Recent Results in Conformal Killing Gravity (CKG)

Alan Barnes

Aston University, Birmingham UK (retired) Alan.Barnes45678@gmail.com

24 July 2024 Coimbra, EREP2024

• A 3rd order metric theory of gravitation due to Harada (2023) with field equations (HFEs): $\tilde{G}_{(ab;c)} = \tilde{T}_{(ab;c)}$ where $\tilde{G}_{ab} \equiv G_{ab} - \frac{1}{6}Gg_{ab}$ and $\tilde{T}_{ab} \equiv T_{ab} - \frac{1}{6}Tg_{ab}$.

- A 3rd order metric theory of gravitation due to Harada (2023) with field equations (HFEs): $\tilde{G}_{(ab;c)} = \tilde{T}_{(ab;c)}$ where $\tilde{G}_{ab} \equiv G_{ab} - \frac{1}{6}Gg_{ab}$ and $\tilde{T}_{ab} \equiv T_{ab} - \frac{1}{6}Tg_{ab}$.
- Any solution in General Relativity (with or without Λ) is a solution in CKG.

- A 3rd order metric theory of gravitation due to Harada (2023) with field equations (HFEs): $\tilde{G}_{(ab;c)} = \tilde{T}_{(ab;c)}$ where $\tilde{G}_{ab} \equiv G_{ab} - \frac{1}{6}Gg_{ab}$ and $\tilde{T}_{ab} \equiv T_{ab} - \frac{1}{6}Tg_{ab}$.
- Any solution in General Relativity (with or without Λ) is a solution in CKG.

• Note
$$T_{ab} = \tilde{T}_{ab} + 1/2\tilde{T}g_{ab}$$
.

- A 3rd order metric theory of gravitation due to Harada (2023) with field equations (HFEs): $\tilde{G}_{(ab;c)} = \tilde{T}_{(ab;c)}$ where $\tilde{G}_{ab} \equiv G_{ab} - \frac{1}{6}Gg_{ab}$ and $\tilde{T}_{ab} \equiv T_{ab} - \frac{1}{6}Tg_{ab}$.
- Any solution in General Relativity (with or without Λ) is a solution in CKG.
- Note $T_{ab} = \tilde{T}_{ab} + 1/2\tilde{T}g_{ab}$.
- Contracting the HFEs implies $T^a_{b;a} = 0$.

- A 3rd order metric theory of gravitation due to Harada (2023) with field equations (HFEs): $\tilde{G}_{(ab;c)} = \tilde{T}_{(ab;c)}$ where $\tilde{G}_{ab} \equiv G_{ab} - \frac{1}{6}Gg_{ab}$ and $\tilde{T}_{ab} \equiv T_{ab} - \frac{1}{6}Tg_{ab}$.
- Any solution in General Relativity (with or without Λ) is a solution in CKG.

• Note
$$T_{ab} = \tilde{T}_{ab} + 1/2\tilde{T}g_{ab}$$
.

- Contracting the HFEs implies $T^a_{b;a} = 0$.
- Mantica & Molinari's alternative form of HFEs:

$$G_{ab} = T_{ab} + C_{ab}$$

where C_{ab} is a conformal Killing tensor. Hence the name conformal Killing gravity.

- A 3rd order metric theory of gravitation due to Harada (2023) with field equations (HFEs): $\tilde{G}_{(ab;c)} = \tilde{T}_{(ab;c)}$ where $\tilde{G}_{ab} \equiv G_{ab} - \frac{1}{6}Gg_{ab}$ and $\tilde{T}_{ab} \equiv T_{ab} - \frac{1}{6}Tg_{ab}$.
- Any solution in General Relativity (with or without Λ) is a solution in CKG.

• Note
$$T_{ab} = \tilde{T}_{ab} + 1/2\tilde{T}g_{ab}$$
.

- Contracting the HFEs implies $T^a_{b;a} = 0$.
- Mantica & Molinari's alternative form of HFEs:

$$G_{ab} = T_{ab} + C_{ab}$$

where C_{ab} is a conformal Killing tensor. Hence the name conformal Killing gravity.

