Perturbations of bimetric gravity on most general spherically symmetric spacetimes

Based on arXiv:2402.15327

Published in: *Phys.Rev.D* 109 (2024) 12, 124060

David Brizuela¹, Marco de Cesare^{1,2}, <u>Araceli Soler Oficial¹</u>

¹Department of Physics, University of the Basque Country UPV/EHU, Leioa, Spain ²Dipartimento di Fisica, Università di Napoli "Federico II" & INFN Sezione di Napoli, Naples, Italy david.brizuela@ehu.eus, marco.decesare@ehu.eus, <u>araceli.soler@ehu.eus</u>

Spanish and Portuguese Relativity Meeting EREP 2024

EHU QC

EHU Quantum Center

del País Vasco

FACULTY OF SCIENCE AND TECHNOLOGY UNIVERSITY OF THE BASQUE COUNTRY

Outline

- Introduction to the bimetric theory of gravity
- \triangleright 2+2 decomposition of spherically symmetric backgrounds
- Perturbative analysis
 - Harmonic decomposition of the perturbations
 - Perturbative equations of motion
- Application: static nonbidiagonal backgrounds
- ► Final remarks

- massless spin-2 fields that admits self-accelerated cosmological solutions.
- each other.
- ► Action: EH term for \tilde{g}_{ab} EH term for \tilde{f}_{ab} Planck Mass Ricci scalar "Planck Mass" Ricci scalar for $\tilde{g}_{\mu\nu}$ for $\tilde{f}_{\mu\nu}$ for $\tilde{g}_{\mu\nu}$
- Matter fields are assumed to couple only to \tilde{g}_{ab} . Total action:

Bimetric gravity is a consistent theory with non-linear interactions between massive and

In addition to the usual metric, \tilde{g}_{ab} , we have an extra one, f_{ab} . These two metrics are coupled to

 $S[\tilde{g}_{ab}, \tilde{f}_{ab}, \psi] = S_{\text{Bi}}[\tilde{g}_{ab}, \tilde{f}_{ab}] + S_{\text{m}}[\tilde{g}_{ab}, \psi]$

► The bimetric action is invariant under the simultaneous replacements

 $\tilde{g} \leftrightarrow \tilde{f}, \quad \beta_n \leftrightarrow \beta_{4-n}, \quad M_g \leftrightarrow M_f, \quad m^2 \leftrightarrow m^2 M_g^2/M_f^2$

► The bimetric action is invariant under the simultaneous replacements

 $\tilde{g} \leftrightarrow \tilde{f}, \quad \beta_n \leftrightarrow \beta_{4-n},$

The symmetry is broken by matter fields

$$M_g \leftrightarrow M_f, \quad m^2 \leftrightarrow m^2 M_g^2/M_f^2$$

► The bimetric action is invariant under the simultaneous replacements $\tilde{g} \leftrightarrow \tilde{f}, \quad \beta_n \leftrightarrow \beta_{4-n},$

The symmetry is broken by matter fields

► Field equations:

$$\begin{aligned} G_{\mu\nu}^{(\tilde{g})} + m^2 V_{\mu\nu}^{(\tilde{g})}(\tilde{g},\tilde{f},\beta_n) &= \frac{1}{M_g^2} \mathcal{T}_{\mu\nu} \\ G_{\mu\nu}^{(\tilde{f})} + \frac{m^2}{\alpha^2} V_{\mu\nu}^{(\tilde{f})}(\tilde{g},\tilde{f},\beta_n) &= 0 \end{aligned}$$

U

where

- $\alpha \equiv M_f/M_g$ is the ratio between the 'Planck masses',
- $V_{\mu\nu}^{(\tilde{g})}(\tilde{g},\tilde{f},\beta_n)$ and $V_{\mu\nu}^{(\tilde{f})}(\tilde{g},\tilde{f},\beta_n)$ describe the interaction between both metrics, and are given in terms of
- $\mathcal{T}_{\mu\nu}$ is the matter stress-energy tensor.

$$M_g \leftrightarrow M_f, \quad m^2 \leftrightarrow m^2 M_g^2/M_f^2$$

$$\mathfrak{S}^{\mu}{}_{\nu} := \sqrt{\tilde{g}^{\mu\rho}\tilde{f}_{\rho\nu}},$$

The bimetric action is invariant under the simultaneous replacements $\tilde{g} \leftrightarrow \tilde{f}, \quad \beta_n \leftrightarrow \beta_{4-n},$

