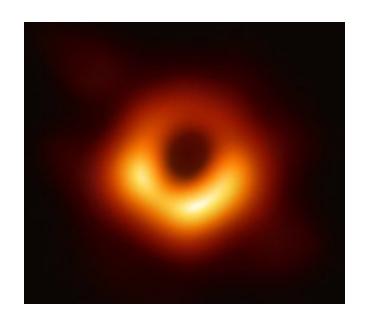
Black-hole ringdown and their progenitors:

from numerical relativity to tests of GR

Costantino Pacilio (U. of Milano Bicocca)

Coimbra - July 22 2024

In prep with: Swetha Bhagwat, Francesco Nobili, Davide Gerosa



Kerr Black Holes

EHT Collaboration (2019), <u>arxiv 1906.11238</u>

Uniqueness Theorem

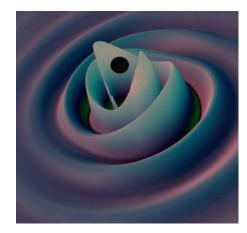
Stationary black holes in vacuum in GR are uniquely described by the Kerr spacetime metric

$$ds^{2} = -\left(1 - \frac{2Mr}{\Sigma}\right)dv^{2} + 2dvdr + \Sigma d\theta^{2}$$
$$+ \frac{(r^{2} + a^{2})^{2} - \Delta a^{2}\sin^{2}\theta}{\Sigma}\sin^{2}\theta d\bar{\phi}^{2}$$
$$-2a\sin^{2}\theta dr d\bar{\phi} - \frac{4Mra}{\Sigma}\sin^{2}\theta dv d\bar{\phi}.$$

Roy P. Kerr Phys. Rev. Lett. 11, 237 (1963)