• Actually
$$K_{ab} \equiv \tilde{G}_{ab} - \tilde{T}_{ab}$$
 is a Killing tensor and $C_{ab} = K_{ab} + \frac{1}{2}Kg_{ab}$.

Yet another theory – why study CKG?

• Harada considered the evolution of the scale factor *a*(*t*) of the Friedmann-Robertson-Walker-Lemaître (FRWL) metric:

$$ds^{2} = \mathrm{d}t^{2} - a^{2}(t) \left(\frac{\mathrm{d}r^{2}}{1 - kr^{2}} + r^{2}\mathrm{d}\theta^{2} + r^{2}\sin^{2}\theta\mathrm{d}\phi^{2} \right).$$

• He obtained a third order ODE which has the first integral:

$$2\left(\frac{\dot{a}}{a}\right)^2 - \frac{\ddot{a}}{a} + \frac{2k}{a^2} = \frac{4\pi G}{3}(5\rho + 3p) + \frac{\Lambda}{3}$$

Yet another theory – why study CKG?

• Harada considered the evolution of the scale factor *a*(*t*) of the Friedmann-Robertson-Walker-Lemaître (FRWL) metric:

$$ds^{2} = \mathrm{d}t^{2} - a^{2}(t) \left(\frac{\mathrm{d}r^{2}}{1 - kr^{2}} + r^{2}\mathrm{d}\theta^{2} + r^{2}\sin^{2}\theta\mathrm{d}\phi^{2} \right).$$

• He obtained a third order ODE which has the first integral:

$$2\left(\frac{\dot{a}}{a}\right)^2 - \frac{\ddot{a}}{a} + \frac{2k}{a^2} = \frac{4\pi G}{3}(5\rho + 3p) + \frac{\Lambda}{3}$$

- He showed that even in the case of a matter-dominated universe (p = 0) with Λ = 0 there could be a transition from deceleration to accelerating expansion.
- Thus removing the need to assume the existence of dark energy.

ston University

Static black hole solutions

• Harada(2023) obtained a metric for a static spherically symmetric vacuum field in CKG:

$$\mathrm{d}s^{2} = \mathrm{e}^{\mathbf{a}(r)}\mathrm{d}t^{2} - \left(\mathrm{e}^{-\mathbf{a}(r)}\mathrm{d}r^{2} + r^{2}(\mathrm{d}\theta^{2} + \sin^{2}\theta\mathrm{d}\phi^{2})\right) \quad (1)$$

where $e^{a(r)} = 1 - \frac{2m}{r} - \frac{1}{3}\Lambda r^2 - \frac{1}{5}\lambda r^4$ where *m*, Λ and λ are integration constants. Generalised Schwarzschild-Kottler solution.

Static black hole solutions

• Harada(2023) obtained a metric for a static spherically symmetric vacuum field in CKG:

$$\mathrm{d}s^{2} = \mathrm{e}^{\mathbf{a}(r)}\mathrm{d}t^{2} - \left(\mathrm{e}^{-\mathbf{a}(r)}\mathrm{d}r^{2} + r^{2}(\mathrm{d}\theta^{2} + \sin^{2}\theta\mathrm{d}\phi^{2})\right) \quad (1)$$

where $e^{a(r)} = 1 - \frac{2m}{r} - \frac{1}{3}\Lambda r^2 - \frac{1}{5}\lambda r^4$ where *m*, Λ and λ are integration constants. Generalised Schwarzschild-Kottler solution.

• Tarsico et al.(2023) obtained a generalised Reissner-Nordström solution of the form(1) where now $e^{a(r)} = 1 - \frac{2m}{r} + \frac{q^2}{r^2} - \frac{1}{3}\Lambda r^2 - \frac{1}{5}\lambda r^4/5$

Static black hole solutions

• Harada(2023) obtained a metric for a static spherically symmetric vacuum field in CKG:

$$\mathrm{d}s^2 = \mathrm{e}^{a(r)}\mathrm{d}t^2 - \left(\mathrm{e}^{-a(r)}\mathrm{d}r^2 + r^2(\mathrm{d}\theta^2 + \sin^2\theta\mathrm{d}\phi^2)\right) \qquad (1)$$

where $e^{a(r)} = 1 - \frac{2m}{r} - \frac{1}{3}\Lambda r^2 - \frac{1}{5}\lambda r^4$ where *m*, Λ and λ are integration constants. Generalised Schwarzschild-Kottler solution.

