V depend on the type of gravitational
perturbations or field considered.

This is also valid in the presence of quadratic
(Gauss-Bonnet) corrections (Moura, Dotti-Gleiser)!
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Higher derivative corrections

Effective action in d dimensions:

1

16πGd

∫ √
−g

[
R+ α

(
RµνρσRµνρσ − 4RµνRµν +R2

)]
ddx;

Asymptotically flat spherically symmetric solution
(Boulware-Deser 1985):

f(r) = 1 +
r2

α(d− 3)(d− 4)
(1− q(r)) ,

q(r) =

√
1 +

4α(d− 3)(d− 4)µ

(d− 2)rd−1
,

µ =
(d− 2)Rd−3

H

2

(
1 + α

(d− 3)(d− 4)

2R2
H

)
,

M =
(d− 2)Ωd−2

8πGd

µ.
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The corrected potentials

VT[f(r)] = f(r)

[
ℓ (ℓ+ d− 3)

r2

(
3−

B(r)

A(r)

)
+K(r)

(
d2K

dr2
(r) +

df

dr
(r)

dK

dr
(r)

)]
,

VV[f(r)] = f(r)

[
(d− 2)c

r2
A(r) +K(r)

(
d2K

dr2
(r) +

df

dr
(r)

dK

dr
(r)

)]
,

A(r) =
1

q(r)2

(
1

2
+

1

d− 3

)
+

(
1

2
−

1

d− 3

)
,

K(r) =
1√

rd−2A(r)q(r)
,

B(r) = A(r)2
(
1 +

1

d− 4

)
+

(
1−

1

d− 4

)
,

c =
ℓ (ℓ+ d− 3)

d− 2
− 1.

(Dotti-Gleiser 2005).
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The corrected potentials

VS[f(r)] =
f(r)U(r)

64r2(d− 3)2A(r)2q(r)8(4cq(r) + (d− 1)R(q(r)2 − 1))2
,

R(r) =
r2

α(d− 3)(d− 4)
,

U(r) = 5(d− 1)R(r)2(R(r) + 1)− 3(d− 1)5R(r)q(r)
(
24c(R(r) + 1) + (d− 1)R(r)2

)
+

2(d− 1)4q(r)2
(
168c2(R(r) + 1) + 24c(d− 1)R(r)2 − (d− 1)R(r)2(7d(R(r) + 1) + 5R(

+2(d− 1)4R(r)q(r)3
(
c(84d(R(r) + 1) + 44R(r)− 84)− 184 2c+ (d− 1)(d+ 13)R(r)2

+(d− 1)3
(
384c3 − 48c((3d− 5)d+ 2)R(r)2 + 192c2

(
(d− 15)R(r)2 + d− 11

)
+

+(d− 1)R(r)2(d(7d(R(r) + 1) + 106R(r) + 26)− 3(55R(r) + 7))
)
q(r)4 +

+(d− 1)3R(r)
(
−64c2(d− 38) + (d− 1)((7d− 90)d+ 71)R(r)2+

+16c
(
13d2(R(r) + 1)− 2d(81R(r) + 73) + 255R(r) + 303

))
q(r)5 +

+4(d− 1)2
(
96c3(d− 7)− 8c(d− 1)

(
6d2 − 74d+ 145

)
R(r)2−

−8c2(d(11d(R(r) + 1)− 34R(r)− 58)− 175R(r) + 9) + (d− 1)R(r)2(−5(23R(r) + 79)

+d(d(7d(R(r) + 1)− 89R(r)− 81) + 5(41R(r) + 57))))q(r)6−
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The corrected potentials

−4(d− 1)2R(r)
(
8c2(d(72− 13d) + 43) + (d− 1)(d(d(5d− 49) + 99)− 63) +R(r)2+

+4c(d(d(17d(R(r) + 1)− 107R(r)− 123)− 39R(r) + 121) + 465R(r) + 321))q(r)7 +

+(d− 1)
(
128c3(d− 9)(d− 5) + 32c(d− 1)(d(d(8d− 55) + 9) + 246)R(r)2+

+64c2(d− 5)
(
d2 + ((d− 4)d+ 49)R(r)− 3

)
−

−(d− 1)R(r)2(d(d(d(45d(R(r) + 1)− 452R(r)− 548) + 6(217R(r) + 393))−

−4(349R(r) + 997)) + 565R(r) + 1173)) q(r)8 +

+(d− 1)R(r)
(
−64c2(d− 5)(d(3d− 13) + 36) + (d− 1)(d(3d(d(9d− 92) + 294)− 1204) + 635)R