The symmetry is broken by matter fields

▶ Field equations:

$$G^{(\tilde{g})}_{\mu\nu} = 8\pi t^{(\tilde{g})}_{\mu\nu} \qquad t^{(\tilde{g})}_{\mu\nu}$$

$$G_{\mu\nu}^{(\tilde{f})} = 8\pi t_{\mu\nu}^{(\tilde{f})} t_{\mu\nu}^{(\tilde{f})}$$

where

- $\alpha \equiv M_f/M_g$ is the ratio between the 'Planck masses',
- $V_{\mu\nu}^{(\tilde{g})}(\tilde{g},\tilde{f},\beta_n)$ and $V_{\mu\nu}^{(f)}(\tilde{g},\tilde{f},\beta_n)$ describe the interaction between both metrics, and are given in terms of
- $\mathcal{T}_{\mu\nu}$ is the matter stress-energy tensor.

$$M_g \leftrightarrow M_f, \quad m^2 \leftrightarrow m^2 M_g^2/M_f^2$$

$$\mathfrak{S}^{\mu}{}_{\nu} := \sqrt{\tilde{g}^{\mu\rho}\tilde{f}_{\rho\nu}},$$

► Any four-dimensional spherically symmetric manifold is given as a direct product

 $\mathcal{M}^2 \times S^2$

Any four-dimensional spherically symmetric manifold is given as a direct product

two-dimensional Lorentzian manifold

Any four-dimensional spherically symmetric manifold is given as a direct product

two-dimensional Lorentzian manifold

two-sphere

Any four-dimensional spherically symmetric manifold is given as a direct product two-dimensional Lorentzian manifold

The background metric tensors can then be written in block-diagonal form, $g_{\mu\nu}(x^{\lambda}) \mathrm{d}x^{\mu} \mathrm{d}x^{\nu} = g_{AB}(x^D) \mathrm{d}x^A \mathrm{d}x^B + r_g^2(x^D) \gamma_{ab}(x^d) \mathrm{d}x^a \mathrm{d}x^b$ $f_{\mu\nu}(x^{\lambda}) \mathrm{d}x^{\mu} \mathrm{d}x^{\nu} = f_{AB}(x^D)$

where

 $\gamma_{ab}(x^d) dx^a dx^b = d\theta^2 + \sin^2 \theta d\varphi^2$

$$\mathrm{d} x^A \mathrm{d} x^B + r_f^2(x^D) \gamma_{ab}(x^d) \mathrm{d} x^a \mathrm{d} x^b$$

> Any four-dimensional spherically symmetric manifold is given as a direct product two-dimensional Lorentzian manifold

The background metric tensors can then be written in block-diagonal form, $g_{\mu\nu}(x^{\lambda}) \mathrm{d}x^{\mu} \mathrm{d}x^{\nu} = g_{AB}(x^D) \mathrm{d}x^A \mathrm{d}x^B + r_{\varrho}^2(x^D)\gamma_{ab}(x^d) \mathrm{d}x^a \mathrm{d}x^b$ $f_{\mu\nu}(x^{\lambda}) \mathrm{d}x^{\mu} \mathrm{d}x^{\nu} = f_{AB}(x^D) \mathrm{d}x^A \mathrm{d}x^B + r_f^2(x^D)\gamma_{ab}(x^d) \mathrm{d}x^a \mathrm{d}x^b$ where

► Advantages:

 \bullet We work covariantly on \mathscr{M}^2

• \mathbb{S}^{μ}_{ν} is also diagonal by blocks with $\mathbb{S}^{a}_{b} = \frac{r_{f}}{r}$

 $\gamma_{ab}(x^d) dx^a dx^b = d\theta^2 + \sin^2\theta d\varphi^2$

$$\delta^a_{\ b}$$

> Any four-dimensional spherically symmetric manifold is given as a direct product two-dimensional Lorentzian manifold

▶ The background metric tensors can then be written in block-diagonal form, $g_{\mu\nu}(x^{\lambda}) \mathrm{d}x^{\mu} \mathrm{d}x^{\nu} = g_{AB}(x^D) \mathrm{d}x^A \mathrm{d}x^B + r_{\varrho}^2(x^D)\gamma_{ab}(x^d) \mathrm{d}x^a \mathrm{d}x^b$ $f_{\mu\nu}(x^{\lambda}) \mathrm{d}x^{\mu} \mathrm{d}x^{\nu} = f_{AB}(x^D) \mathrm{d}x^A \mathrm{d}x^B + r_f^2(x^D)\gamma_{ab}(x^d) \mathrm{d}x^a \mathrm{d}x^b$ where

► Advantages:

• We work covariantly on \mathcal{M}^2

• \mathbb{S}^{μ}_{ν} is also diagonal by blocks with $\mathbb{S}^{a}_{b} = \begin{pmatrix} r_{f} \\ -r_{g} \end{pmatrix}^{a}_{b}$

