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What is CKG?

A 3rd order metric theory of gravitation due to Harada (2023)
with field equations (HFEs): G̃(ab;c) = T̃(ab;c)

where G̃ab ≡ Gab − 1
6Ggab and T̃ab ≡ Tab − 1

6Tgab.

Any solution in General Relativity (with or without Λ) is a
solution in CKG.

Note Tab = T̃ab + 1/2T̃ gab.

Contracting the HFEs implies T a
b;a = 0.

Mantica & Molinari’s alternative form of HFEs:

Gab = Tab + Cab

where Cab is a conformal Killing tensor. Hence the name
conformal Killing gravity.

Actually Kab ≡ G̃ab − T̃ab is a Killing tensor and
Cab = Kab +

1
2Kgab.
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Yet another theory – why study CKG?

Harada considered the evolution of the scale factor a(t) of the
Friedmann-Robertson-Walker-Lemâıtre (FRWL) metric:

ds2 = dt2 − a2(t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

)
.

He obtained a third order ODE which has the first integral:

2

(
ȧ

a

)2

− ä

a
+

2k

a2
=

4πG

3
(5ρ+ 3p) +

Λ

3
.

He showed that even in the case of a matter-dominated
universe (p = 0) with Λ = 0 there could be a transition from
deceleration to accelerating expansion.

Thus removing the need to assume the existence of dark
energy.
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Static black hole solutions

Harada(2023) obtained a metric for a static spherically
symmetric vacuum field in CKG:

ds2 = ea(r)dt2 −
(
e−a(r)dr2 + r2(dθ2 + sin2 θdϕ2)

)
(1)

where ea(r) = 1− 2m
r − 1

3Λr
2 − 1

5λr
4 where m, Λ and λ are

integration constants. Generalised Schwarzschild-Kottler
solution.

Tarsico et al.(2023) obtained a generalised
Reissner-Nordström solution of the form(1) where now

ea(r) = 1− 2m
r + q2

r2
− 1

3Λr
2 − 1

5λr
4/5

However (1) is not the most general form for a spherically
symmetric static metric which is

ds2 = ea(r)dt2 −
(
eb(r)dr2 + r2(dθ2 + sin2 θdϕ2)

)
. (2)
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The general case

The HFEs for the metric(2) with Tab = 0 lead to 2 ODEs of
third order for a(r) and b(r). However, writing b = 2f − a
one may deduce a 2nd order ODE rf ′′ − 2rf ′2 − f ′ = 0.
Hence eb = e−a/(c + dr2) where c and d are constants.

Eliminating b the remaining field equation may be linearised
by writing y = ea to yield

(c+dr2)r3y ′′′−(2c−dr2)r2y ′′−(2c+dr2)ry ′+8cy = 8. (3)

For the electrovac case the only difference is an extra term
−24q2/r2 on the rhs of the preceding equation.

If d = 0, c may be set to 1 by a rescaling of the t-coordinate.
Similarly if c = 0, d may be set to 1. In either case the ODE
becomes homogeneous and easy to solve. Otherwise we may
set c = ±1. For Lorentzian signature c + dr2 > 0.
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The solutions 1

For d = 0 generalised Schwarzschild-Kottler and
Reissner-Nordström solutions are obtained.

For c = 0 there are strange vacuum & electrovac solutions
(Barnes 2023):

y = ea = λ−Λr2/3+m log r−1/(2r2)+q2/(4r4), eb = e−a/r2.

Physical Interpretation ???!!!
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The solutions 2

For c > 0 and d ̸= 0, Barnes(2023) obtained solutions
involving power series with radius of convergence 1/

√
|d |.

y = ea = 1+(1+2dr2)q2/r2−2mp1(r)/r−λp2(r)r
4/5−Λr2/3

p1(r) = 1 + dr2/2− d2r4 . . .
p2(r) = 1− 4dr2/7 + 8d2r4/21 . . .
eb = e−a/(1 + dr2).