−8c(d− 5)(d(d((d− 79)R(r) + d− 47) + 191R(r) + 127) + 31R(r) + 63))q(r)9 +

+2d− 5
(
64c3(d− 5)(d− 3) + 8c(d− 1)(d((d− 43)d+ 141)− 27)R(r)2+

+8c2(d− 5)(d((d− 18)R(r) + d− 2) + 77R(r)− 3) + (d− 1)2R(r)2(−33(R(r)− 7) +

+d(d(9d(R(r) + 1)− 35R(r)− 59) + 43R(r) + 59)))q(r)10 −

−2d− 5R(r)
(
24c2(d− 11)(d− 5)(d− 3) + (d− 1)2(d((7d− 39)d+ 81)− 65)R(r)2+

+12c(d− 7)(d− 5)(d− 3)(d− 1)(R(r) + 1))q(r)11 +

+(d− 5)2(d− 1)R(r)2q(r)12(16c((d− 9)d+ 26) + (d− 1)(d((d− 2)R(r) + d− 18)− 3R(r) + 77))

+(d− 5)2(d− 3)2(d− 1)2R(r)3q(r)13.
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Large black hole limit

λ :=
α

µ
2

d−3

≪ 1;

f(r) = f0(r)(1 + λδf(r)),

f0(r) = 1− 2µ

(d− 2)rd−3
,

δf(r) =
2(d− 4)(d− 3)

(1− 2µr3−d(d− 2)−1)(d− 2)2
µ
2 d−2
d−3

r2d−4
,

RH =

(
2µ

d− 2

) 1
d−3

− 2
1

3−d
−1(d− 4)λ ((d− 2)µ)

1
d−3 ,

TH =
d− 3

4π

(
d− 2

2µ

) 1
d−3

(
1− λ

(d− 4)(d− 2)

2

)
.
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Greybody factor

Field equation is written in the Schrödinger form
[
− d2

dx2
+ V

]
ψ(x) = ω2ψ(x).

Hawking radiation spectrum:

〈
n(ω)

〉
=

γ(ω)

e
ω

TH ± 1
;

Greybody factor: γ(ω);

real frequency - emission rate;

imaginary frequency - decay rate.
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Computing the greybody factor

Hawking radiation transmitted and reflected by the black
hole potential:

ψ(x) ∼ T (ω)eiωx, r → R+
H ,

ψ(x) ∼ eiωx +R(ω)e−iωx, r → +∞;

T (ω), R(ω) : transmission and reflection coefficients.

Complex frequency: must also consider ω ↔ −ω;
R̃(ω) = R(−ω), T̃ (ω) = T (−ω);
γ(ω) = T (ω)T̃ (ω) : transmission probability of the
Hawking radiation emitted from black hole;

Asymptotically flat spacetimes: R(ω)R̃(ω) + γ(ω) = 1.
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Operational problem

Outgoing wave at infinity (V = 0): exponentially small
and exponentially large terms.

Solution - analytic continuation to the complex r-plane.

Highly damped regime: |Im (ω)| ≫ |Re (ω)|;
Stokes line :

Im (ωx) = 0 ⇒ Re (x) = 0

.

In a contour along a Stokes line, |e±iωx| = 1 : the
asymptotic behavior of e±iωx is always oscillatory.

Imposing the boundary condition at infinity does not
pose a problem in this case.
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Monodromy method

We pick two closed homotopic curves in the complex
r-plane, enclosing the event horizon. We consider the
monodromy of the perturbation associated with a full
loop around these curves.

In one monodromy, we encode the information of the
boundary condition in the event horizon. In the other
one, we encode the information of the boundary
condition in spatial infinity.

Monodromy theorem : homotopic curves share the
same monodromy.

Equating the monodromies allows us to solve for
R(ω), R̃(ω) (Neitzke 2003, Harmark-Natário-Schiappa
2007).
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The contours and Stokes lines

Schematic depiction of the small (orange) and big (blue)
contours. The orange contour is to be interpreted as
arbitrarily close to RH . Some Stokes lines are depicted by
red curves.
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Perturbative approach

ψ(z) = ψ0 + λψ1;

V (z) = V0(z) + λV1(z);

dz =
dr

f0(r)
, x 7→ z;

d2ψ0

dz2
(z) + (ω2 − V0(z))ψ0(z) = 0;

d2ψ1

dz2
(z) + (ω2 − V0(z))ψ1(z) = ξ(z);

ξ = ξ1
d2ψ0

dz2
+ ξ2

dψ0

dz
+ ξ3ψ0;

ξ1(r) = −2δf(r), ξ2(r) = −d(δf)
dr

(r)f(r), ξ3(r) = V 1
a (r).
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Near the origin

V 0
T = V 0

S 6= V 0
V ;

asymptotically we also have V 1
T = V 1

S 6= V 1
V .

d2ψ0

dz2
+

(
ω2 − j2 − 1

4z2

)
ψ0 = 0, j = 0(T,S), j = 2(V);

ψ0(z) = A+

√
2π

√
ωzJ j

2
(ωz) + A−

√
2π

√
ωzJ

−
j

2
(ωz).

