Axion-like dark energy: late rather than early

Carlos G. Boiza

In collaboration with: Mariam Bouhmadi-López and Hsu-Wen Chiang (Work in progress)

22 July 2024

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ④�?

Cosmological problems

- $\bullet~\Lambda {\rm CDM}$
- Quintessence

2 Dynamical system

- Fixed points
- Tracking

3 The model

- Axion-like potential
- Fixed points and tracking
- Perturbations

4 Fitting the model

- Constraining parameters
- Cosmological tensions

Conclusions

イロト 不良 トイヨト イヨト ショウ

 ΛCDM Quintessence

ΛCDM

In the context of GR:

$$L = \frac{1}{2k^2}(R - 2\Lambda) + L_{r,m}.$$

- Non dynamical dark energy. ρ_Λ remains constant.
- Coincidence problem. $\Omega_m/\Omega_{DE} \sim 1$ today. How is this sensible to initial conditions?
- Why now? Dark energy seems to be dominant only at late-time, not before.
- Fine-tuning problem. New energetic scale $\rho_{\Lambda} \approx 10^{-47} \text{ GeV}^4$. It is very small compared to other scales.
- Hubble tension and σ_8 tension.

イロト 不良 トイヨト イヨト ショウ

	Cosmological problems Dynamical system The model Fitting the model Conclusions	ΛCDM Quintessence	
Quintessence			

Canonical scalar field minimally coupled to the scalar curvature:

$$L = \frac{1}{2k^2}R - \frac{1}{2}g^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi - V(\phi) + L_{r,m}.$$

- ϕ is a dynamical field. ρ_{ϕ} has a non-trivial evolution.
- **Coincidence problem** can be alleviated via scaling solutions and tracking.
- Some quintessence models allow for a natural explanation of why now?
- Can the Hubble tension and the σ_8 tension be alleviated?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Dynamical system

Assuming a spatially flat FLRW metric, $ds^2 = -dt^2 + a^2(t)d\bar{x}^2$, and defining

$$x = \frac{k\dot{\phi}}{\sqrt{6}H}, \quad y = \frac{k\sqrt{V}}{\sqrt{3}H}, \quad \lambda = -\frac{V_{,\phi}}{kV}, \qquad (\Omega_{r,m} = 1 - x^2 - y^2),$$

we obtain an autonomous closed system of equations:

$$\begin{split} x' &= -\frac{3}{2} \left[2x + (\omega - 1)x^3 + x(\omega + 1)(y^2 - 1) - \sqrt{\frac{2}{3}}\lambda y^2 \right], \\ y' &= -\frac{3}{2}y \left[(\omega - 1)x^2 + (\omega + 1)(y^2 - 1) + \sqrt{\frac{2}{3}}\lambda x \right], \\ \lambda' &= -\sqrt{6}f(\lambda)x, \qquad \qquad f(\lambda) = \lambda^2 [\Gamma(\lambda) - 1], \quad \Gamma = \frac{V_{,\phi\phi}V}{(V_{,\phi})^2}. \end{split}$$

Exponential potentials and cosmological scaling solutions, E. J. Copeland et al. [arXiv:gr-qc/9711068] Cosmological Tracking Solutions, P. J. Steinhardt et al. [arXiv:astro-ph/9812313] General Scalar Fields as Quintessence, A. de la Macorra et al. [arXiv:hep-ph/9909459] Applications of scalar attractor solutions to Cosmology, S. C. C. Ng et al. [arXiv:astro-ph/0107321]

Fixed points Tracking

Fixed points

Point	x	y	λ	Existence	$w_{\rm eff}$	Accel.	Ω_{ϕ}
O_{λ}	0	0	Any	Always	w	No	0
A^*_{\pm}	± 1	0	λ_*	$orall \lambda_*$	1	No	1
B^*	$\frac{\sqrt{3}}{\sqrt{2}} \frac{1+w}{\lambda_*}$	$\sqrt{\frac{3(1\!-\!w^2)}{2\lambda_*^2}}$	λ_*	$\lambda_*^2 \ge 3(1+w)$	w	No	$\frac{3(1\!+\!w)}{\lambda_*^2}$
C^*	$\lambda_*/\sqrt{6}$	$\sqrt{1-rac{\lambda_*^2}{6}}$	λ_*	$\lambda_*^2 < 6$	$\frac{\lambda_*^2}{3} - 1$	$\lambda_*^2 < 2$	1
D	0	1	0	Always	-1	Yes	1

From Dynamical systems applied to cosmology: dark energy and modified gravity, S. Bahamonde et al.