If d = 0 c > 0, the power series disappear and we get the
solutions of Harada and Tarsico et al.

When any of d , Λ or λ are non-zero, the solution is not
asymptotically flat.

When m = λ = 0, the power series disappear. We have type
D ’cosmological’ solutions.

If, in addition, q = Λ = 0 we have the static Einstein
Universe which is a vacuum solution in CKG!
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The solutions 3

Clément and Nouicer(2024) found the solutions of the
ODE(3) in terms of inverse trig. and hyperbolic functions for
the cases c > 0 and d ̸= 0 and also c < 0 and d > 0.

The investigation of the singularity and asymptotic structure
of the fields is so far incomplete – needs Kruskal-type
coordinates and Penrose conformal diagrams!

Clément and Nouicer also obtained non-static vacuum FRWL
solutions. Thus providing counter-examples to Birkhoff’s
theorem in CKG.

In these the scale factor a satisfies ȧ2 − αa4 − Λ
3 a

2 + k .
The solutions in general involve Jacobi elliptic functions, but
are elementary if α = 0 or Λ2

9 + 4kα = 0.

Open question: does CKG admit spherically symmetric matter
distributions emitting gravitational waves?
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pp-waves in CKG

Defining pp-waves as fields which admit a covariantly
constant null bivector: Wab;c = 0 where Wab = p[akb] with
pap

a = −1 and kak
a = 0, it follows that ka;b = 0 and the

metric may be written as
ds2 = 2dudv + 2H(u, x , y)du2 − dx2 − dy2.

The Ricci tensor is zero or Rab = λkakb and the Petrov type is
N or 0.

The above definition is stronger than the assumption of a
constant null vector ka alone.

The CKG solutions differ from the GR ones only by a term
+c(x2 + y2) added to H where c is an arbitrary constant
leading to an extra constant circularly polarized mode in
addition to those in GR.

if H = c(x2 + y2) the metric is a non-flat vacuum conformally
flat field in CKG.
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Multiple Matter Sources in CKG

If T̃ab & T̃ ′
ab are trace-modified em tensors whose difference

Kab is a Killing tensor, the metric is the same whether Tab or
T ′
ab is the source.

Thus different matter sources may produce the same metric.
The metric does not uniquely determine the
energy-momentum tensor.

Thus, if T̃ab & T̃ ′
ab differ by the Killing tensor λgab/3, (λ

constant) then Tab & T ′
ab differ by a dark energy term λgab.

Hence dark energy does not gravitate in CKG.
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Multiple Matter Sources 2

If a metric admits symmetries generated by Killing vectors
ξaI , I = 1 . . .N, then Kab = kgab +

∑N
I=1

∑N
J=1 kIJξI (aξ|J|b),

where k and the kIJ are constants, is a Killing tensor.

If there are N Killing vectors, there are 1 + (N + 1)N/2
possible terms in Kab that may contribute to the matter
source T̃ab.

All known exact solutions in CKG admit Killing vectors:
Static spherically symmetric 4KVs, pp-waves at least 1KV
plane waves at least 5KVs, FRWL metrics 6KVs
Einstein Universe 7KVs, Minkowski, de Sitter & ADS 10 KVs.
Thus there are a plethora of possible sources in these cases.

Even with no symmetries there is the ubiquitous dark energy
ambiguity.
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Conclusions

All static spherically symmetric vacuum & electrovac metrics
in CKG are known.

pp-waves metrics are known and are very similar to those in
GR.

Birkhoff’s theorem is not valid in CKG. There are
time-dependent vacuum FRWL metrics.

Dark energy does not gravitate in CKG.

Many solutions have multiple possible matter sources.

Minkowski, de Sitter and ADS are all vacuum solutions;
equally they may be regarded as having an arbitrary dark
energy source Tab = λgab (λ is unrelated to Λ in de Sitter &
ADS metrics).

Do the last 4 points make CKG somewhat unphysical?

Thank you for listening if you have been! Questions?
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