 $\gamma_{ab}(x^d) dx^a dx^b = d\theta^2 + \sin^2\theta d\varphi^2$

Perturbative ansatz:

 $\tilde{g}_{\mu\nu} = g_{\mu\nu} + h^{(g)}_{\mu\nu}$

 $\tilde{f}_{\mu\nu} = f_{\mu\nu} + h^{(f)}_{\mu\nu}$

Perturbative ansatz:

 $h^{(f)}_{\mu
u}$ $\tilde{f}_{\mu\nu} = f_{\mu\nu}$

exact solutions (background)

Perturbative ansatz:

 $\tilde{g}_{\mu\nu} = g_{\mu\nu} + h^{(g)}_{\mu\nu}$

 $\tilde{f}_{\mu\nu} = f_{\mu\nu} + h^{(f)}_{\mu\nu}$ perturbations

Perturbative ansatz:

► The linear equations of motion for $h_{\mu\nu}^{(g)}$ and $h_{\mu\nu}^{(f)}$ can be written as $\Delta[G_{\mu\nu}^{(i)}] = 8\pi\Delta[t_{\mu\nu}^{(i)}] \qquad i = g, f$

 $\tilde{g}_{\mu\nu} = g_{\mu\nu} + h^{(g)}_{\mu\nu}$

 $\tilde{f}_{\mu\nu} = f_{\mu\nu} + h^{(f)}_{\mu\nu}$ perturbations

 $\tilde{f}_{\mu\nu} = f_{\mu\nu} + h^{(f)}_{\mu\nu}$ perturbations

 $(\Delta [G_{\mu\nu}^{(i)}] = 8\pi\Delta [t_{\mu\nu}^{(i)}] \qquad i = g, f$

On a spherically symmetric background the p a basis of tensor spherical harmonics

$$\tilde{\mathbb{S}}^{\mu}_{\ \alpha}\tilde{\mathbb{S}}^{\alpha}_{\ \nu} = \tilde{g}^{\mu\alpha}\tilde{f}_{\alpha\nu} \longrightarrow \mathbb{S}^{\mu}_{\ \alpha}\Delta[\mathbb{S}^{\alpha}_{\ \nu}] + \Delta[\mathbb{S}^{\mu}_{\ \alpha}]\mathbb{S}^{\alpha}_{\ \nu} = g^{\mu\alpha}h^{(f)}_{\alpha\nu} - g^{\mu\alpha}h^{(g)}_{\alpha\beta}g^{\beta\sigma}f_{\sigma\nu}$$

$$\begin{split} \tilde{f}_{\mu\nu} &= f_{\mu\nu} + h_{\mu\nu}^{(f)} \\ \text{perturbations} \\ p_{\mu\nu}^{(f)} \text{ can be written as} \\ p_{\mu\nu}^{(f)} \text{ can be written as} \\ p_{\mu\nu}^{(f)} &= g, f \\ \text{Non trivial computation,} \\ \text{requires } \Delta[\mathbb{S}^{\mu}{}_{\nu}] \\ &\quad (\mathbb{S}^{\mu}{}_{\nu} = \sqrt{\tilde{g}^{\mu\rho}\tilde{f}_{\rho\nu}}) \end{split}$$

► On a spherically symmetric background the problem can be simplified by decomposing $\Delta[\mathbb{S}^{\mu}{}_{\nu}]$ in

Tensor spherical harmonics

Tensor spherical harmonics

polar (Z)axial

▶ Basis for scalars on the sphere: $\{Y_l^m\}$ (usual scalar spherical harmonics)

Tensor spherical harmonics

polar (axial

Tensor spherical harmonics

polar axial

- ► Basis for scalars on the sphere: $\{Z_l^m\}$ (usual scalar spherical harmonics)
- ▶ Basis for vectors on the sphere: $\{Z_{l,a}^{m}, X_{l,a}^{m}\}$ $Z_{l\ a}^{m} := \partial_{a} Z_{l}^{m} \qquad X_{l\ a}^{m} := \epsilon_{a}^{b} Z_{l\ b}^{m}$

Tensor spherical harmonics

polar (Z)axial

- ▶ Basis for scalars on the sphere: $\{Z_{l}^{m}\}$ (usual scalar spherical harmonics)
- ▶ Basis for vectors on the sphere: $\{Z_{l}^{m}, X_{l}^{m}\}$ $Z_{l\ a}^{m} := \partial_{a} Z_{l}^{m} \qquad X_{l\ a}^{m} := \epsilon_{a}^{b} Z_{l\ b}^{m}$
- ► Basis for rank-two tensors on the sphere: $\{Z_{l\ ab}^{m}, X_{l\ ab}^{m}, \gamma_{ab}Z_{l}^{m}, \epsilon_{ab}Z_{l}^{m}\}$ $Z_{l\ ab}^{m} := Z_{l\ :ab}^{m} + \frac{l(l+1)}{2}\gamma_{ab}Z_{l}^{m}$ $X_{l\ ab}^{m} := \frac{1}{2}(X_{l\ a:b}^{m} + X_{l\ b:a}^{m})$