[arXiv:1712.03107 [gr-qc]]

where λ_* are roots of $f(\lambda)$. Trajectories $B^* \to C^*$ and $B^* \to D$ can alleviate the coincidence problem (scaling solutions).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ④ ◎ ◎

Unique evolution of ϕ . It does not depend on the initial conditions. Tracking is given by $\omega_{\phi} \approx const.$, where ω_{ϕ} is the EOS of the scalar field. The EOM reduces to

$$\Gamma = 1 + \frac{\omega - \omega_{\phi}}{2(1 + \omega_{\phi})}, \quad \longrightarrow \quad \omega_{\phi} = \frac{\omega - 2(\Gamma - 1)}{1 + 2(\Gamma - 1)},$$

where ω is the EOS of the dominating fluid.

- Tracking with $\omega_{\phi} > \omega$: it could happen, but it is disregarded (structure formation suppression).
- Tracking with $\omega_{\phi} = \omega$: $\Gamma = 1$. Scaling solutions. Fixed point B^* .
- Tracking with $\omega_{\phi} < \omega$: $\Gamma > 1$ and $\Gamma \approx const.$

Cosmological Tracking Solutions, P. J. Steinhardt et al. [arXiv:astro-ph/9812313]

Axion-like potential Fixed points and tracking Perturbations

Axion-like potential

Wave Dark Matter, L. Hui [arXiv:2101.11735 [astro-ph.CO]] Natural Inflation, K. Freese [arXiv:astro-ph/9310012] Dark energy from the string axiverse, M. Kamionkowski et al. [arXiv:1409.0549 [hep-ph]] Early Dark Energy Can Resolve The Hubble Tension, V. Poulin et al. [arXiv:1811.04083 [astro-ph.CO]] C. G. Boiza and M. Bouhmadi-López, (Work in progress)

- Cosmological constant in the limit $n \to 0$.
- Minimum at $\phi/\eta = \pi \to V \approx \frac{\Lambda_{eff}}{k^2} + \frac{1}{2}m^2(\phi \pi\eta)^2$.
- $\phi_i/\eta \ll 1$ in order to have non-trivial evolution $\rightarrow \lambda_i \gg 1$.

イロト 不良 トイヨト イヨト ショウ

Axion-like potential Fixed points and tracking Perturbations

Fixed points and tracking

- Fixed points: O_{λ} and D (minimum of the potential). D is an attractor \rightarrow Late-time acceleration.
- $\Gamma(\lambda) = 1 + \frac{1}{2n} + \frac{n}{2k^2\eta^2\lambda^2}$. In the regime $\lambda \gg 1$: $\Gamma \approx 1 + \frac{1}{2n} \rightarrow$ Tracking with $\omega_{\phi} < \omega$. Coincidence problem alleviated!
- Tracking given by $\omega_{\phi} = -\frac{2(\Gamma-1)}{1+2(\Gamma-1)} \approx -\frac{1}{1+n}$ $(\omega = 0)$:

• For
$$n = 1$$
: $\omega_{\phi} = -0.5$

• For
$$n = 0.1$$
: $\omega_{\phi} = -10/11 \approx -0.91$

- For $n \to 0$: $\omega_{\phi} \to -1$ (flat potential, cosmological constant)
- In addition, $\Omega_{\phi} \propto t^P$, where $P = \frac{4(\Gamma-1)}{1+2(\Gamma-1)}$. Ω_{ϕ} increases faster as $\lambda \to 0$, since Γ diverges. Why now problem alleviated!

