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OUTLINE

• Why and how to break Diff invariance?

• TDiff matter
• Gravity of a TDiff scalar field.
• Conservation of the EMT tensor.
• Potential and kinetic regimes.
• Interesting kinetic models.

• Symmetry restoration
• Gravity in the Diff frame.
• Model selection: the effective speed of sound.

• Discussion and further comments.



WHY AND HOW TO BREAK DIFF INVARIANCE?
• GR + dark components is our best description of gravitational phenomena.

➢ GR is invariant under diffeomorphisms (Diff).

• Unimodular gravity reconsiders Diff invariance (non-dynamical field fixed, 𝑔 = 1)

➢ Invariance under transverse diffeomorphisms (TDiff) and Weyl rescallings (-> WTDiff).

                          A. Einstein, Math. Phys. 1919.

• More general theories breaking Diff to TDiff (coordinate transformation with Jacobian 𝐽 = 1)

• Breaking Diff to TDiff just in the matter sector:

• We do not know the symmetries of the dark sector.

• It can be interpreted as non-usual minimal coupling of matter to gravity.

• GR vacuum solutions.

E. Álvarez, D. Blas, J. Garriga, E. Verdaguer, Nucl. Phys. B 2006.



TDIFF MATTER

• Physics laws are invariant under coordinates transformations such that   𝐽 = det
𝜕𝑦𝜇

𝜕𝑥𝜈 = 1.

➢ The allowed infinitesimal coordinates transformations 𝑦𝜇 = 𝑥𝜇 + 𝜉𝜇 satisfy 𝜕𝛼𝜉𝛼 = 0.
➢ Tensor densities become tensors.

We consider that Diff invariance breaks to TDiff only in the matter sector: 𝑔 = |det(𝑔𝜇𝜈)|      

𝑑4𝑥 |𝑔| → 𝑑4𝑥 𝑓(𝑔)

We can arbitrarily fix one component of the metric less than in GR.

Einstein-Hilbert action for gravity:

➢ Due to the Bianchi identities the EMT is still conserved.

E. Álvarez, A. F. Faedo, and J. J. López-Villarejo, JCAP 2009. A. L. Maroto, JCAP 2024.



GRAVITY OF A TDIFF SCALAR FIELD

D. Jaramillo Garrido, A. L. Maroto and PMMD, JCAP 2024.

We do not focus only on FLRW, 
but assume a time-like 𝜕𝜇𝜓
(+,-,-,-)

• EoM of the field:

• Einstein equations

Perfect fluid EMT



CONSERVATION OF THE EMT TENSOR

D. Jaramillo Garrido, A. L. Maroto and PMMD, JHEP 2024.

Diff is a symmetry of the whole theory

• There are 4 gauge degrees of freedom.

• The EMT is automatically conserved
(equivalent to taking into account the field equation).

TDiff is a symmetry of the whole theory • There are 3 gauge degrees of freedom.

Diff invariance is only broken in the dark sector

• The EMT is still conserved
(the conservation equation leads to an equation for the 
degree of freedom that is no longer free).

➢ We get a constraint in 𝑔.

Before solving directly Einstein equations, we can extract some information from the conservation of the EMT.

This information will emphasize the particular characteristics of this theory with respect to GR.



Kinetic domination regime

• EoM: there is a conserved shif-symmetric current.

• The conservation of the EMT implies a constraint on 𝑔.

• As 𝑤(𝑔) and 𝜌 𝑔 , adiabatic fluid perturbations: 𝛿𝑝 = 𝑐𝑠
2𝛿𝜌

D. Jaramillo Garrido, A. L. Maroto and PMM, JHEP 2024.

Combining the constraint on 𝑔 with the field equation

Potential domination regime

𝑇𝜇𝜈 = 2√𝑔𝑓𝑣
′𝑉𝑔𝜇𝜈

• EoM: field at an extremum of the potential 
𝑉 = 𝑉0

• The conservation of the EMT implies:

➢ 𝑓𝑣 = 𝐴 𝑔 + 𝐵

➢ Or 𝑔 =constant (cosmological constant).



• Constant equation of state models

 candidate for dark radiation.

➢ Candidate for dark matter (𝜶 = 𝟎).

