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Introduction

Figure 1: VIRGO interferometer.
Figure 2: Artistic representation of GR.

Our aim
Can we tell apart Palatini f (R) gravity from GR through GW detec-
tions?



Palatini f (R) gravity

Figure 3: Main differences between metric f (R) and Palatini f (R) gravity.



Linearisation of the field equations

Perturbation theory
We assume a small perturbation and detach it from the back-
ground.

g𝜇𝜈 = g𝜇𝜈 + h𝜇𝜈, T𝜇𝜈 = T𝜇𝜈 + 𝛿T𝜇𝜈, 𝜙 = 𝜙 + 𝛿𝜙 , (1)

The background quantities satisfy the unperturbed field
equations. Therefore, the perturbed field equation for 𝜙 reads:(

V ′(𝜙) − 𝜙V ′′(𝜙)
)
𝛿𝜙 = 𝜅2𝛿T . (2)



Linearisation of the field equations
The perturbed Einstein equations in the f (R) Palatini formalism
read:
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□h − ∇𝛼∇𝛽h𝛼𝛽 + h𝛼𝛽R𝛼𝛽
) )

= 𝜅2 𝛿T𝜇𝜈
𝜙

− 𝜅2 T𝜇𝜈
𝜙

𝛿𝜙

𝜙
+ V ′ (𝜙)

2
g𝜇𝜈

𝛿𝜙

𝜙

+V (𝜙)
2𝜙

(
h𝜇𝜈 + g𝜇𝜈

𝛿𝜙

𝜙

)
− 3

2𝜙
2

[
𝜕𝜇𝜙𝜕𝜈𝛿𝜙 + 𝜕𝜇𝛿𝜙𝜕𝜈𝜙

−1
2
h𝜇𝜈 (𝜕𝜙)2 − g𝜇𝜈𝜕

𝛼𝜙𝜕𝛼𝛿𝜙

]
+ 3

𝜙
2
𝛿𝜙

𝜙

[
𝜕𝜇𝜙𝜕𝜈𝜙 − 1

2
g𝜈𝜇(𝜕𝜙)2

]
+ 1
𝜙

[
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Propagation of GWs in vacuum

Vacuum

g𝜇𝜈 = 𝜂𝜇𝜈, R = V ′(𝜙) = 0, T𝜇𝜈 = 0 , 𝛿T𝜇𝜈 = 0, 𝜙 = 𝜙0 . (4)

Defining the new tensor 𝜃𝜇𝜈 = h𝜇𝜈 − 1
2h𝜂𝜇𝜈, and imposing the

Lorenz gauge ( 𝜕𝛼𝜃𝛼𝛽 = 0), the perturbed field equations read:

□𝜃𝜇𝜈 = −2∇𝜇∇𝜈
𝛿𝜙

𝜙0
+ 2𝜂𝜇𝜈□

𝛿𝜙

𝜙0
, −𝜙0V ′′(𝜙0)𝛿𝜙 = 0 . (5)

Alert!
Note that 2V (𝜙) −𝜙V ′(𝜙) = 𝜅2T allows us to find a relation 𝜙(T). As
T = 0, 𝜙 must be constant and, as 𝜙 = 𝜙0, 𝛿𝜙 has to be constant as
well.

□𝜃𝜇𝜈 = 0 . (6)



Emission of GWs in the weak-field limit

Weak-field limit

g𝜇𝜈 = 𝜂𝜇𝜈, R = V ′(𝜙) = 0, T𝜇𝜈 = 0 , 𝛿T𝜇𝜈 → T𝜇𝜈, 𝜙 = 𝜙0 .

