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Introduction to the bimetric theory of gravity

» Bimetric gravity is a consistent theory with non-linear interactions between massive and
massless spin-2 fields that admits self-accelerated cosmological solutions.

» In addition to the usual metric, g ,, we have an extra one, f,,. These two metrics are coupled to

each other.
» Action:
EH term for g, EH term for f,, Interaction term
M? M; : 4
. 8 4 ~ p(8) / 4 rp(f) 2 4 ~ ~ac [
SBi—Tjd /=R + — Jd o/ =FRD = M2 | d* /=2 Y fre, (/3T
Planck Mass Ricci scalar “Planck Mass” Ricci scalar dimensionless symmetric
for g, for g, for f,, for f,, couplings constants polynomials

Hassan, Rosen (2012)]

> Matter fields are assumed to couple only to g _,. Total action:

S[gabfab’ W] — SBi[gab’fab] + Sm[gab’ W]




Introduction to the bimetric theory of gravity

» The bimetric action is invariant under the simultaneous replacements

gof B oo B, M, < M, m? o ,f,fleg/Mf2




Introduction to the bimetric theory of gravity

» The bimetric action is invariant under the simultaneous replacements

g Hfa ﬂn « ﬁ4—n9 Mg < Mfa m2 < szgz/Mfz

The symmetry is broken by matter fields




Introduction to the bimetric theory of gravity

» The bimetric action is invariant under the simultaneous replacements

g Hfa ﬁn « ﬁ4—n9 Mg < Mfa m2 < szgz/Mfz
The symmetry is broken by matter fields

» Field equations:
(8) 2v® (5 f — I 7
G’uy +m V/,{y (gafaﬁn) o ﬁ‘/ Uv
g
2

~ m ~ _ ~
0/

where

e @ = M;/M, is the ratio between the "Planck masses’,

° Vﬁ)(gf, f, f,) and Vlgf)(g, f, p,) describe the interaction between both metrics, and are given in

terms of

$# = \/gﬂpfpy ,

e 7 ,, is the matter stress-energy tensor.




Introduction to the bimetric theory of gravity

» The bimetric action is invariant under the simultaneous replacements

gof B oo B, M, < M, m? o ,f,flegz/Mf2

The symmetry is broken by matter fields

» Field equations: ”
@) @) @._ 1 o m_
G,;) =8xut;; ) = SﬂMng w = o V.S
(f) (f) (F) m’ (f)
G, =snut,, Ly 1= - Vi

where

e a = M;/M, is the ratio between the "Planck masses’,

. Vﬁ)(g)’, f, f,) and V/%)(g', f, p,) describe the interaction between both metrics, and are given in

terms of

$# = \/gﬂpfpy ,

e 7 ,, is the matter stress-energy tensor.
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Spherically symmetric background

» Any four-dimensional spherically symmetric manifold is given as a direct product

P e -

two-dimensional Lorentzian manitfold two-sphere

» The background metric tensors can then be written in block-diagonal form,

0, (A = g, s(P)dxAdxB + r2(xP)y,,(xHdx?dx?

FueHdxtdx? = fup(eP)dxdx® + 17 (x)y,p(x)dxdx”
where
Y,p(x)dx?dx’ = d6* + sin* Odg?
» Advantages:

e We work covariantly on .~

e §¥ is also diagonal by blocks with §%,




Perturbative

» Perturbative ansatz:
g,m/ — g,m/ T h//(tl(%) f,uv =f;w T h//(l{j)




Perturbative

» Perturbative ansatz:

exact solutions (background)




Perturbative

» Perturbative ansatz:

Sy =

/ .
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perturbations




Perturbative

» Perturbative ansatz:

perturbations

» The linear equations of motion for h//(”g/) and h/%) can be written as

AlG1=8zA[t)]  i=g.f




Perturbative

» Perturbative ansatz:

perturbations

» The linear equations of motion for h/flﬁ) and h/%) can be written as
1G] = 8zA[1)) i=g,f

provides the linear term in hj)




Perturbative analysis_

» Perturbative ansatz:

perturbations
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Perturbative analysis

» Perturbative ansatz:

perturbations

» The linear equations of motion for )gnd h/%) can be written as

A[GD)=8aA[1D)  i=gf

/ N\

Well known (GR) N Non trivial computation,
requires A[S* ]

(S, = /87, )

» On a spherically symmetric background the problem can be simplified by decomposing A[S* ] in

a basis of tensor spherical harmonics

8% = 8 f0y —> SLAISS]+ AISISY = g — g**h e £,
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(usual scalar spherical harmonics)