• Models with different gravitational domains

9

A . Power -law coupl ing

We begin then with case where the coupling funct ion has
the form of a power-law, i.e.

f k (g) = C|g|
↵

, (86)

with C and ↵ some constant parameters. Note that , in
such a case, F = gf 0

k / f k = ↵ and so it follows that the
EoS parameter is also constant :

w =
↵

1− ↵
. (87)

Thepart icular case↵ = 0 means that f k = C is constant ,
and also that the EoS is w = 0 (i.e. non-relat ivist ic
matter). Away from the GR limit , wefind from equat ion
(85) that the energy density in these couplings sat isfies

⇢/
1

p
|g|

, (88)

while the longitudinal constraint (71) gives

|g| / (CgδV
2)

1
1− ↵ = (CgδV

2)(1+ w ) . (89)

We note that if Cg(x) = const. the evolut ion simplifies:

|g| / δV 2(1+ w ) =) ⇢/ δV− (1+ w ) , (90)

and this may be of use in cosmological set t ings. Next we
focus on the ECs in the dominant kinet ic regime (38). In
this regime we ask that C 6= 0, and the ECs translate to

NEC: C > 0 ,

WEC: C > 0 , ↵ 1 ,

SEC: C > 0 , ↵ ≥ − 1/ 2 ,

DEC: C > 0 , ↵ 1/ 2

(91)

They are graphically represented in Figure 1. For C > 0
and ↵ 2 [− 1/ 2, 1/ 2] all of the ECs are sat isfied, and in
this range we could find dark matter in ↵ = 0 (which
gives w = 0 as discussed). If we wish to have accelerated
expansion, then the SEC must be violated and this may
give rise to di↵erent dark energy models. In general, it
opens up a wide range of interest ing phenomenology for
the dark sector to be studied. Finally, we note that this
analysis for the power-law model could also apply to a
more general coupling funct ion which may be expressed
as a power series.

B . Exponent ial coupl ing

We now consider that the coupling is an exponent ial,

f k (g) = Ceβg , (92)

with C and β some constant parameters. In this case,
the variable F = βg is not a constant, and so neither is
the EoS parameter w, which from equat ion (32) reads

w =
βg

1− βg
. (93)

FIG. 1. Regions of validity of the ECs for the two couplings
(the axes extend infinitely). The same diagram is valid for

both, understanding thehorizontal axisas ↵ when considering
the power-law and as βg when considering the exponent ial.

The study of the evolut ion of the energy density and
the metric determinant is thus not part icularly simple or
illuminat ing (except perhaps for the case β = 0, which
gives a constant f k and non-relat ivist ic matter, as was
discussed above), so wefocuson theECs in thedominant
kinet ic regime (38). These take the form:

NEC: C > 0 ,

WEC: C > 0 , βg 1 ,

SEC: C > 0 , βg ≥ − 1/ 2 ,

DEC: C > 0 , βg 1/ 2 ,

(94)

where we have again assumed that C 6= 0. We may
graphically represent them in the same way as we did
the power-law, see Figure 1. Nevertheless, the fact that
the metric determinant explicit ly appears in these ECs
means that there will be an evolut ion, as opposed to the
previous case. Since the metric determinant is allowed
to vary, it may happen that at some points in spacet ime
a given EC is sat isfied but at others it is not . As a par-
t icular example, suppose we choose β > 0, so that the
product βg isalwaysnegat ive. In thesecases, theWEC is
always sat isfied (which guarantees a posit ive energy den-
sity measured by the comoving observer), and so is the
DEC (which ensures a causal flow of energy). However,
there may be a regime in which the SEC holds which
evolves to one where it does not, which in a cosmological
context may give us an evolut ion from a non-accelerated
expansion to an accelerated one [6].

V I I . CON CLU SI ON S

In thiswork, wehaveexplored theconsequencesof break-
ing theDi↵ invarianceof thematter sector down to TDi↵
in general contexts (i.e. theanalysis has been purely geo-
metrical, without assuming a spacet imemetric). Wehave
considered a scalar field model which couples to gravity
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− βg when considering the exponent ial.

Next we focus on the ECs (4.6). Not ing that we need C 6= 0 in order to have a non-vanishing

f k , the ECs translate to

NEC: C > 0 ,

WEC: C > 0 , ↵ 1 ,

SEC: C > 0 , ↵ ≥ − 1/ 2 ,

DEC: C > 0 , ↵ 1/ 2 .