Tensor spherical harmonics

Tensor spherical harmonics

- ▶ Basis for scalars on the sphere: $\{Z_{l}^{m}\}$ (usual scalar spherical harmonics)
- ▶ Basis for vectors on the sphere: $\{Z_{l}^{m}, X_{l}^{m}\}$ $Z_{l\ a}^{m} := \partial_{a} Z_{l}^{m} \qquad X_{l\ a}^{m} := \epsilon_{a}^{b} Z_{l\ b}^{m}$
- ► Basis for **rank-two tensors** on the sphere: $\{Z_{l\ ab}^{m}, X_{l\ ab}^{m}, \gamma_{ab}Z_{l}^{m}, \epsilon_{ab}Z_{l}^{m}\}$ $Z_{l\ ab}^{m} := Z_{l\ :ab}^{m} + \frac{l(l+1)}{2}\gamma_{ab}Z_{l}^{m} \qquad X_{l\ ab}^{m} := \frac{1}{2}(X_{l\ a:b}^{m} + X_{l\ b:a}^{m})$

As in GR, different polarities decouple at the linear level, so long as the background is spherically symmetric.

▶ Decomposition of the perturbations into tensor spherical harmonics:

$$\begin{split} h_{AB}^{(i)}(x^{D}, x^{d}) &:= \sum_{l=0}^{\infty} \sum_{m=-l}^{l} H_{lAB}^{(i)m} Z_{l}^{m} \\ h_{Ab}^{(i)}(x^{D}, x^{d}) &:= \sum_{l=1}^{\infty} \sum_{m=-l}^{l} \left[H_{lA}^{(i)m} Z_{l}^{m}{}_{b} + h_{lA}^{(i)m} X_{l}^{m}{}_{b} \right] \\ h_{ab}^{(i)}(x^{D}, x^{d}) &:= \sum_{l=0}^{\infty} \sum_{m=-l}^{l} K_{l}^{(i)m} r_{i}^{2} \gamma_{ab} Z_{l}^{m} + \sum_{l=2}^{\infty} \sum_{m=-l}^{l} \left[G_{l}^{(i)m} r_{i}^{2} Z_{lab}^{l} + h_{l}^{(i)m} X_{lab}^{l} \right] \end{split}$$

► Decomposition of the perturbations into tensor spherical harmonics:

$$\begin{split} h_{AB}^{(i)}(x^{D}, x^{d}) &:= \sum_{l=0}^{\infty} \sum_{m=-l}^{l} H_{lAB}^{(i)m} Z_{l}^{m} \\ h_{Ab}^{(i)}(x^{D}, x^{d}) &:= \sum_{l=1}^{\infty} \sum_{m=-l}^{l} \left[H_{lA}^{(i)m} Z_{lb}^{m} + h_{lA}^{(i)m} X_{lb}^{m} \right] \\ h_{ab}^{(i)}(x^{D}, x^{d}) &:= \sum_{l=0}^{\infty} \sum_{m=-l}^{l} K_{l}^{(i)m} r_{i}^{2} \gamma_{ab} Z_{l}^{m} + \sum_{l=2}^{\infty} \sum_{m=-l}^{l} \left[G_{l}^{(i)m} r_{i}^{2} Z_{lab}^{m} + h_{l}^{(i)m} X_{lab}^{m} \right] \end{split}$$

$$l = 0$$
 and $l = 1$
are special cases

▶ Decomposition of the perturbations into tensor spherical harmonics:

$$\begin{split} h_{AB}^{(i)}(x^{D}, x^{d}) &:= \sum_{l=0}^{\infty} \sum_{m=-l}^{l} H_{lAB}^{(i)m} Z_{l}^{m} \\ h_{Ab}^{(i)}(x^{D}, x^{d}) &:= \sum_{l=1}^{\infty} \sum_{m=-l}^{l} \left[H_{lA}^{(i)m} Z_{l}^{m}{}_{b} + h_{lA}^{(i)m} X_{l}^{m}{}_{b} \right] \\ h_{ab}^{(i)}(x^{D}, x^{d}) &:= \sum_{l=0}^{\infty} \sum_{m=-l}^{l} K_{l}^{(i)m} r_{i}^{2} \gamma_{ab} Z_{l}^{m} + \sum_{l=2}^{\infty} \sum_{m=-l}^{l} \left[G_{l}^{(i)m} r_{i}^{2} Z_{lab}^{m} + h_{l}^{(i)m} X_{lab}^{m} \right] \end{split}$$

And similarly for $\Delta[t_{\mu\nu}^{(i)}], \Delta[\mathcal{T}_{\mu\nu}]$ and $\Delta[\mathbb{S}^{\mu}_{\nu}]$

$$l = 0$$
 and $l = 1$
are special cases

The equations for the f sector can be obtain theory under the interchange of g and f.