Harmonic decomposition of the perturbations

Tensor spherical harmonics

» Basis for scalars on the sphere: {Z"}

(usual scalar spherical harmonics)




Harmonic decomposition of the perturbations

Tensor spherical harmonics

» Basis for scalars on the sphere: {Z"}

(usual scalar spherical harmonics)

» Basis for vectors on the sphere: {Z"
Z", =0,2" X" = eabZlmb

[ a | a

X"

a’




Harmonic decomposition of the perturbations

Tensor spherical harmonics

» Basis for scalars on the sphere: {Z"}

(usual scalar spherical harmonics)

> Basis for vectors on the sphere: {Z",, X" ]
Z", =0,2" X" = eabZlmb

[ a | a

» Basis for rank-two tensors on the sphere: {Z” .., X" ., v.,2", €.,2)")

Zl ab = Zl ab + N }/abZl Xl ab = E(Xl a.b + Xl b:a)




‘Harmonic decomposition of the perturbations

Tensor spherical harmonics

» Basis for scalars on the sphere: {Z"}

(usual scalar spherical harmonics)

» Basis for vectors on the sphere: {Z”, }
zZ", :=0,2" X", :=¢lZ",

[ a | a

» Basis for rank-two tensors on the sphere: {Z" ;. s Yably s €apZy )

. - [([+1) " .
Zl ab = Zl ab + N yabZl l ab ( a.b + Xl b:a)

As in GR, different polarities decouple at the linear level,

so long as the background is spherically symmetric.




‘Harmonic decomposition of the perturbations

» Decomposition of the perturbations into tensor spherical harmonics:

00 [
() .D d\ . (i)m
hAB(x , X7) 1= Z Z f lABZm

[=0 m=-—I

00 [ _
O(x (0
h¢ Z Z HOZE A0 X

00 [ 00 [ _
(+D dy .— )m..2 )m_.2
hGP xl) = 3 X K a2+ ) D (GO X,

[=0 m=-—I =2 m=—I




‘Harmonic decomposition of the perturbations

» Decomposition of the perturbations into tensor spherical harmonics:

00 [
() .D d\ . (i)m m
hAB(x , X7) 1= Z Z f lABZ
[=0 m=—I e —_—
_ _ | l=Oandl=1]

00 [
() (1) : ‘
h l 2 Z _H ’Z’ZZZ’“ T X" b are special cases

00 [ 00 [ _
(+D dy .— )m..2 )m_.2
hGP xl) = 3 X K a2+ ) D (GO X,

[=0 m=-—I =2 m=—I




Harmonic decompoito | urbations %_

» Decomposition of the perturbations into tensor spherical harmonics:

00 [
@) (D dy . (hm  7m
hAB(x ,XY) = Z Z H lABZl
=0 m=—I — —
- _ [=0and /=1 |
hjfllg(xD, x?) 1= Z Z H(i?'”'zx 7", + X", are special cases |
=1 m=—1 ' |
00 [ 00 [ _
VD dy . .2 m.,.2
hOGP, xdy = Y N KOy, Zm+ Y Y GOz 40X
[=0 m=—I =2 m=—I )

» And similarly for A[tlgiy)], Al7 ] and A[SF )]




Perturbative equations of motion

» The equations for the f sector can be obtained from the ones for g using the symmetry of the

theory under the interchange of g and f.
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(8)

VA
r
8




Perturbative equations of motion

» The equations for the f sector can be obtained from the ones for g using the symmetry of the

theory under the interchange of ¢ and f.

» Example: axial sector, scalar equation (I > 2) trace of &

— ab

(2) &) () (2)
2VARS — VAV 1@ +2 VA<h<g>

m2

B) + BoS?, + B det (S*p)] (B — w?h®)

1
+(8) — Z(Qg _ Qm)h(g) | W

27w 87zM§




Perturbative equations of motion

» The equations for the f sector can be obtained from the ones for g using the symmetry of the

theory under the interchange of ¢ and f.