(6.7)

They are graphically represented in figure 1. For C > 0 and ↵ < − 1/ 2 all the ECs are sat isfied

except for the SEC. So, we will have non-negat ive energy densit ies propagat ing in a causal way

(as seen by any observer), but not necessarily leading to the focusing of t ime-like geodesics. The

corresponding couplings, therefore, could appear interest ing for describing dark energy modelswhen

applied to a cosmic background. However, when reflect ing about this possibility one may quickly

note that , since w is constant , one obtains that the propagat ion speed of the field perturbat ions is

c2
s = w , (6.8)

as it could be obtained from the general relat ion (5.52). So, stressing that the field perturbat ions

are adiabat ic, one can conclude that these dark energy models will be unstable. On the other hand,

for C > 0 and ↵ 2 [− 1/ 2, 1/ 2] all of the ECs are sat isfied. The part icular case of ↵ = 1/ 4 may be of

interest for the dark sector, as being able describe dark radiat ion (w = 1/ 3) [40]. Finally, we note

that a similar analysis as that followed for the power-law model could also apply to a more general

coupling funct ion which may be expressed as a power series.

6.2 D ark mat t er

Let us now take a constant coupling funct ion, that is

f k = C. (6.9)
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INTERESTING KINETIC MODELS

   D. Jaramillo Garrido, A. L. Maroto and PMMD, JHEP 2024.
Cosmological case: A. L. Maroto, JCAP 2024 D. Alonso, J. De Cruz Pérez, A. L. Maroto PRD 2024.



SYMMETRY RESTORATION

Let’s introduce a Diff scalar density ҧ𝜇 that transforms as 𝑔   ҧ𝜇 / 𝑔 is a Diff scalar.

ҧ𝜇 = 1 corresponds to the Tdiff coordinate frame.

Other choices are posible.

𝑆𝑚 = ∫ 𝑑4𝑥 𝑔[𝐻𝑘 𝑌 𝑋 − 𝐻𝑉 𝑌 𝑉 𝜓 ]

We introduce a new vector field to obtain a local Diff theory (Henneaux and Teitelboim, Phys. Lett. B. 1989)

D. Jaramillo Garrido, A. L. Maroto and PMM, 2402.17422 (PRD)



GRAVITY IN THE DIFF FRAME

Previous results can be easily recovered
ҧ𝜇 = 1 ⇒ 𝑌 = ∇𝜇𝑇𝜇 = 1/ 𝑔

• Potential domination regime.

• Kinetic domination regime.

• The theory is now Diff invariance              EMT is now automatically conserved.

• The information from the g-constraint is now encoded in the 𝑇𝜇 EoM:

with

Beyond the simplest cases. The g-constrain can be easily integrated.

D. Jaramillo Garrido, A. L. Maroto and PMM, 2402.17422 (PRD)



MODEL SELECTION: THE EFFECTIVE SPEED OF SOUND

The information from the g-constraint, encoded in the 𝑇𝜇 EoM, leads to

➢ The energy density and pressure can be seen as functions of 2 variables: the fluid is not adiabatic in general.

Effective speed of sound of cosmological perturbations:

• Speed of sound in the rest frame.

• Adiabatic speed of sound if the fluid is adiabatic.

• Stability implies

• To avoid superluminal perturbations

• For shift-symmetric models these conditions are simplified to: 
𝐻𝑘

′2

𝐻𝑘𝐻𝑘′′
<

1

2
    and  𝐻𝑘

′′ < 0.

• There are other adiabatic models (find the complete list in the reference).

D. Jaramillo Garrido, A. L. Maroto and PMM, 2402.17422 (PRD)



DISCUSSION AND FURTHER COMMENTS

• Breaking Diff invariance to TDiff in the matter sector, we can still consider minimal 
coupling to gravity and obtain different kinds of interesting models.

➢ Shift-symmetric models are adiabatic. Choosing different coupling functions one can 
get from dark matter to unified dark sector model.

➢ Restoring the symmetry provides us with a complementary framework to investigate 
the gravitational properties of the model.

➢ Coupling functions of interest can be found requiring stability of fluid perturbations.

• Note that the total TDiff EMT is conserved. If we had 2 TDiff fields, they would interact as 
a result of the symmetry breaking.

➢ Don’t miss Diego Tessainer’s talk this afternoon!
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