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Spacetime Singularities

◦ Predicted by General Relativity [Penrose; Hawking]

⇒ They occur in the interior of black holes

◦ Expected to be an artifact of an incomplete description...
⇒ Fundamental question: how do they get resolved?
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Regular Black Holes

◦ Black holes with no singularities

◦ Many models proposed [Sakharov; Bardeen; Hayward; ...]

⇒ Not actual GR solutions: postulated metrics as theoretical
test beds
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Example: Hayward black hole

ds2 = −f (r)dt2 + dr2

f (r) + r2dΩ2
(D−2) , where f (r) ≡ 1 − mr2

rD−1 + αm

◦ Deformation parametrized by α

◦ It looks like Schwarzschild at long distances...

f (r) r→∞
= 1 − m

rD−3 + . . .

◦ ...but the curvature singularity gets replaced by a de Sitter core

f (r) r→0
= 1 − r2

α
+ . . .
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Regular Black Holes and Non-Linear Electrodynamics

◦ Sometimes, regular black holes can be obtained as solutions to GR cou-
pled to theories of NLE [Ayón-Beato, García; Bronnikov; Dymnikova; Fan, Wang; ...]

◦ For instance, the Hayward black hole is a solution to

L = R− 12
σ

(σF)3/2

(1 + (σF)3/4)
2 , F ≡ FabFab σ ≡ 2q3

m

◦ Highly ad hoc matter required
⇒ e.g., no Maxwellian limit

◦ Requires fine tuning of parameters
⇒ regular black holes are not the general solutions of these theories
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What to expect in a broader context?

◦ In principle, singularities should be cured by quantum effects

◦ Quantum effects from top-down constructions (e.g., in String Theory)
⇒ infinite towers of higher-curvature corrections to Einstein gravity

◦ Perhaps those would resolve singularities somehow

◦ Understanding such effects is in general completely out of reach...
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Regular Black Holes from Pure Gravity

◦ We consider a bottom-up setup where we can control the effects of infi-
nite towers of higher-curvature corrections to Einstein gravity

◦ The result is a generic resolution of the Schwarzschild singularity!

◦ Regular black holes arise as (the unique) exact solutions of Einstein grav-
ity + infinite towers of higher-curvature terms
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Quasi-topological Gravities

◦ Consider a general L(Rabcd,gef ) theory of gravity

◦ The theory is Quasi-topological if it possesses 2nd order EOM on a general
static and spherically symmetric background

◦ In D = 4 only GR satisfies this. Not so for D ≥ 5

◦ Quasi-topological theories constructed at curvature orders: n = 3 [Oliva, Ray;

Myers, Robinson], n = 4 [Dehghani, Bazrafshan, Mann, Mehdizadeh, Ghanaatian, Vahidinia], n = 5 [Cisterna, Guajardo, Hassaine,

Oliva] and ∀n (and ∀D ≥ 5) [PB, Cano, Hennigar; Moreno, Murcia].
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Quasi-topological Gravities

Z1 = + R ,

Z2 = + R2 − 4RabR
ab + RabcdR

abcd
,

Z3 = + (D− 4)Rabc
dRb

e
d
f Reaf

c
+

3(3D− 8)
8(2D− 3)

RabcdR
abcdR−

3(3D− 4)
2(2D− 3)

RacRcaR−
3(D− 2)
(2D− 3)

RacbdR
acb

eRde +
3D

(2D− 3)
RacbdR

abRcd

+
6(D− 2)
(2D− 3)

RacRcbRb
a +

3D
8(2D− 3)

R3
,

Z4 = −
384(D− 8)RabR

c
aR

d
cR

b
d

(D− 2)5(D3 − 8D2 + 48D− 96)
−

1152RabR
abRcdR

cd

(D− 2)5(D3 − 8D2 + 48D− 96)
−

64(D3 − 10D2 + 40D + 24)RRcaR
b
cR

a
b

(D− 1)(D− 2)5(D3 − 8D2 + 48D− 96)