- Tarsico et al.(2023) obtained a generalised Reissner-Nordström solution of the form(1) where now $e^{a(r)} = 1 - \frac{2m}{r} + \frac{q^2}{r^2} - \frac{1}{3}\Lambda r^2 - \frac{1}{5}\lambda r^4/5$
- However (1) is not the most general form for a spherically symmetric static metric which is

$$\mathrm{d}s^{2} = \mathrm{e}^{\mathbf{a}(r)}\mathrm{d}t^{2} - \left(\mathrm{e}^{\mathbf{b}(r)}\mathrm{d}r^{2} + r^{2}(\mathrm{d}\theta^{2} + \sin^{2}\theta\mathrm{d}\phi^{2})\right).$$

• The HFEs for the metric(2) with $T_{ab} = 0$ lead to 2 ODEs of third order for a(r) and b(r). However, writing b = 2f - a one may deduce a 2nd order ODE $rf'' - 2rf'^2 - f' = 0$. Hence $e^b = e^{-a}/(c + dr^2)$ where c and d are constants.

- The HFEs for the metric(2) with $T_{ab} = 0$ lead to 2 ODEs of third order for a(r) and b(r). However, writing b = 2f a one may deduce a 2nd order ODE $rf'' 2rf'^2 f' = 0$. Hence $e^b = e^{-a}/(c + dr^2)$ where c and d are constants.
- Eliminating b the remaining field equation may be linearised by writing y = e^a to yield

$$(c+dr^{2})r^{3}y'''-(2c-dr^{2})r^{2}y''-(2c+dr^{2})ry'+8cy=8. (3)$$

- The HFEs for the metric(2) with $T_{ab} = 0$ lead to 2 ODEs of third order for a(r) and b(r). However, writing b = 2f a one may deduce a 2nd order ODE $rf'' 2rf'^2 f' = 0$. Hence $e^b = e^{-a}/(c + dr^2)$ where c and d are constants.
- Eliminating b the remaining field equation may be linearised by writing y = e^a to yield

$$(c+dr^{2})r^{3}y'''-(2c-dr^{2})r^{2}y''-(2c+dr^{2})ry'+8cy=8.$$
 (3)

For the electrovac case the only difference is an extra term $-24q^2/r^2$ on the rhs of the preceding equation.

- The HFEs for the metric(2) with $T_{ab} = 0$ lead to 2 ODEs of third order for a(r) and b(r). However, writing b = 2f a one may deduce a 2nd order ODE $rf'' 2rf'^2 f' = 0$. Hence $e^b = e^{-a}/(c + dr^2)$ where c and d are constants.
- Eliminating b the remaining field equation may be linearised by writing y = e^a to yield

$$(c+dr^2)r^3y'''-(2c-dr^2)r^2y''-(2c+dr^2)ry'+8cy=8.$$
 (3)

For the electrovac case the only difference is an extra term $-24q^2/r^2$ on the rhs of the preceding equation.

If d = 0, c may be set to 1 by a rescaling of the t-coordinate.
Similarly if c = 0, d may be set to 1. In either case the ODE becomes homogeneous and easy to solve.

- The HFEs for the metric(2) with $T_{ab} = 0$ lead to 2 ODEs of third order for a(r) and b(r). However, writing b = 2f a one may deduce a 2nd order ODE $rf'' 2rf'^2 f' = 0$. Hence $e^b = e^{-a}/(c + dr^2)$ where c and d are constants.
- Eliminating b the remaining field equation may be linearised by writing y = e^a to yield

$$(c+dr^2)r^3y'''-(2c-dr^2)r^2y''-(2c+dr^2)ry'+8cy=8.$$
 (3)

For the electrovac case the only difference is an extra term $-24q^2/r^2$ on the rhs of the preceding equation.