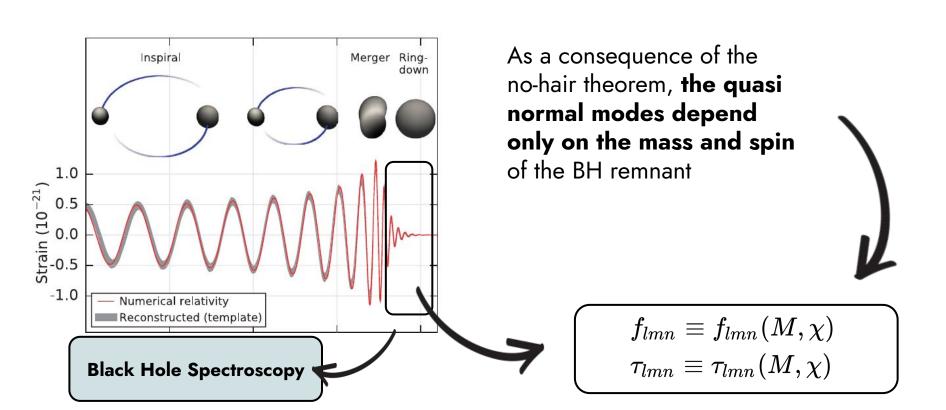
Quasi-normal modes

Simulation by The SXS (Simulating eXtreme Spacetimes) Project

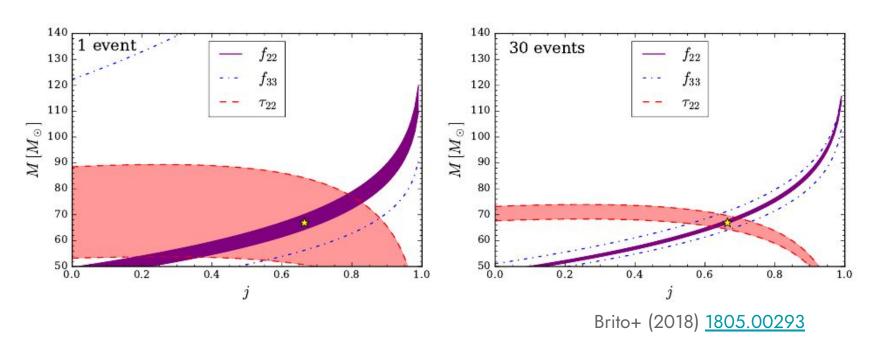

Black-hole perturbations

Linear perturbations about black holes are described by Teukolsky's equations

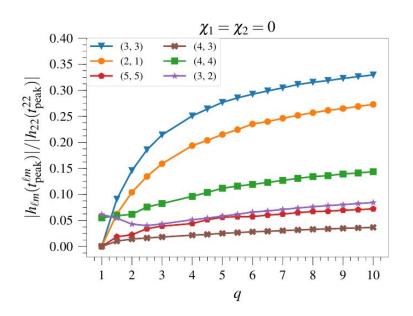
Black-hole spectrum

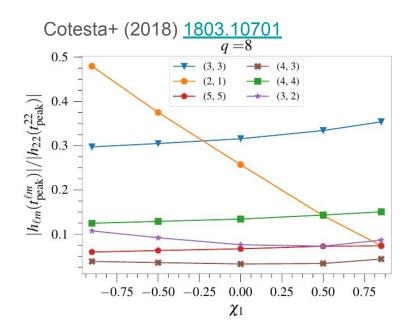

A perturbed black hole emits gravitational waves with a characteristic frequency spectrum

Teukolsky 2014, <u>arxiv 1410.2130</u> Berti+ (2009), <u>arxiv 0905.2975</u> Pani (2013), <u>arxiv 1305.6759</u>


Simulation by Georgia Tech, MAYA Collaboration

Quasi normal modes and the no-hair theorem

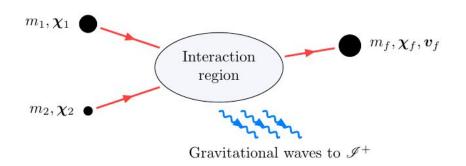

Black hole spectroscopy


Measure **at least two** quasi-normal modes Check that they are consistently inverted into mass and spin

Ringdown excitation amplitudes

The activation of QNMs is determined by their amplitudes

Amplitudes depend on the intrinsic parameters of the progenitors


Kamaretsos+ (2012) <u>1207.0399</u>

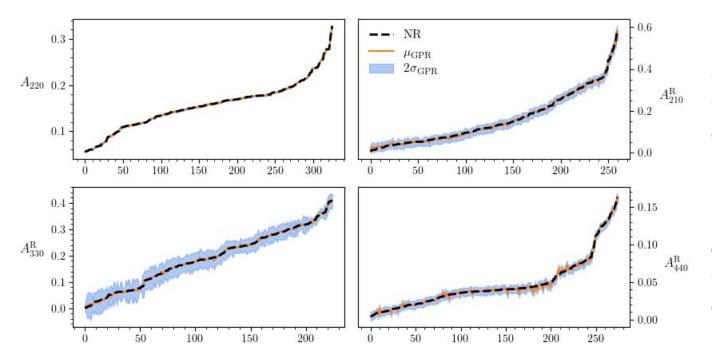
Surrogates for ringdown amplitudes

Multipole fits for the ringdown amplitudes

Kamaretsos+ (2012) <u>1207.0399</u> London (2018) <u>1801.08208</u> Forteza+ (2022) <u>2205.14910</u> Cheung+ (2023) <u>2310.04489</u>

The are all in closed form

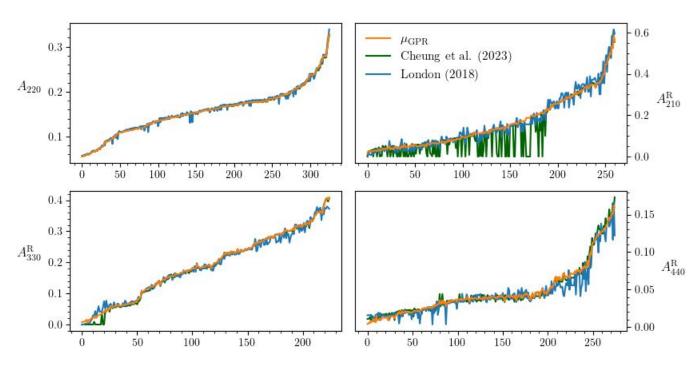
Gaussian Process Regression (GPR)


- Parametric-free: does not did ansatze
- Predicts a distribution of function
- Outputs also uncertainties over predictions