+
24(D4 − 6D3 + 20D2 + 104D− 64)R2RabR

ab

(D− 1)2(D− 2)5(D3 − 8D2 + 48D− 96)
−

(D5 + 6D4 − 64D3 + 416D2 + 176D− 480)R4

(D− 1)3(D− 2)5(D3 − 8D2 + 48D− 96)
−

96(D + 2)RRabRcdWacbd
(D− 1)(D− 2)4(D− 3)(D− 4)

−
6(2D5 − D4 − 31D3 + 20D2 + 20D− 16)R2WabcdW

abcd

(D− 1)2(D− 2)3(D− 3)(D− 4)(2D4 − 17D3 + 49D2 − 48D + 16)
+

96(2D4 − 7D3 − 7D2 + 18D− 8)RRabWac
deWde

bc

(D− 1)(D− 2)3(D− 3)(D− 4)(2D4 − 17D3 + 49D2 − 48D + 16)

+
384RcaR

abRdeWbdce
(D− 2)4(D− 3)(D− 4)

−
48(7D2 − 10D + 4)RabRcdWacefWbdef

(D− 2)3(D− 3)(2D4 − 17D3 + 49D2 − 48D + 16)

−
8(2D4 − 15D3 + 26D2 + 27D− 58)RWab

efWabcdWcdef
(D− 1)(D− 2)2(D− 3)(D− 4)(D2 − 6D + 11)(D3 − 9D2 + 26D− 22)

−
48(7D2 − 10D + 4)RcaR

abWb
defWcdef

(D− 2)3(D− 3)(2D4 − 17D3 + 49D2 − 48D + 16)

+
96RabWacdeWbc

fgWdefg
(D− 2)2(D− 3)(D− 4)(D2 − 6D + 11)

−
3(3D− 4)Wab

cdWcd
efWef

ghWgh
ab

(D− 2)(D− 3)(D5 − 14D4 + 79D3 − 224D2 + 316D− 170)
,
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Quasi-topological Gravities and Gravitational EFT

◦ This set up may seem very restrictive...

◦ ...however, any gravitational effective action can be mapped, via a field
redefinition, to a Quasi-topological gravity [PB, Cano, Moreno, Murcia; PB, Cano, Hennigar]

IEFT =

∫
dDx

√
|g|

16πG

[
R+

∑
n

βnRiemn

]
gab→gab+β2Rab+...

=⇒ IQT =

∫
dDx

√
|g|

16πG

[
R+

∑
n

αnZn

]

Here we will go beyond the EFT regime...
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Quasi-topological Black Holes
◦ The full non-linear EOM of a general Quasi-topological gravity

IQT =

∫
dDx

√
|g|

16πG

[
R+

nmax∑
n=2

αnZn

]

reduce, for a general SSS ansatz

ds2 = −N(r)f (r)dt2 + dr2

f (r) + r2dΩ2
(D−2) ,

to a couple of algebraic equations:

N(r) = 1 , 1 − f (r)
r2 +

nmax∑
n=2

αn

[
1 − f (r)
r2

]n
=

m
rD−1

where m is an integration constant related to the mass.
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Schwarzschild Singularity Resolution
[PB, Cano, Hennigar]

◦ For finite nmax, these are generaliza-
tions of the Schwarzschild BH with
curvature singularities at r = 0

f (r) r→0
= 1−

(
m

αmax

)1/nmax

r 2− (D−1)
nmax +. . .

◦ For nmax → ∞, (A)dS core emerges
and resolves the singularity!

◦ This occurs quite generically. Suffi-
cient condition:

αn ≥ 0 ∀ n , lim
n→∞

(αn)
1
n = C > 0
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Regular Black Holes Bacchanalia
[PB, Cano, Hennigar]

αn f (r)

αn−1 1 − mr2

rD−1 + αm
αn−1

n 1 − r2

α

(
1 − e−αm/rD−1

)
nαn−1 1 − 2mr2

rD−1 + 2αm+
√
r2(D−1) + 4αmrD−1

(1 − (−1)n)
2 αn−1 1 − 2mr2

rD−1 +
√
r2(D−1) + 4α2m2

(1 − (−1)n)Γ
(n

2
)

2
√
πΓ

(n+1
2
) αn−1 1 − mr2

√
r2(D−1) + α2m2

Hayward, Bardeen-like, Dymnikova-like, etc., black holes as particular cases
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In sum
The Schwarzschild black hole singularity gets generically resolved in D ≥
5 by the effect of infinite towers of higher-curvature densities, no tricks
involved.