▶ The equations for the f sector can be obtained from the ones for g using the symmetry of the

- theory under the interchange of g and f.
- ▶ **Example:** axial sector, scalar equation $(l \ge 2)$

$$2 \nabla^{(g)}_{A} h_{A}^{(g)} - \nabla^{(g)}_{A} \nabla^{(g)}_{A} h^{(g)} + 2 \nabla^{(g)}_{A} \left(h^{(g)} \frac{\nabla^{A} r_{g}}{r_{g}} \right) = 16\pi \left(t^{(g)} - \frac{Q_{g}}{2} h^{(g)} \right)$$

 \blacktriangleright The equations for the f sector can be obtained from the ones for g using the symmetry of the

- The equations for the f sector can be obtain theory under the interchange of g and f.
- ► **Example:** axial sector, scalar equation $(l \ge 2)$

$$2 \nabla^{(g)}Ah_A^{(g)} - \nabla^{(g)}A\nabla^{(g)}Ah^{(g)} + 2\nabla^{(g)}A\left(h^{(g)}\frac{\nabla^A r_g}{r_g}\right) = 16\pi\left(\frac{1}{4}\left(Q_g - Q_m\right)h^{(g)} + \frac{m^2}{32\pi\omega}\right)$$

The equations for the f sector can be obtained from the ones for g using the symmetry of the

 $\left[\beta_1 + \beta_2 \mathbb{S}^A_A + \beta_3 \det\left(\mathbb{S}^A_B\right)\right] \left(h^{(f)} - \omega^2 h^{(g)}\right) + \frac{1}{8\pi M_o^2} \psi$

- theory under the interchange of g and f.
- **Example:** axial sector, scalar equation $(l \ge 2)$

$$2 \nabla^{(g)} A h_A^{(g)} - \nabla^{(g)} A \nabla^{(g)} A^{(g)} + 2 \nabla^{(g)} A \left(h^{(g)} \frac{\nabla^A r_g}{r_g} \right) = 16\pi \left(t^{(g)} \frac{1}{4} (Q_g - Q_m) h^{(g)} + \frac{m^2}{32\pi \omega} \right)$$

Number of physical propagating degrees of freedom:

$$l = 0$$
$$l = 1$$
$$l \ge 2$$

The equations for the f sector can be obtained from the ones for g using the symmetry of the the sector can be obtained from the ones for g using the symmetry of the sector can be obtained from the ones for g using the symmetry of the sector can be obtained from the ones for g using the symmetry of the sector can be obtained from the ones for g using the symmetry of the sector can be obtained from the ones for g using the symmetry of the sector can be obtained from the ones for g using the symmetry of the sector can be obtained from the ones for g using the symmetry of the sector can be obtained from the ones for g using the symmetry of the sector can be obtained from the ones for g using the symmetry of the sector can be obtained from the ones for g using the symmetry of the sector can be obtained from the ones for g using the symmetry of the sector can be obtained from the ones for g using the symmetry of the sector can be obtained from the ones for g using the symmetry of the sector can be obtained from the ones for g using the symmetry of the sector can be obtained from the ones for g using the sector can be obtained from the ones for g using the symmetry of the sector can be obtained from the ones for g using the sector can be obtained from the ones for g using the sector can be obtained from the ones for g using the sector can be obtained from the ones for g using the sector can be obtained from the ones for g using the sector can be obtained from the ones for g using the sector can be obtained from the ones for g using the sector can be obtained from the ones for g using the sector can be obtained from the ones for g using the sector can be obtained from the obtained from the ones for g using the sector can be obtained from the obtained f

 $\left[\beta_1 + \beta_2 \mathbb{S}^A_A + \beta_3 \det\left(\mathbb{S}^A_B\right)\right] \left(h^{(f)} - \omega^2 h^{(g)}\right) + \frac{1}{8\pi M_o^2} \psi$

Axial	Polar
0	1
1	2
3	4

$$+ 2\omega\beta_1 + \omega^2\beta_2 g_{\mu\nu} = 0$$
$$- 2\omega^{-1}\beta_3 + \omega^{-2}\beta_2 f_{\mu\nu} = 0$$

g and f are decoupled at background level

[Volkov (2015)]