Procedure: solve the differential equation for arbitrary j;
at the end take the limit j → 0 or j → 2.

Boundary condition gives two algebraic conditions
relating A+, A−, R(ω).

Equating the monodromies gives extra condition and
allows to solve for A+, A−, R(ω).
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Near the origin

Variation of constants :

ψ1(z) = 2π
√
ωz

(
J
−

j
2

(ωz)

∫ √
ωzJ j

2

(ωz)
ξ(z)

W
dz − J j

2

(ωz)

∫ √
ωzJ

−
j
2

(ωz)
ξ(z)

W
dz

)
,

W =
d

dz

(√
2πJ

−
j
2

(ωz)

)√
2πJ j

2

−
d

dz

(√
2πJ j

2

(ωz)

)√
2πJ

−
j
2

= −4ω sin

(
πj

2

)
.

z ∼ − 1
d−2

rd−2

Rd−3
H

.

We take a 3π
d−2 rotation in the complex r-plane ⇒ 3π

rotation in the complex z-plane.

We need to compute the changes of ψ0 and ψ1 under
this rotation.
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Closing the big contour

Known asymptotic expansions of ψ agree with the WKB
approximation!

ψ(z) = ψ0(z) + λ′ψ1(z) ∼
3∑

k=1

(
Ω+
k e

iωz + Ω−

k e
−iωz

)
.

As we abandon the Stokes line we can no longer rely
on the coefficient multiplying the eiωz term.

Small corrections become important given that
|eiωz| ≪ 1.

WKB theory tells us that the dominant term
(proportional to e−iωz) remains unchanged.

Using this information we can finally close the contour
and compute the monodromy of ψ.
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Monodromy of the big contour

Each Ω±

k has a different form, because of the different
coefficients multiplying each ξk, but always involving
Gamma functions (depending on j and d) in the form

H(m,n, k) :=
Γ
(

1
2
− k

2

)
Γ
(
− k

2

)
Γ
(

k
2
+ m

2
+ n

2
+ 1

2

)

2
√
πΓ
(
− k

2
+ m

2
− n

2
+ 1

2

)
Γ
(
− k

2
+ n

2
− m

2
+ 1

2

)
Γ
(
− k

2
+ m

2
+ n

2
+ 1

2

) .

The complete expression for each monodromy is a sum
of 96 of these terms, all with different coefficients.

After a huge amount of work, each monodromy can be
simplified using the properties
Γ(x+ 1) = xΓ(x), Γ(x)Γ(1− x) = π

sin(πx)
.

Rather surprisingly, because of taking j = 2, despite
(ξV)3 6= (ξT)3, (ξS)3, the monodromy is equal in all cases!
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Monodromy of the small contour

Near r = RH , V (z) ≈ 0 =⇒ harmonic oscillator.

Imposing the boundary condition,

z = r +
1

2

d−4∑

n=0

exp
(
2πin
d−3

)

d− 3
log

(
1− r

RH
exp

(
− 2πin

d− 3

))
.

The tortoise has a branch point in the event horizon RH

from which we can compute the monodromy of ψ
around the small contour.
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Equating monodromies

γa(ω) = 1−Ra(ω)R̃a(ω) = (γ0)a(ω)(1 + λ(δγ)a(ω)),

(γ0)a(ω) =
e

ω
TH − 1

3 + e
ω

TH

,

(δγ)a(ω) = −
4

3 + e
ω

TH


 3

16
(d− 4)(d− 2)

ω

TH
+

(
ω

TH

) d−1

d−2

(
d− 3

4π

) d−1

d−2

̺a


 ,

̺a = e
−

2πi
d−2

π
3

2 (d− 2)
−

(

1

d−2
+1

)

(d− 4)((d− 5)d+ 2)Γ
(

1
2(d−2)

)

(d− 1)Γ
(

1
2
+ 1

2(d−2)

)3 sin

(
π

2(d− 2)

)
,

a = tensorial, vectorial, scalar.

Because of the e−
2πi
d−2 term the λ correction is complex .
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Conclusions

λ corrections depend strongly on the dimension d.

In Einstein gravity, all types of gravitational
perturbations give rise to the same greybody factor in
the highly damped limit.

The d-dimensional Gauss-Bonnet correction preserves
this property up to first order in λ (perturbative regime).

This result agrees with the isospectrality of quasinormal
modes of all types of gravitational perturbations, for the
same solution and same order in λ in the same limit
(Moura-Rodrigues 2023).

These corrections match the analogous result for
tensorial gravitational perturbations of the
Callan-Myers-Perry d-dimensional black hole in string
theory.
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