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Spacetime Singularities

@) Predicted by General RElatiVity [Penrose; Hawking]
= They occur in the interior of black holes

o Expected to be an artifact of an incomplete description...
= Fundamental question: how do they get resolved?
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Regular Black Holes
o Black holes with no singularities

@) Ma ny m Od e lS p I'O posed [Sakharov; Bardeen; Hayward; ...]

= Not actual GR solutions: postulated metrics as theoretical
test beds
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Example: Hayward black hole

dr? mr?
= +r’dQ, o), where f(r) =1

ds® = —f(r)dt® + 0

o Deformation parametrized by «
o It looks like Schwarzschild at long distances...

m

r—o0
f(r) = 1—m+...

o ...but the curvature singularity gets replaced by a de Sitter core
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Sometimes, regular black holes can be obtained as solutions to GR cou-
pled tO theorieS Of NLE [Ayon-Beato, Garcia; Bronnikov; Dymnikova; Fan, Wang; ...]

For instance, the Hayward black hole is a solution to

(0]

1 (oFPP

L=R-— T/
o (14 (o F)3/4)

F=FpF® o

2q°
m

e}

Highly ad hoc matter required
= e.g., no Maxwellian limit

Requires fine tuning of parameters
= regular black holes are not the general solutions of these theories
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What to expect in a broader context?
In principle, singularities should be cured by quantum effects

Quantum effects from top-down constructions (e.g., in String Theory)
= infinite towers of higher-curvature corrections to Einstein gravity

Perhaps those would resolve singularities somehow

Understanding such effects is in general completely out of reach...
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Regular Black Holes from Pure Gravity

o We consider a bottom-up setup where we can control the effects of infi-
nite towers of higher-curvature corrections to Einstein gravity

o The result is a generic resolution of the Schwarzschild singularity!

o Regular black holes arise as (the unique) exact solutions of Einstein grav-
ity + infinite towers of higher-curvature terms
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Quasi-topological Gravities
Consider a general £(Rgpcq, 9%) theory of gravity

The theory is Quasi-topological if it possesses 2" order EOM on a general
static and spherically symmetric background

In D = 4 only GR satisfies this. Not so for D > 5

Quasi-topological theories constructed at curvature orders: n = 3 o, ray,
Myers, Rob\'mson], n = 4 [Dehghani, Bazrafshan, Mann, Mehdizadeh, Ghanaatian, Vahidmia], n = 5 [Cisterna, Guajardo, Hassaine,

Oliva] and Vn (and VD Z 5) [PB, Cano, Hennigar; Moreno, Murcia]e
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o ...however, any gravitational effective action can be mapped, via a field
redefinition, to a Quasi-topological gravity s, cano, moreno, murcia; p, cano, Hennigar]

dPx./ Rop-t... dPx./
IEFT:/ g| 9ab—Gap-+ 2R + lor = / |g| R+Z anZ,
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167G

Here we will go beyond the EFT regime...
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Quasi-topological Black Holes

o The full non-linear EOM of a general Quasi-topological gravity

Nmax

R+Z

/ d®x/|g|
lqr =

167G

reduce, for a general SSS ansatz

ds®> = —N(r)f (r)dt* +

dr?
f(r)

to a couple of algebraic equations:

m

=1, |03, [EIO)

r2 r2
n=2

er1

where m is an integration constant related to the mass.
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Schwarzschild Singularity Resolution

[PB, Cano, Hennigar]

o For finite n,,.,, these are generaliza-

tions of the Schwarzschild BH with i
curvature singularitiesatr = o . N T
1/nmax
m (0—1)
f(r)=° 1—( ) e
amax

o For n,., — oo, (A)dS core emerges
and resolves the singularity!

o This occurs quite generically. Suffi-
cient condition:

1.4

ap>0vn, lim(a)=C>0
n—o0




Regular Black Holes Bacchanalia

[PB, Cano, Hennigar]

Qp f(r)
ah=1 - mr?
r°— 4+ am
o - <1 — e‘”‘m/’D”)
n Q«
nan—1 . 2mr?
rP=1 4 2am + /r2(C=") 4 4amrP—1
=) e |, 2mr?
—a —
2 rD—'I + \/rZ(D—'I) _|_ 4a2m2
@) |, mr
2y/nl (”TJ”) Vr20=1 4 o2m2

Hayward, Bardeen-like, Dymnikova-like, etc., black holes as particular cases




In sum

The Schwarzschild black hole singularity gets generically resolved in D >
5 by the effect of infinite towers of higher-curvature densities, no tricks
involved.
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Additional comments
Solutions possess universal and unambiguous thermodynamic proper-
ties
It is possible to find examples with vanishing-temperature inner horizons

[Di Filippo, Kolar, Kubiznak]

Quasi-topological theories satisfy Birkhoff theorems i, ray, re, cano, Hennigar
= plausible studies of spherical collapse

Straightforward extensions to include matter with T} = T}
What about D = 4?
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o Consider a general £(Rapcd, 9¥) theory of gravity. Its EOM read

1 oL
P5%Rpcde — =Gabl — 2V VPgegp = 0, PP =
2 aRabcd

o The theory is Quasi-topological if it possesses 2" order EOM on a general
static and spherically symmetric background, namely, if

d
\ PaCdb|sss =0

In D = 4 only GR satisfies this. Not so for D > 5.

o Quasi-topological theories constructed at curvature orders: n = 3 (i, way,
Myers, Robinson], n = 4 [Dehghani, Bazrafshan, Mann, Mehdizadeh, Ghanaatian, Vahidinial, n = 5 [Cisterna, Guajardo, Hassaine,

Oliva] and Vn (and VD Z 5) [PB, Cano, Hennigar; Moreno, Murcials
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