10

= 0 $\approx \Lambda$ [Volkov (2015)]

g and f are decoupled at background level

10

► Most general static nonbidiagonal ansatz:

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = -\Sigma_{g}(r)dt^{2} + \frac{1}{\Sigma_{g}(r)}dr^{2} + r^{2}\gamma_{ab}dx^{a}dx^{b}, \qquad \Sigma_{g}(r) := 1 - \frac{2\mu_{g}}{r} - \frac{m^{2}\Lambda_{g}}{3}r^{2}$$
$$f_{\mu\nu}dx^{\mu}dx^{\nu} = -\Sigma_{f}(r_{f})dT^{2} + \frac{1}{\Sigma_{f}(r_{f})}dr_{f}^{2} + r_{f}^{2}\gamma_{ab}dx^{a}dx^{b}, \qquad \Sigma_{f}(r_{f}) := 1 - \frac{2\mu_{f}}{r_{f}} - \frac{m^{2}\Lambda_{f}}{3\alpha^{2}}r_{f}^{2}$$

$$+2\omega\beta_1 + \omega^2\beta_2 g_{\mu\nu} = 0$$

$$-2\omega^{-1}\beta_3 + \omega^{-2}\beta_2 g_{\mu\nu} = 0$$

$$\leq \Lambda_f$$

g and f are decoupled at background level

10

► Most general static nonbidiagonal ansatz:

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = -\Sigma_{g}(r)dt^{2} + \frac{1}{\Sigma_{g}(r)}dr^{2} + r^{2}\gamma_{ab}dx^{a}dx^{b}, \qquad \Sigma_{g}(r) := 1 - \frac{2\mu_{g}}{r} - \frac{m^{2}\Lambda_{g}}{3}r^{2}$$
$$f_{\mu\nu}dx^{\mu}dx^{\nu} = -\Sigma_{f}(r_{f})dT^{2} + \frac{1}{\Sigma_{f}(r_{f})}dr_{f}^{2} + r_{f}^{2}\gamma_{ab}dx^{a}dx^{b}, \qquad \Sigma_{f}(r_{f}) := 1 - \frac{2\mu_{f}}{r_{f}} - \frac{m^{2}\Lambda_{f}}{3\alpha^{2}}r_{f}^{2}$$

$$+2\omega\beta_1 + \omega^2\beta_2 g_{\mu\nu} = 0$$

$$-2\omega^{-1}\beta_3 + \omega^{-2}\beta_2 g_{\mu\nu} = 0$$

$$\leq \Lambda_f$$

two Schwarzschild-(anti)de Sitter metrics

► Most general static nonbidiagonal ansatz:

$$g_{\mu\nu} dx^{\mu} dx^{\nu} = -\Sigma_{g}(r) dt^{2} + \frac{1}{\Sigma_{g}(r)} dr^{2} + r^{2} \gamma_{ab} dx^{a} dx^{b}, \qquad \Sigma_{g}(r) := 1 - \frac{2\mu_{g}}{r} - \frac{m^{2}\Lambda_{g}}{3}r^{2}$$
$$f_{\mu\nu} dx^{\mu} dx^{\nu} = -\Sigma_{f}(r_{f}) dT^{2} + \frac{1}{\Sigma_{f}(r_{f})} dr_{f}^{2} + r_{f}^{2} \gamma_{ab} dx^{a} dx^{b}, \qquad \Sigma_{f}(r_{f}) := 1 - \frac{2\mu_{f}}{r_{f}} - \frac{m^{2}\Lambda_{f}}{3\alpha^{2}}r_{f}^{2}$$

From (T, r_f, θ, ϕ) to (t, r, θ, ϕ) : $T(t,r) = ct + \left[\frac{1}{\sqrt{\frac{1}{2}}} - \frac{1}{2} \right] \left(\frac{c^2}{2} - \frac{\omega^2}{2} \right)$ dr, $\int \bigvee \left\{ \Sigma_g \quad \overline{\Sigma_f} \right\} \left\{ \overline{\Sigma_g} \quad \overline{\Sigma_f} \right\}$

$$+ 2\omega\beta_1 + \omega^2\beta_2 g_{\mu\nu} = 0$$

$$- 2\omega^{-1}\beta_3 + \omega^{-2}\beta_2 g_{\mu\nu} = 0$$

$$\leq \Lambda_f$$

two Schwarzschild-(anti)de Sitter metrics

 $r_f(r) = \omega r$ with ω given by $\beta_1 + 2\beta_2\omega + \beta_3\omega^2 = 0$