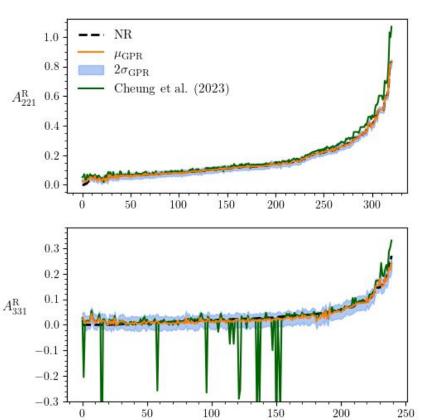
GPR used to build the most accurate surrogate fon final mass and spin

Varma+ (2018) <u>1809.09125</u> Boschini+ (2023) <u>2307.03435</u>

We extend the surrogate to ringdown amplitudes of **non-precessing quasi-circular** binaries

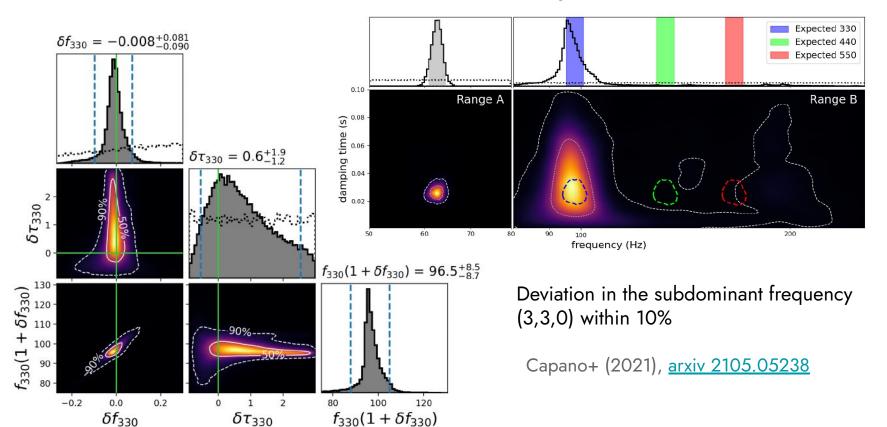

Results: comparison with NR data

Deviation of mean GPR predictions from NR data is order 10e-3


NR data are comprised within ~1 GPR standard deviations

Results: comparison with previous fits (I)

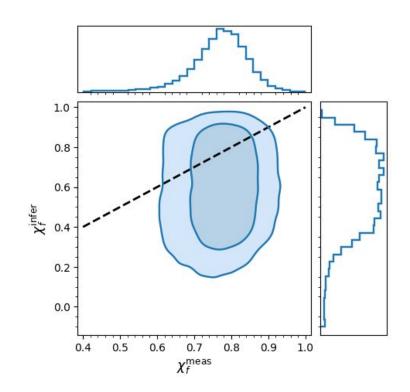
Overall agreement with the most updated fits: London (2018) and Cheung et al. (2023)


Results: comparison with previous fits (II)

GPR is robust to overfitting outside interpolation region

See negative amplitudes returned from polynomial fits for the 331 overtone

GW190521: a case study for LVK

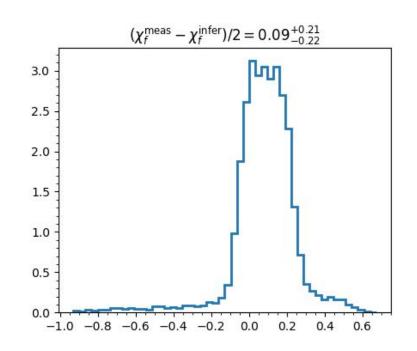

GW190521: amplitude-spin consistency

GR is a deterministic theory

- Final spin and ringdown amplitudes are determined by the same initial params
- We have surrogate fits for both final spin and ringdown amplitudes

Amplitude-spin consistency

- Measure amplitudes and final spin as independent in ringdown
- Use amplitudes to infer initial params
- Use initial params to infer final spin
- Compare with measured final spin

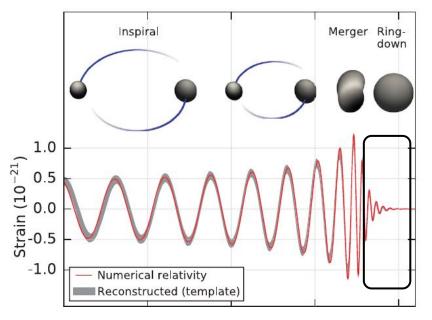

GW190521: amplitude-spin consistency

GR is a deterministic theory

- Final spin and ringdown amplitudes are determined by the same initial params
- We have surrogate fits for both final spin and ringdown amplitudes

Amplitude-spin consistency

- Measure amplitudes and final spin as independent in ringdown
- Use amplitudes to infer initial params
- Use initial params to infer final spin
- Compare with measured final spin



Thank you!