(7)

Defining again the tensor 𝜃𝜇𝜈 = h𝜇𝜈 − 1
2h𝜂𝜇𝜈, and imposing the

Lorenz gauge ( 𝜕𝛼𝜃𝛼𝛽 = 0), the perturbed Einstein equations read:

□𝜃𝜇𝜈 = −2𝜅2

𝜙0
T𝜇𝜈 − 2∇𝜇∇𝜈

𝛿𝜙

𝜙0
+ 2𝜂𝜇𝜈□

𝛿𝜙

𝜙0
, (8)

while the auxiliary field perturbed equation reads:

−𝜙0V ′′(𝜙0)𝛿𝜙 = 𝜅2T . (9)



Emission of GWs in the weak-field limit

Combining both equations we obtain the equation for the
gravitational perturbation in terms of T :

□𝜃𝜇𝜈 = −2𝜅2Teff
𝜇𝜈 , (10)

where, for convenience, we defined an effective
energy-momentum tensor:

Teff
𝜇𝜈 =

1
𝜙0

T𝜇𝜈 −
1

𝜅2𝜙2
0V ′′(𝜙0)

(
∇𝜇∇𝜈T − 𝜂𝜇𝜈□T

)
. (11)

And we can use the retarded Green function method to obtain a
solution:

𝜃𝜇𝜈 =
𝜅2

2𝜋

∫
d4x′

Teff
𝜇𝜈 (x′)
|®x − ®x′ |

𝛿(x0 − |®x − ®x′ | − x0′) , (12)



Emission of GWs in the weak-field limit

Figure 4: Diagram showing the relation (13).

Far source
Note that, for a sufficiently far source we can write:

|®x − ®x′ | ≃ r − ®x′ · ®n . (13)



Emission of GWs in the weak-field limit

Morover, we need to know the part gravitational perturbation that
actually contributes to detectable gravitational waves, so we need
to apply the Transverse-traceless gauge.

Transverse-traceless gauge (TT gauge)

𝜃TTij = Λijkl𝜃
kl , Λijkl (®n) = PikPjl −

1
2
PijPkl , Pij = 𝛿ij − ninj . (14)

The gravitational perturbation in the TT-gauge, for a sufficiently
far source reads:

𝜃TTij ≃ 4G
r
Λijkl

∫
d3x′Tkleff(t − r + ®x′ · ®n, x′) . (15)



Emission of GWs in the weak-field limit
If the velocities inside the source are small compared to c, we can
expand the effective energy-momentum tensor as:

Teff
kl (t −

r
c
+
®x′ · ®n
c

, x′) = Teff
kl (t −

r
c
, x′)

+
𝜕Teff

kl
𝜕t

(®x′ · ®n)
c

+
𝜕2Teff

kl
𝜕t2

(®x′ · ®n) (®x′ · ®n)
2c2 + O

(
1
c3

)
. (16)

And consequently, we can expand the gravitational perturbation:

𝜃TTij =
4G
r
Λijkl

(
Skl + 1

c
nm ¤Sklm + 1

2c2nmnp¥S
klmp + ...

)
, (17)

where we have defined the tensors Skl.. as follows:

Skl =
∫

d3x′Tkleff , Sklm =

∫
d3x′Tkleffx

m′, ... (18)



Emission of GWs in the weak-field limit

If we focus on the first order (or quadrupolar) term, using
integration by parts, we obtain a GR-like term plus a Palatini f (R)
contribution:

Skl =
1
𝜙0

𝜕2

𝜕t2

∫
d3x′

(
T00− 1

𝜅2𝜙0V ′′0
𝜕j𝜕

jT
)
xk′xl′ = SklGR + SklPA . (19)

Integrating by parts we see that:∫
d3x′

(
𝜕j𝜕

jT
)
xk′xl′ = 2𝛿kl

∫
d3x′T . (20)

And since Λijkl𝛿
kl = 0, we get:[

𝜃TTij

]
quadrupolar

=
4G
r
Λijkl

(
SklGR + SklPA

)
=

4G
r
ΛijklSklGR . (21)



Emission of GWs in the weak-field limit
For the second order (or octupolar) term, the procedure is more
complex, but straightforward. Integrating by parts,we obtain a
GR-like term plus a Palatini f (R) contribution:

¤Sklm =
1
𝜙0

∫
d3x′

[
1
2
x′mT̈00 + ¥Tm0− 1

𝜅2𝜙0V ′′ (𝜙0)

(
1
2
x′m𝜕j𝜕jT̈ + 𝜕mT̈

)]
xl′xk′

= ¤SklmGR + ¤SklmPA . (22)

Integrating by parts we find out that:∫
d3x′

(
1
2
x′m𝜕j𝜕jT̈ + 𝜕mT̈

)
xl′xk′ = 𝛿kl

∫
d3x′T̈x′m (23)

And, again, as Λijkl𝛿
kl = 0, we get:[

𝜃TTij

]
octupolar

=
4G
r
Λijklnm

(
¤SklmGR + ¤SklmPA

)
=

4G
r
Λijklnm ¤SklmGR . (24)



Main conclusions

• We obtained a general equation for a f (R) Palatini
gravitational perturbation in terms of the auxiliary field 𝜙 and
its potential V (𝜙).

