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Introduction

Figure 1: VIRGO interferometer.

Figure 2: Artistic representation of GR.

Our aim
Can we tell apart Palatini f(R) gravity from GR through GW detec-
tions?



Palatini f(R) gravity

f(R) gravity
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Figure 3: Main differences between metric f(R) and Palatini f(R) gravity.



Linearisation of the field equations

Perturbation theory

We assume a small perturbation and detach it from the back-
ground.

G =Ty +hps T =T +6Tw, ¢ =0 +60, (1)

The background quantities satisfy the unperturbed field
equations. Therefore, the perturbed field equation for ¢ reads:

(V'@ -9v"(®) 86 = x?T. @



Linearisation of the field equations

The perturbed Einstein equations in the f(R) Palatini formalism
read:
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Propagation of GWs in vacuum

Vacuum

Gy =Np» R=V'()=0, T, =0, 6T,,=0, dp=¢o. (4

Defining the new tensor 6, = hy, — %hnyv, and imposing the
Lorenz gauge ( 9%84p = 0), the perturbed field equations read:

6 6
06,y = _ZVNVV(P_(Z)S + 2’7va_¢ , —¢oV"(¢0)6¢p =0. ()

bo
Alert!

Note that 2V(¢) —dV’(¢) = k°T allows us to find a relation ¢ (7). As
T =0,  must be constant and, as ¢ = ¢o, §¢ has to be constant as
well.

DBIJV =0. (6)



Emission of GWs in the weak-field limit

Weak-field limit

G =N R=V($)=0, Tu=0, 6Ty > T, d=¢o.
(7)
Defining again the tensor 6, = h,, - %hnyv, and imposing the
Lorenz gauge (9%84p = 0), the perturbed Einstein equations read:

2k s s
06,y = —LT,,V - ZVI,VV—(P + anu—(p s
bo $o

bo

while the auxiliary field perturbed equation reads:

(8)

—poV” ($0)5¢ = K°T . (9)



Emission of GWs in the weak-field limit

Combining both equations we obtain the equation for the
gravitational perturbation in terms of T:

08,y = —2k2TEN (10)

pv >

where, for convenience, we defined an effective
energy-momentum tensor:

1

TS 7, - ———
uv

g ¢o K23V (¢o)

And we can use the retarded Green function method to obtain a

solution:

(VuVyT —npar) . (11)
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Emission of GWs in the weak-field limit

(not to scale &)

Figure 4: Diagram showing the relation (13).

Far source
Note that, for a sufficiently far source we can write:

- —>,| >

~r-X-n. (13)



Emission of GWs in the weak-field limit

Morover, we need to know the part gravitational perturbation that
actually contributes to detectable gravitational waves, so we need

to apply the Transverse-traceless gauge.
Transverse-traceless gauge (TT gauge)
i ki > 1
0" = Nwb™ Nja(n) = PicPjy = SPyPua,  Pyj=8;—nminj.  (14)

The gravitational perturbation in the TT-gauge, for a sufficiently
far source reads:

4G , S oy
ei}-r = T/\Ukl/ d3X Tgil:f(t— r+x -nx ) 0 (’I 5)



Emission of GWs in the weak-field limit

If the velocities inside the source are small compared to ¢, we can
expand the effective energy-momentum tensor as:
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And consequently, we can expand the gravitational perturbation:

4G 1 _ 5 1 .
6l = T/\,-,k,(sk' + S+ 3P + ) . a7

where we have defined the tensors S¥- as follows:

s¥ = / PxTE, S = / X THX™, ... (18)



Emission of GWs in the weak-field limit

If we focus on the first order (or quadrupolar) term, using
integration by parts, we obtain a GR-like term plus a Palatini f(R)
contribution:

1 82
kl_ 3 ’ I/ _ ki kI
S ¢oat2/d ( 2¢ V//aajr) _SGR+SPA' (19)

Integrating by parts we see that:
/ dx’ (9,9T) xx" = 264 / BT . (20)

And since Aj6¥ = 0, we get:

_ 4G

4G
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quadrupolar r



Emission of GWs in the weak-field limit

For the second order (or octupolar) term, the procedure is more
complex, but straightforward. Integrating by parts,we obtain a
GR-like term plus a Palatini f(R) contribution:
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Integrating by parts we find out that:
/ d*x’ (Ex""a,a/namr) x'xk = sk / dPxTx'm (23)

And, again, as Ajyék = 0, we get:

4G . . 4G .
o7 = =i (S8 + S8 ) = = AgunnSER - (24)
octupolar r r



Main conclusions

We obtained a general equation for a f(R) Palatini
gravitational perturbation in terms of the auxiliary field ¢ and
its potential V(¢).

We showed that, in Palatini f(R) gravity, the propagation of
GWs in vacuum coincides with the GR prediction.

We found that, in the weak-field limit, the emission of GWs
within the Palatini f(R) formalism coincides with the GR
prediction except for an effective gravitational constant, at
least to quadrupolar and octupolar order.
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Palatini f(R) gravity

First things first:

Palatini formalism
The affine connection T is, a f(R) gravity
priori, independent to the The Einstein-Hilbert action is
metric g,y. generalized through a

The curvature tensors are function f(R) of the scalar
curvature R.

defined in terms of this -
independent connection $=-3 dx*V=g [f(R) +Lm] . (25)
(for example R, ().

The curvature tensor is defined as:

A A A A
Ruv (1) = 0xTy = Ouly + Toa Ty = T Moy - (26)



Palatini f(R) gravity

Varying the action with respect to the metric we obtain:

1
f‘RR/JV - Egpvf = KzTyv 5 (27)
8(V=0Lm , . .
where Ty, = _\/%TI (\é;,?v ) and fg = f(R). While varying the
action respect to the independent connection:
v; (V=gfg™) = 0. 8)

Conformal transformation

T = ngyv and Q°=fgx = V; (V=gq9"") =0 (29)

We recover the metricity condition from GR for the metric q,,.



Palatini f(R) gravity

Auv v
I can be written as the We can construct the
Levi-Civita connection of the curvature tensors and
metric q. scalars R(g), but
R depends of g. R(9) # R(q).

From the metric equation we obtain:

1 K2 Rfr — f
R,uv(g) - EgpvR(g) = ETyv ~— 9w 2fx

1 1
VufrVufr — EgvpVAfRVAfR +E [V,uvvfﬂ - gvafR] .

(30)
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And taking the trace of the metric equation:

frRR — 2f = k°T. (31)



Scalar-tensor equivalence

Scalar-tensor theory equivalence
We define the following auxiliary field:

¢ =f(R), V(¢) =R —f(R). (32)

Then, we obtain a GR-like equation:

1 2 Vv
R,uv - Egva = %Tpv - %guv
3 1 1
“242 (5u¢3v¢ - Eg,ﬂ,(a¢)2 ts (VuVud —guOe) ,  (33)

as well as an equation governing the auxiliary field:

2V(¢) — ¢V (¢) = K°T . (34)
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