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Introduction to the bimetric theory of gravity
Bimetric gravity is a consistent theory with non-linear interactions between massive and 
massless spin-2 fields that admits self-accelerated cosmological solutions. 

In addition to the usual metric, , we have an extra one, . These two metrics are coupled to 
each other. 

Action: 

 

Matter fields are assumed to couple only to . Total action: 

g̃ab f̃ab

SBi =
M2

g

2 ∫ d4x −g̃ R(g̃) +
M2

f

2 ∫ d4x − f̃ R( f̃ ) − m2M2
g ∫ d4x −g̃ ∑

4

n=0
βnen ( g̃ac f̃cb)

g̃ab

S[g̃ab, f̃ab, ψ] = SBi[g̃ab, f̃ab] + Sm[g̃ab, ψ]

Planck Mass 
for g̃μν

“Planck Mass” 
for f̃μν

Ricci scalar 
for g̃μν

Ricci scalar 
for f̃μν

mass 
parameter

dimensionless 
couplings constants

symmetric 
polynomials

[Hassan, Rosen (2012)]
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EH term for g̃ab EH term for f̃ab Interaction term
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Field equations: 

where 
•  is the ratio between the ‘Planck masses’, 

•  and  describe the interaction between both metrics, and are given in 
terms of 

 

•  is the matter stress-energy tensor. 

α ≡ Mf /Mg

V(g̃)
μν (g̃, f̃, βn) V( f̃ )

μν (g̃, f̃, βn)

𝕊μ
ν := g̃μρ f̃ρν ,

𝒯μν

 G(g̃)
μν + m2V(g̃)

μν (g̃, f̃, βn) =
1

M2
g

𝒯μν

G( f̃ )
μν +

m2

α2
V( f̃ )

μν (g̃, f̃, βn) = 0
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Field equations: 

where 
•  is the ratio between the ‘Planck masses’, 

•  and  describe the interaction between both metrics, and are given in 
terms of  

 

•  is the matter stress-energy tensor. 

α ≡ Mf /Mg

V(g̃)
μν (g̃, f̃, βn) V( f )

μν (g̃, f̃, βn)

𝕊μ
ν := g̃μρ f̃ρν ,

𝒯μν

 G(g̃)
μν = 8πt(g̃)

μν t(g̃)
μν :=

1
8πM2

g
𝒯μν −

m2

8π
V(g̃)

μν

G( f̃ )
μν = 8πt( f̃ )

μν t( f̃ )
μν := −

m2

8πα2
V( f̃ )

μν
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h(g)
μν h( f )

μν

Δ[G(i)
μν] = 8πΔ[t(i)

μν] i = g, f

Well known (GR) Non trivial computation, 
requires  

(  )

Δ[𝕊μ
ν]

𝕊μ
ν = g̃μρ f̃ρν

Perturbative ansatz: 
                        g̃μν = gμν + h(g)

μν f̃μν = fμν + h( f )
μν

On a spherically symmetric background the problem can be simplified by decomposing  in 
a basis of tensor spherical harmonics 

           

Δ[𝕊μ
ν]

𝕊̃μ
α𝕊̃α

ν = g̃μα f̃αν 𝕊μ
αΔ[𝕊α

ν] + Δ[𝕊μ
α]𝕊α

ν = gμαh( f )
αν − gμαh(g)

αβ gβσ fσν
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Tensor spherical harmonics

Basis for vectors on the sphere:  
 

{Zm
l a, Xm

l a}
Zm

l a := ∂aZm
l Xm

l a := ϵa
bZm

l b

Basis for rank-two tensors on the sphere:  
 

{Zm
l ab, Xm

l ab, γabZm
l , ϵabZm

l }
Zm

l ab := Zm
l :ab +

l(l + 1)
2

γabZm
l Xm

l ab :=
1
2

(Xm
l a:b + Xm

l b:a)

polar (Z )    

axial (X )
Basis for scalars on the sphere:   
(usual scalar spherical harmonics) 

{Zm
l }

As in GR, different polarities decouple at the linear level, 
so long as the background is spherically symmetric.
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Decomposition of the perturbations into tensor spherical harmonics: 

                      

                      

h(i)
AB(xD, xd) :=

∞

∑
l=0

l

∑
m=−l

H(i)m
l ABZm

l

h(i)
Ab(x

D, xd) :=
∞

∑
l=1

l

∑
m=−l

[H(i)m
l AZm

l b+h(i)m
l AXm

l b]

h(i)
ab(xD, xd) :=

∞

∑
l=0

l

∑
m=−l

K(i)m
l r2

i γabZm
l +

∞

∑
l=2

l

∑
m=−l

[G(i)m
l r2

i Zm
l ab+h(i)m

l Xm
l ab]
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l
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D, xd) :=
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∑
l=1
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m=−l

[H(i)m
l AZm

l b+h(i)m
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l b]

h(i)
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l=0

l

∑
m=−l

K(i)m
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l +

∞

∑
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l
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l r2
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 and  
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l = 0 l = 1

And similarly for ,  and  
          

Δ[t(i)
μν] Δ[𝒯μν] Δ[𝕊μ

ν]
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f g
g f

t(g) =
1
4

(Qg − Qm)h(g) +
m2

32π ω [β1 + β2𝕊A
A + β3 det (𝕊A

B)] (h( f ) − ω2h(g)) +
1

8πM2
g

ψ

Example: axial sector, scalar equation ( ) l ≥ 2

2
(g)
∇ Ah(g)