» Example: axial sector, scalar equation (I > 2)

(g)

2VARS — VAV h® +2V

&) . (g)

(g)

( h8)

1
+(8) — Z(Qg — Qm)h(g) |

m2

32T w

S o
F N
4 QY
EA

B) + BoS?, + B det (S*p)] (B — w?h®)

» Number of physical propagating degrees of freedom:

trace of &

ab

Axial Polar
[ =0 0 1
[ =1 1 2
[>2 3 4

SaM (g%

'4




Particular background

ot | G/%) +m*(fy + 20p; + @°p,)g,, = 0 " g and f are decoupled |
nonbidiagonal === m?2 ‘ \
+ G+ —(By+ 207 By + 0 7p)f, = 0 _ at background level |

T =0
Volkov (2015),




Particular case: static nonbidiagonal background

static (0 —— A
+ f Gg +m i +2a)ﬁ1+a) ﬂ W—O
nonbidiagonal === 0 4 e
T A\ G lB + 20)_ lBB T a)_ ﬁz g =0

H [Volkov (2015)] = A




Particular background

static (0 _— 2 Ag [

5 Yo = | ‘f

s .e G, +m ‘ +20p + 0P g, =0 . g and f are decoupled |
nonbidiagonal == ) N— \ |

Y GO o =0
=+ pv Y\ 4 WPy WP

at background level |
. a N o _ —— —— e e ———————
T =0 - -

- — — — ————— — ————

» Most general static nonbidiagonal ansatz:

1
g, dx!'dx" = — 2 (r)dt~ A SR dr-+r°y, ,dx“dx”, 2,(r) = - 3 r

S dxtdx” = — Zf(rf)dT2 | drf2 + 12y, dx4dx?, X(ry) =

r
Zf(rf) Y I"f 3(12 /




Particular case: static nonbidiagonal background

static —— = A
—+ | G(g)+m i +2a)ﬁ1+a)ﬁ Wz()
nonbidiagonal === G(f) 2 // _ S )
l_ 0 \\.\\__\\ a) 52 v two Schwarzschild-
= (anti)de Sitter metrics
» Most general static nonbidiagonal ansatz:
UV — o, b aq,b 2K mzAgz
g, dxrdx” = — 2, (r)dt” A AT dr® + rey dx“dx”, 2,(r) =1 - 3 r
2 I 2, 2 aq.b 2y mzAf 2
fpdxtdx” = — Z(r)dT? 4 =) drf + 77 y,,dx4dx”, 2(ry) =1 - 2 r7




Particular background

static . -T Ag
+ | G//(tﬁ) + m(Jy + 200, + 0P, )k = 0
T =0 a2~ = two Schwarzschild-
= T A

(anti)de Sitter metrics
» Most general static nonbidiagonal ansatz:
2u, m*A

1
r __ 2 I 2 2 da b .« g 2
gﬂydx”dx = — Zg(r)dt | Zg(r) dr-+r-y ,dx“dx”, Zg(r) = ] - 3 y

7.2

S dxtdx” = — Zf(rf)dT2 | drf2 + 12y, dx4dx?, X(ry) =1

Zf(rf) y I"f 3(12 y

» From (7, I, 0,¢p) to (t,1,0,Q):

1 1 2 2
1(t,r) = ct + J ( ) ( - - )dr, r{r) = wr with w given by f; + 20,0 + prw* =0
X, X \X, X




Particular background

static P
+ | G//(tﬁ) + m(Jy + 20), + a)zﬁ 8, = 0
nonbidiagonal === me ————
+ GY) 4 (B, + 2w w0 B =0
g =0 He a2~ —ad two Schwarzschild-
. % = (anti)de Sitter metrics
» Most general static nonbidiagonal ansatz:
g dxtdx? = — X (r)d¢* A : dr? + r’y , dx%dx? 2. (r) =1 He mZAg r?
j22% g Zg(]/‘) ab ) g * ’ 3
2u,  m*A
T/ f
dx*dx* = — T (r,)dT? A dr? + r?y ,dx%dx?, 2ry) =1 r?
i 777) 2(ry) frf Yab U7 re 3a? /

» From (7, I, 0,¢p) to (t,1,0,Q):

1 1\ [/c* o
1(t,r) = ct + dr, re(r) = ith iven b + 2 -+ =0
e [T (D)o rmor v siont e

Which is the physical interpretation of c?




Effect of c

» ¢ does not have a physical impact on background observables, and, in particular, no curvature

_— _ _ i — e = _ — — = ——— = S— = e = === = = ——————————— ————————— = — —_——— —

- = = = = == —— = — ——

invariant depends on c.
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_ e — — — ——— — e = = = = =
E==am—— = = _ e — — — — E—— — — = =
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» At a perturbative level the two sectors are indeed coupled, and the constant ¢ appears in the

equations of motion in a nontrivial way.
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Effect of c

» ¢ does not have a physical impact on background observables, and, in particular, no curvature

e -

invariant depends on c.