Backup

Testing no-hair with black hole spectroscopy

BH spectroscopy:

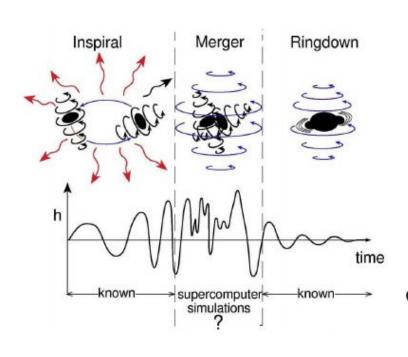
measuring the frequency and damping times of a BH from its GW signal

GR test:

check that there is no "third" independent frequency or damping time Berti, Cardoso, Will (2006), <u>arxiv</u> <u>gr-qc/0512160</u>

Berti+ (2016), <u>arxiv 1605.09286</u>

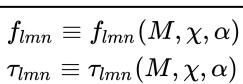
Baibhav+ (2023), <u>arxiv</u> 2302.03050


Gossan+ (2011), <u>arxiv</u> 1111.5819

Meidam+ (2014), <u>arxiv</u> 1406.3201

Even if the background is Kerr, no-hair is violated if the perturbation dynamics differ from Teukolsky's

Barausse & Sotriou (2004), <u>arxiv 0803.3433</u> Tattersall+ (2017), <u>arxiv 1711.01992</u>


Quasi normal modes and the no-hair theorem

If no-hair is violated, you have dependence from (at least one) further scale

Recent progresses in computing modified spectra:

Cano+ (2023) arxiv 2304.02663 Ghosh+ (2023) arxiv 2303.00088

$$au_{lmn} \equiv au_{lmn}(M,\chi,lpha)$$

Relation to black hole uniqueness

Uniqueness theorem – Stationary black holes are axisymmetric and are described by a member of the Kerr family

Kerr hypothesis – a black hole formed from gravitational collapse or from a binary merger will asymptotically settle to a member of the Kerr family, by emitting all charges except mass and angular momentum (aka the 'no hair' theorem) [as reviewed e.g. in Teukolsky 2014 https://arxiv.org/abs/1410.2130]

Assuming the Kerr hypothesis, the quasi-normal mode spectrum follows from Teukolsky's equation and depends only on the final mass and the final spin of the black hole [as reviewed in e.g. Berti+2009 https://arxiv.org/abs/0905.2975]

$$\omega_{lmn} \equiv \omega_{lmn} \left(M_f, \chi_f
ight)$$

What black hole spectroscopy tests (1)

Ringdown tests probe general relativity in the strong field regime

Quasi-normal modes can be approximated by the frequency and damping times of perturbed light rays at the innermost stable circular orbit for null geodesics (aka the 'photon sphere') [Cardoso+2009 https://arxiv.org/abs/0812.1806 and ref.s therein]

Higher order WKB methods refine this approximation and reinforce the physical connection between quasi-normal modes and the photon sphere

Black hole spectroscopy tests the BH structure in the vicinity of the photon sphere

What black hole spectroscopy tests (2)

The **uniqueness theorem** holds in several gravitational theories beyond GR. Examples: shift-symmetric Horndeski

However, the dynamics of perturbations is different, hence the quasi-normal modes are different

Here you only test the dynamics of the theory but not the metric of the asymptotic solution Some gravitational theories beyond GR admit black hole solutions **different from Kerr**. Examples:

Einstein-dilaton-Gauss-Bonnet, dynamical Chern-Simons

Here, you test the structure of the black hole in the vicinity of the photon sphere* and the dynamics of the perturbations at the same time

*In modified gravity, the connection with photon sphere is still under study, especially for rotating black holes [see Yagi 2022 https://arxiv.org/abs/2201.06186 and ref.s therein]