Cosmological Tracking Solutions, P. J. Steinhardt et al. [arXiv:astro-ph/9812313] C. G. Boiza and M. Bouhmadi-López, (Work in progress)

Tracking plot

Evolution of ω_{ϕ} (each line represents a different set of initial conditions):

 Cosmological problems
 Axion-like potential

 Dynamical system
 Fixed points and tracking

 The model
 Fixed points and tracking

 Fitting the model
 Perturbations

Structure formation

The growth rate function can be parameterized as follows:

$$f = \frac{d \ln \delta_m}{d \ln a} = \Omega_m^{\gamma}$$
, valid in the sub-Hubble limit (k \gg aH).

- f depends on ω_{ϕ} through Ω_m . γ is less sensitive.
- Larger values of ω_{ϕ} increase Ω_{ϕ} (in the past) $\longrightarrow \Omega_m$ decreases as ω_{ϕ} increases \longrightarrow Larger values of ω_{ϕ} disfavours structure formation.
- Scaling solutions: $\omega_{\phi} = \omega$ for a long period. Could be problematic explaining structure formation.
- Tracking with $\omega_{\phi} < \omega$ could be favoured by measurements.

Growth rate

Evolution of f (solid lines, exact numerical calculations of the model for different modes; dashed line, parametrization Ω_m^{γ} of Λ CDM, with $\gamma = 0.55$):

C. G. Boiza and M. Bouhmadi-López, (Work in progress)

$$\begin{array}{ll} (\text{darkest blue}) & k_1 = 10^{-4} \text{h Mpc}^{-1} & k_4 = 6.31 \times 10^{-3} \text{h Mpc}^{-1} \\ k_2 = 3.98 \times 10^{-4} \text{h Mpc}^{-1} & k_5 = 2.51 \times 10^{-2} \text{h Mpc}^{-1} \\ k_3 = 1.58 \times 10^{-3} \text{h Mpc}^{-1} & k_6 = 0.1 \text{h Mpc}^{-1} & (\text{lightest blue}) \\ \end{array}$$

 Cosmological problems
 Axion-like potential

 Dynamical system
 Axion-like potential

 The model
 Fixed points and tracking

 Fitting the model
 Perturbations

 Conclusions
 Conclusions

Matter perturbations

Evolution of $\delta_m = \delta \rho_m / \rho_m$ (solid lines, numerical calculations of the model for different modes; dashed lines, calculations of Λ CDM for different modes):

Matter power spectrum

Matter power spectrum suppression (solid line, calculation of the model; dashed line, calculation of Λ CDM):

C. G. Boiza and M. Bouhmadi-López, (Work in progress)

= ~ ~ ~

Cosmological problems Dynamical system The model Fitting the model Conclusions Axion-like potential Fixed points and tracking Perturbations

 $f\sigma 8$

f\sigma8 distribution (solid line, calculation of the model; dashed line, calculation of $\Lambda {\rm CDM}):$

C. G. Boiza and M. Bouhmadi-López, (Work in progress)

イロト イボト イヨト イヨト

Constraining parameters Cosmological tensions

Constraining parameters (I)

Carlos G. Boiza EREP 2024 (Coimbra)

Constraining parameters Cosmological tensions

Constraining parameters (II)

Carlos G. Boiza

EREP 2024 (Coimbra)

Constraining parameters Cosmological tensions

Cosmological tensions

H. W. Chiang, C. G. Boiza and M. Bouhmadi-López, (Work in progress)

Carlos G. Boiza EREP 2024 (Coimbra)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ④ ◎ ◎

Conclusions

- Coincidence problem can be alleviated by scaling solutions and tracking.
- The model $V(\phi) = \Lambda^4 [1 \cos(\phi/\eta)]^{-n}$, with n > 0, allows for a late-time acceleration and is an example of tracking with $\omega_{\phi} < \omega$.
- The model also alleviates the why now problem.
- Possible values of n must be constrained in order to correctly explain structure formation.
- We are currently fitting the model. Constraints on the parameters of the theory can be obtained.
- σ_8 tension may be alleviated by the model.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

Carlos G. Boiza EREP 2024 (Coimbra)

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ④�?