14 / 14



The End



Additional comments

◦ Solutions possess universal and unambiguous thermodynamic proper-
ties

◦ It is possible to find examples with vanishing-temperature inner horizons
[Di Filippo, Kolar, Kubiznak]

◦ Quasi-topological theories satisfy Birkhoff theorems [Oliva, Ray; PB, Cano, Hennigar]

⇒ plausible studies of spherical collapse
◦ Straightforward extensions to include matter with Trr = Ttt
◦ What about D = 4?



Additional comments
◦ Solutions possess universal and unambiguous thermodynamic proper-

ties

◦ It is possible to find examples with vanishing-temperature inner horizons
[Di Filippo, Kolar, Kubiznak]

◦ Quasi-topological theories satisfy Birkhoff theorems [Oliva, Ray; PB, Cano, Hennigar]

⇒ plausible studies of spherical collapse
◦ Straightforward extensions to include matter with Trr = Ttt
◦ What about D = 4?



Additional comments
◦ Solutions possess universal and unambiguous thermodynamic proper-

ties
◦ It is possible to find examples with vanishing-temperature inner horizons

[Di Filippo, Kolar, Kubiznak]

◦ Quasi-topological theories satisfy Birkhoff theorems [Oliva, Ray; PB, Cano, Hennigar]

⇒ plausible studies of spherical collapse
◦ Straightforward extensions to include matter with Trr = Ttt
◦ What about D = 4?



Additional comments
◦ Solutions possess universal and unambiguous thermodynamic proper-

ties
◦ It is possible to find examples with vanishing-temperature inner horizons

[Di Filippo, Kolar, Kubiznak]

◦ Quasi-topological theories satisfy Birkhoff theorems [Oliva, Ray; PB, Cano, Hennigar]

⇒ plausible studies of spherical collapse

◦ Straightforward extensions to include matter with Trr = Ttt
◦ What about D = 4?



Additional comments
◦ Solutions possess universal and unambiguous thermodynamic proper-

ties
◦ It is possible to find examples with vanishing-temperature inner horizons

[Di Filippo, Kolar, Kubiznak]

◦ Quasi-topological theories satisfy Birkhoff theorems [Oliva, Ray; PB, Cano, Hennigar]

⇒ plausible studies of spherical collapse
◦ Straightforward extensions to include matter with Trr = Ttt

◦ What about D = 4?



Additional comments
◦ Solutions possess universal and unambiguous thermodynamic proper-

ties
◦ It is possible to find examples with vanishing-temperature inner horizons

[Di Filippo, Kolar, Kubiznak]

◦ Quasi-topological theories satisfy Birkhoff theorems [Oliva, Ray; PB, Cano, Hennigar]

⇒ plausible studies of spherical collapse
◦ Straightforward extensions to include matter with Trr = Ttt
◦ What about D = 4?



Quasi-topological Gravities

◦ Consider a general L(Rabcd,gef ) theory of gravity.

Its EOM read

Pcdea Rbcde −
1
2gabL − 2∇c∇dPacdb = 0 , Pabcd ≡ ∂L

∂Rabcd

◦ The theory is Quasi-topological if it possesses 2nd order EOM on a general
static and spherically symmetric background, namely, if

∇dPacdb
∣∣
SSS = 0

In D = 4 only GR satisfies this. Not so for D ≥ 5.

◦ Quasi-topological theories constructed at curvature orders: n = 3 [Oliva, Ray;

Myers, Robinson], n = 4 [Dehghani, Bazrafshan, Mann, Mehdizadeh, Ghanaatian, Vahidinia], n = 5 [Cisterna, Guajardo, Hassaine,

Oliva] and ∀n (and ∀D ≥ 5) [PB, Cano, Hennigar; Moreno, Murcia].
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