► Most general static nonbidiagonal ansatz:

$$g_{\mu\nu} dx^{\mu} dx^{\nu} = -\Sigma_{g}(r) dt^{2} + \frac{1}{\Sigma_{g}(r)} dr^{2} + r^{2} \gamma_{ab} dx^{a} dx^{b}, \qquad \Sigma_{g}(r) := 1 - \frac{2\mu_{g}}{r} - \frac{m^{2}\Lambda_{g}}{3}r^{2}$$
$$f_{\mu\nu} dx^{\mu} dx^{\nu} = -\Sigma_{f}(r_{f}) dT^{2} + \frac{1}{\Sigma_{f}(r_{f})} dr_{f}^{2} + r_{f}^{2} \gamma_{ab} dx^{a} dx^{b}, \qquad \Sigma_{f}(r_{f}) := 1 - \frac{2\mu_{f}}{r_{f}} - \frac{m^{2}\Lambda_{f}}{3\alpha^{2}}r_{f}^{2}$$

From (T, r_f, θ, ϕ) to (t, r, θ, ϕ) : $T(t,r) = ct + \left[\frac{1}{\sqrt{\frac{1}{1} - \frac{1}{1}}} \right] \left(\frac{c^2}{\frac{c^2}{1} - \frac{\omega^2}{1}} \right)$ dr, $\Sigma_f / \sum_g \Sigma_f /$

$$+2\omega\beta_{1}+\omega^{2}\beta_{2}\beta_{\mu\nu}=0$$
$$-2\omega^{-1}\beta_{3}+\omega^{-2}\beta_{2}\beta_{\mu\nu}=0$$
$$\leq \Lambda_{f}$$

two Schwarzschild-(anti)de Sitter metrics

 $r_f(r) = \omega r$ with ω given by $\beta_1 + 2\beta_2 \omega + \beta_3 \omega^2 = 0$

Which is the physical interpretation of *c*?

• c does not have a physical impact on backg invariant depends on c.

▶ c does not have a physical impact on background observables, and, in particular, no curvature

- c does not have a physical impact on backg invariant depends on c.
- At a perturbative level the two sectors are equations of motion in a nontrivial way.

▶ c does not have a physical impact on background observables, and, in particular, no curvature

 \blacktriangleright At a perturbative level the two sectors are indeed coupled, and the constant c appears in the

- invariant depends on *c*.
- equations of motion in a nontrivial way.
 - Asymptotically flat case with static, l = 1 axial perturbations:

$$h_t^{(g)} = \frac{c_1}{r} , \qquad h_t^{(f)} = \frac{c_2}{r} , \qquad h_r^{(f)} - \omega^2 h_r^{(g)} = \frac{c_2 - \omega^2 c_1}{r} \frac{c \Sigma_f T'}{c^2 \Sigma_f - \omega^2 \Sigma_g}$$

▶ c does not have a physical impact on background observables, and, in particular, no curvature

 \triangleright At a perturbative level the two sectors are indeed coupled, and the constant c appears in the

gauge fixing (1 d.o.f.)

- invariant depends on *c*.
- equations of motion in a nontrivial way.
 - Asymptotically flat case with static, l = 1 axial perturbations:

$$h_t^{(g)} = \frac{c_1}{r} , \qquad h_t^{(f)} = \frac{c_2}{r} , \qquad h_r^{(f)} - \omega^2 h_r^{(g)} = \frac{c_2 - \omega^2 c_1}{r} \frac{c \Sigma_f T'}{c^2 \Sigma_f - \omega^2 \Sigma_g}$$

If only the mode m = 0 is exited, axial symmetry is preserved. In this case,

perturbed

two Schwarzschild BH

▶ c does not have a physical impact on background observables, and, in particular, no curvature

 \triangleright At a perturbative level the two sectors are indeed coupled, and the constant c appears in the

gauge fixing (1 d.o.f.)

two slowly rotating Kerr BH with angular momentum $J_g = -\frac{c_1}{4}\sqrt{\frac{3}{\pi}}, \qquad J_f = -\frac{c_2\omega}{4c}\sqrt{\frac{3}{\pi}}$

Final remarks

- spherically symmetric background, including dynamical spacetimes.
- round metric of the two-sphere.
 - any coordinates.
- backgrounds (two Schwarzschild-(anti)de Sitter metrics).
 - We have solved analitically the static perturbations with l = 1 in the axial sector.
- l = 1 where there is one propagating degree of freedom (contrary to GR).