• We showed that, in Palatini f (R) gravity, the propagation of
GWs in vacuum coincides with the GR prediction.

• We found that, in the weak-field limit, the emission of GWs
within the Palatini f (R) formalism coincides with the GR
prediction except for an effective gravitational constant, at
least to quadrupolar and octupolar order.
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Palatini f(R) gravity

First things first:

Palatini formalism
• The affine connection Γ is, a

priori, independent to the
metric g𝜇𝜈.

• The curvature tensors are
defined in terms of this
independent connection
(for example R𝜇𝜈 (Γ)).

f (R) gravity
• The Einstein-Hilbert action is

generalized through a
function f (R) of the scalar
curvature R.

S =
1

2𝜅2

∫
dx4√−g [f (R) + Lm] . (25)

The curvature tensor is defined as:

R𝜇𝜈 (Γ) = 𝜕𝜆Γ
𝜆
𝜇𝜈 − 𝜕𝜈Γ

𝜆
𝜇𝜆 + Γ𝜆𝜎𝜆Γ

𝜎
𝜇𝜈 − Γ𝜆𝜎𝜈Γ

𝜎
𝜇𝜆 . (26)



Palatini f(R) gravity

Varying the action with respect to the metric we obtain:

fRR𝜇𝜈 −
1
2
g𝜇𝜈f = 𝜅2T𝜇𝜈 , (27)

where T𝜇𝜈 = − 2√−g
𝛿(√−gLm )

𝛿g𝜇𝜈 and fR = f ′(R). While varying the
action respect to the independent connection:

∇∗
𝜆

(√−gfRg𝜇𝜈) = 0 . (28)

Conformal transformation

q𝜇𝜈 = Ω2g𝜇𝜈 and Ω2 = fR ⇒ ∇∗
𝜆

(√−qq𝜇𝜈) = 0 (29)

We recover the metricity condition from GR for the metric q𝜇𝜈.



Palatini f(R) gravity
q𝜇𝜈

• Γ can be written as the
Levi-Civita connection of the
metric q.

• R depends of q.

g𝜇𝜈
• We can construct the

curvature tensors and
scalars R(g), but
R(g) ≠ R(q).

From the metric equation we obtain:

R𝜇𝜈 (g) −
1
2
g𝜇𝜈R(g) =

𝜅2

fR
T𝜇𝜈 − g𝜇𝜈

RfR − f
2fR

− 3
2f2

R

[
∇𝜇fR∇𝜈fR − 1

2
g𝜈𝜇∇𝜆fR∇𝜆fR

]
+ 1
fR

[
∇𝜇∇𝜈fR − g𝜇𝜈□fR

]
.

(30)

And taking the trace of the metric equation:

fRR − 2f = 𝜅2T . (31)



Scalar-tensor equivalence

Scalar-tensor theory equivalence
We define the following auxiliary field:

𝜙 = f ′(R), V (𝜙) = R𝜙 − f (R) . (32)

Then, we obtain a GR-like equation:

R𝜇𝜈 −
1
2
g𝜇𝜈R =

𝜅2

𝜙
T𝜇𝜈 −

V (𝜙)
2𝜙

g𝜇𝜈

− 3
2𝜙2

(
𝜕𝜇𝜙𝜕𝜈𝜙 − 1

2
g𝜇𝜈 (𝜕𝜙)2

)
+ 1
𝜙

(
∇𝜇∇𝜈𝜙 − g𝜇𝜈□𝜙

)
, (33)

as well as an equation governing the auxiliary field:

2V (𝜙) − 𝜙V ′(𝜙) = 𝜅2T . (34)
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