A −
(g)
∇ A

(g)
∇ Ah(g) + 2

(g)
∇ A(h(g)

(g)
∇ Arg

rg ) = 16π(t(g) −
Qg

2
h(g))

trace of t(g)
ab
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The equations for the  sector can be obtained from the ones for  using the symmetry of the 
theory under the interchange of  and .

f g
g f

Number of physical propagating degrees of freedom:

Axial Polar
l = 0 0 1
l = 1 1 2

3 4l ≥ 2

t(g) =
1
4

(Qg − Qm)h(g) +
m2

32π ω [β1 + β2𝕊A
A + β3 det (𝕊A

B)] (h( f ) − ω2h(g)) +
1

8πM2
g

ψ

Example: axial sector, scalar equation ( ) l ≥ 2

2
(g)
∇ Ah(g)

A −
(g)
∇ A

(g)
∇ Ah(g) + 2

(g)
∇ A(h(g)

(g)
∇ Arg

rg ) = 16π(t(g) −
Qg

2
h(g))
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m2

α2
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at background level

g f
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,           
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gμνdxμdxν = − Σg(r)dt2 +
1

Σg(r)
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2μg

r
−

m2Λg

3
r2

fμνdxμdxν = − Σf(rf )dT2 +
1
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dr2
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Which is the physical interpretation of ? c

two Schwarzschild-
(anti)de Sitter metrics



Effect of c

11

 does not have a physical impact on background observables, and, in particular, no curvature 
invariant depends on .
c

c



Effect of c

11

At a perturbative level the two sectors are indeed coupled, and the constant  appears in the 
equations of motion in a nontrivial way.  

c

 does not have a physical impact on background observables, and, in particular, no curvature 
invariant depends on .
c

c



Effect of c

11

At a perturbative level the two sectors are indeed coupled, and the constant  appears in the 
equations of motion in a nontrivial way.  

c

•Asymptotically flat case with static,  axial perturbations: 

               gauge fixing (1 d.o.f.)

l = 1

h(g)
t =

c1

r
, h( f )

t =
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r
, h( f )

r − ω2h(g)
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c2−ω2c1

r

c Σf T′�
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If only the mode  is exited, axial symmetry is preserved. In this case, 

                                                          

m = 0

two slowly rotating Kerr BH  

with angular momentum  

,       Jg = −
c1

4
3
π

Jf = −
c2 ω
4c

3
π

perturbed
two Schwarzschild BH



Final remarks
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The setup is based on the Gerlach-Sengupta formalism for GR. Each of the two background 
metrics is written as a warped product between a two-dimensional Lorentzian metric and the 
round metric of the two-sphere. 

•A covariant notation on the Lorentzian manifold is used so that all expressions are valid for 
any coordinates.

Future work: to solve the perturbative equations in the dynamical case for the axial sector and 
 where there is one propagating degree of freedom (contrary to GR).l = 1

We have presented a formalism to study linear perturbations of bimetric gravity on any 
spherically symmetric background, including dynamical spacetimes.

As an application we have considered the case of the most general nonbidiagonal static 
backgrounds (two Schwarzschild-(anti)de Sitter metrics). 

•We have solved analitically the static perturbations with  in the axial sector.l = 1



Harmonic decomposition of the perturbations
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Decomposition of : Δ[𝕊μ
ν]

Δ[𝕊A
B](xD, xd):=

∞

∑
l=0

l

∑
m=−l

SmA
l BZm

l

Δ[𝕊A
b](x

D, xd):=
∞

∑
l=1

l

∑
m=−l

[SmA
l Zm

l b+smA
l Xm

l b]

Δ[𝕊a
B](xD, xd):=

1
r2

g
γac

∞

∑
l=1

l

∑
m=−l

[S̃m
l BZm

l c+s̃ m
l BXm

l c]

Δ[𝕊a
b](x

D, xd):= γac
∞

∑
l=0

l

∑
m=−l

S̃m
l γcbZm

l + γac
∞

∑
l=2

l

∑
m=−l [Sm

l Zm
l cb+Šm

l ϵcbZm
l +

1
r2

g
sm
l Xm

l cb]
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The scalar components can be solved explicitly in terms of those of  and : 

,     ,     ,     

g f

S̃ =
1

2ω (K( f ) − ω2K(g)) S =
1

2ω (G( f ) − ω2G(g)) Š = 0 s =
1

2ω (h( f ) − ω2h(g))



Physical propagating degrees of freedom
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In vacuum GR: 
10 d.o.f                  8 first-class constraints                    2 propagating d.o.f

metric: rank-two 
symmetric tensor field

4 generators of diffeomorphisms and 
4 vanishing of the conjugate 
momenta of lapse and shift

Bimetric gravity: when the two metrics are coupled, a set of four first-class constraints of the 
system is removed, due to the now common diffeomorphism invariance 

2  10 d.o.f          4  2  4  first-class           2 second-class            7 propagating d.o.f 
                                            constraints             constraints         

× + ×

particular form of the 
interaction term

2 symmetric rank-two tensors 
(14 polar, 6 axial)

3 four vectors 
(9 polar, 3 axial)

1 scalar ghost 
(1 polar)

4 polar, 3 axial