» At a perturbative level the two sectors are indeed coupled, and the constant ¢ appears in the

equations of motion in a nontrivial way.

e Asymptotically flat case with static, [ = 1 axial perturbations:

—w? > T
h(8) — a1 h) = = L) _ )2h®) — w-cy  Caf
! ? f ’ ¥ y

auece fixine (1 d.o.f.
r r r Csz— a)zzg 5AT6 2 )
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Effect of c

» ¢ does not have a physical impact on background observables, and, in particular, no curvature

e -

invariant depends on c.

» At a perturbative level the two sectors are indeed coupled, and the constant ¢ appears in the

equations of motion in a nontrivial way.

e Asymptotically flat case with static, [ = 1 axial perturbations:

—w? > T
h(8) — a1 h) = = L) _ )2h®) — w-cy  Caf
! ? t ’ ¥ y

auece fixine (1 d.o.f.
r r r CZZf— a)22g 5AT6 2 )

If only the mode m = 0 is exited, axial symmetry is preserved. In this case,

perturbed two slowly rotating Kerr BH

two Schwarzschild BH with angular momentum




Final remarks

-

We have presented a formalism to study -

inear perturbations of bimetric gravity on any

spherically symmetric background, including c

ynamical spacetimes.

The setup is based on the Gerlach-Sengupta formalism for GR. Each of the two background

metrics is written as a warped product between a two-dimensional Lorentzian metric and the

round metric of the two-sphere.

e A covariant notation on the Lorentzian manifold is used so that all expressions are valid for

any coordinates.

As an application we have considered the

case of the most general nonbidiagonal static

backgrounds (two Schwarzschild-(anti)de Sitter metrics).

e We have solved analitically the static perturbations with [ = 1 in the axial sector.

Future work: to solve the perturbative equations in the dynamical case for the axial sector and

[ = 1 where there is one propagating degree of

freedom (contrary to GR).




‘Harmonic decomposition of the perturbations

» Decomposition of A[S” ]:

A[SA,1(xP, x%):= Z zl: SimA 7

[=0 m=—I

A[SH,1(xP, x%):= Z Z [SmAzm s x|
[=1 m=—I

00 [

1
A[SG’B](XD Xd) _ _yacz Z [Sm ch leC]
's =1 m=—I

o0 [ o0 [

1
AISYICD, x:=y D" D SlvaZm +7 ), D, S/ S €2y - 25 X e
[=0 m=—I [=2 m=-—I 8




‘Harmonic decomposition of the perturbations

» Decomposition of A[S” ]:

A[SA 1P, x%):= Z Z 54 zm

=0 m=—I

A[SA,1(xP, x¥):= Z Z Y

In geﬂeral, neither Sﬂ,, nor

A[S# ] are symmetric

sistlal = 3 3 (5
g 1 ] =
A[Sab] (X Xd) = Z Z S 7cme + Z Z Slm leCb

=0 m=-I P ——




‘Harmonic decomposition of the perturbations

» Decomposition of A[S” ]:

I=0 m=—I
dy._
A[S? ](X X%):= Z Z In general, neither $¥, nor
111 m_;l) A[S* ] are symmetric
a d ac X
AIS IR 2= —r D) ) ()
5 =1 m=-1
1
A[S®, 1(xP, x):= yacz Z Sy 7 + y“cz Z ST+ =5 X
=0 m=—1 =2 m=—1I — g
» The scalar components can be solved explicitly in terms of those of g and f:
o 1 (K(f) _ a)ZK(g)) S — L (G(f) _ a)2G(8)) S‘ =0, o — I (h(f) _ a)Zh(g))
2w 2w 2w




Physical propagat of freedom

» In vacuum GR:

10 d.o.t s 8 first-class constraints — 2 propagating d.o.f
( metric: rank-two > 4 generators of diffeomorphisms and
symmetric tensor field 4 vanishing of the conjugate

momenta of lapse and shift

» Bimetric gravity: when the two metrics are coupled, a set of four first-class constraints of the

system is removed, due to the now common diffeomorphism invariance

2X 10 d.of === 44 2 X 4 first-class === 2 second-class === 7 propagating d.o.f

A constraints constraints A
AN <pa,rticular form of the>
Interaction term
/$§
2 symmetric rank-two tensors 3 four vectors 1 scalar ghost 4 polar, 3 axial

(14 polar, 6 axial) (9 polar, 3 axial) (1 polar)