We have presented a formalism to study linear perturbations of bimetric gravity on any

The setup is based on the Gerlach-Sengupta formalism for GR. Each of the two background metrics is written as a warped product between a two-dimensional Lorentzian metric and the

• A covariant notation on the Lorentzian manifold is used so that all expressions are valid for

As an application we have considered the case of the most general nonbidiagonal static

Future work: to solve the perturbative equations in the dynamical case for the axial sector and

• Decomposition of
$$\Delta[\mathbb{S}^{\mu}{}_{\nu}]$$
:

$$\Delta[\mathbb{S}^{A}{}_{B}](x^{D}, x^{d}) := \sum_{l=0}^{\infty} \sum_{m=-l}^{l} S^{mA}_{l \ B} Z^{m}_{l}$$

$$\Delta[\mathbb{S}^{A}{}_{b}](x^{D}, x^{d}) := \sum_{l=1}^{\infty} \sum_{m=-l}^{l} \left[S^{mA}_{l \ b} + s^{mA}_{l \ b} X^{m}_{l \ b}\right]$$

$$\Delta[\mathbb{S}^{a}{}_{B}](x^{D}, x^{d}) := \frac{1}{r_{g}^{2}} \gamma^{ac} \sum_{l=1}^{\infty} \sum_{m=-l}^{l} \left[\tilde{S}^{m}_{l \ B} Z^{m}_{l \ c} + \tilde{s}^{m}_{l \ B} X^{m}_{l \ c}\right]$$

$$\Delta[\mathbb{S}^{a}{}_{b}](x^{D}, x^{d}) := \gamma^{ac} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \tilde{S}^{m}_{l \ \gamma_{cb}} Z^{m}_{l} + \gamma^{ac} \sum_{l=2}^{\infty} \sum_{m=-l}^{l} \sum_{m=-l}^{l} S^{m}_{l \ \gamma_{cb}} Z^{m}_{l \ \gamma_{cb}} Z^{m$$

 $+ \gamma^{ac} \sum_{l=2}^{\infty} \sum_{m=-l}^{l} \left[S_l^m Z_{l\ cb}^m + \check{S}_l^m \epsilon_{cb} Z_l^m + \frac{1}{r_g^2} s_l^m X_{l\ cb}^m \right]$

• Decomposition of
$$\Delta[\mathbb{S}^{\mu}_{\nu}]$$
:

$$\Delta[\mathbb{S}^{A}_{B}](x^{D}, x^{d}) := \sum_{l=0}^{\infty} \sum_{m=-l}^{l} S^{mA}_{l} Z^{m}_{l}$$

$$\Delta[\mathbb{S}^{A}_{b}](x^{D}, x^{d}) := \sum_{l=1}^{\infty} \sum_{m=-l}^{l} S^{mA}_{l} Z^{m}_{l} + S^{m}_{l}$$

$$\Delta[\mathbb{S}^{a}_{B}](x^{D}, x^{d}) := \frac{1}{r_{g}^{2}} \gamma^{ac} \sum_{l=1}^{\infty} \sum_{m=-l}^{l} S^{m}_{l} \gamma_{cb} Z^{m}_{l} + S^{m}_{l}$$

• Decomposition of
$$\Delta[\mathbb{S}^{\mu}_{\nu}]$$
:

$$\Delta[\mathbb{S}^{A}_{B}](x^{D}, x^{d}) := \sum_{l=0}^{\infty} \sum_{m=-l}^{l} S^{mA}_{l} Z^{m}_{l}$$

$$\Delta[\mathbb{S}^{A}_{b}](x^{D}, x^{d}) := \sum_{l=1}^{\infty} \sum_{m=-l}^{l} S^{mA}_{l} Z^{m}_{l} + s^{m}_{l}$$

$$\Delta[\mathbb{S}^{a}_{B}](x^{D}, x^{d}) := \frac{1}{r_{g}^{2}} \gamma^{ac} \sum_{l=1}^{\infty} \sum_{m=-l}^{l} S^{m}_{l} \gamma_{cb} Z^{m}_{l} + s^{m}_{l}$$

▶ The scalar components can be solved explicitly in terms of those of g and f:

$$\tilde{S} = \frac{1}{2\omega} \left(K^{(f)} - \omega^2 K^{(g)} \right), \qquad S = \frac{1}{2\omega} \left(G^{(f)} - \omega^2 G^{(g)} \right), \qquad \check{S} = 0, \qquad s = \frac{1}{2\omega} \left(h^{(f)} - \omega^2 h^{(g)} \right)$$

Physical propagating degrees of freedom

▶ In vacuum GR:

10 d.o.f

8 first-class constraints

(metric: rank-two symmetric tensor field) (symmetric tensor field) (4 generators of diffeomorphisms and 4 vanishing of the conjugate momenta of lapse and shift

▶ Bimetric gravity: when the two metrics are coupled, a set of four first-class constraints of the system is removed, due to the now common diffeomorphism invariance

constraints

2 symmetric rank-two tensors (14 polar, 6 axial)

3 four vectors (9 polar, 3 axial)