• If d = 0, c may be set to 1 by a rescaling of the *t*-coordinate. Similarly if c = 0, d may be set to 1. In either case the ODE becomes homogeneous and easy to solve. Otherwise we may set $c = \pm 1$. For Lorentzian signature $c + dr^2 > 0$.

• For *d* = 0 generalised Schwarzschild-Kottler and Reissner-Nordström solutions are obtained.

- For *d* = 0 generalised Schwarzschild-Kottler and Reissner-Nordström solutions are obtained.
- For *c* = 0 there are strange vacuum & electrovac solutions (Barnes 2023):

$$y = e^a = \lambda - \Lambda r^2 / 3 + m \log r - 1 / (2r^2) + q^2 / (4r^4), \quad e^b = e^{-a} / r^2.$$

• Physical Interpretation ???!!!

• For c > 0 and $d \neq 0$, Barnes(2023) obtained solutions involving power series with radius of convergence $1/\sqrt{|d|}$. $y = e^a = 1 + (1+2dr^2)q^2/r^2 - 2mp_1(r)/r - \lambda p_2(r)r^4/5 - \Lambda r^2/3$ $p_1(r) = 1 + dr^2/2 - d^2r^4 \dots$ $p_2(r) = 1 - 4dr^2/7 + 8d^2r^4/21\dots$ $e^b = e^{-a}/(1 + dr^2).$

- For c > 0 and $d \neq 0$, Barnes(2023) obtained solutions involving power series with radius of convergence $1/\sqrt{|d|}$. $y = e^a = 1 + (1+2dr^2)q^2/r^2 - 2mp_1(r)/r - \lambda p_2(r)r^4/5 - \Lambda r^2/3$ $p_1(r) = 1 + dr^2/2 - d^2r^4 \dots$ $p_2(r) = 1 - 4dr^2/7 + 8d^2r^4/21\dots$ $e^b = e^{-a}/(1 + dr^2).$
- If d = 0 c > 0, the power series disappear and we get the solutions of Harada and Tarsico et al.

- For c > 0 and $d \neq 0$, Barnes(2023) obtained solutions involving power series with radius of convergence $1/\sqrt{|d|}$. $y = e^a = 1 + (1+2dr^2)q^2/r^2 - 2mp_1(r)/r - \lambda p_2(r)r^4/5 - \Lambda r^2/3$ $p_1(r) = 1 + dr^2/2 - d^2r^4 \dots$ $p_2(r) = 1 - 4dr^2/7 + 8d^2r^4/21\dots$ $e^b = e^{-a}/(1 + dr^2).$
- If d = 0 c > 0, the power series disappear and we get the solutions of Harada and Tarsico et al.
- When any of d, Λ or λ are non-zero, the solution is not asymptotically flat.

- For c > 0 and $d \neq 0$, Barnes(2023) obtained solutions involving power series with radius of convergence $1/\sqrt{|d|}$. $y = e^a = 1 + (1+2dr^2)q^2/r^2 - 2mp_1(r)/r - \lambda p_2(r)r^4/5 - \Lambda r^2/3$ $p_1(r) = 1 + dr^2/2 - d^2r^4 \dots$ $p_2(r) = 1 - 4dr^2/7 + 8d^2r^4/21\dots$ $e^b = e^{-a}/(1 + dr^2).$
- If d = 0 c > 0, the power series disappear and we get the solutions of Harada and Tarsico et al.
- When any of d, Λ or λ are non-zero, the solution is not asymptotically flat.
- When $m = \lambda = 0$, the power series disappear. We have type D 'cosmological' solutions.

- For c > 0 and $d \neq 0$, Barnes(2023) obtained solutions involving power series with radius of convergence $1/\sqrt{|d|}$. $y = e^a = 1 + (1+2dr^2)q^2/r^2 - 2mp_1(r)/r - \lambda p_2(r)r^4/5 - \Lambda r^2/3$ $p_1(r) = 1 + dr^2/2 - d^2r^4 \dots$ $p_2(r) = 1 - 4dr^2/7 + 8d^2r^4/21\dots$ $e^b = e^{-a}/(1 + dr^2).$
- If d = 0 c > 0, the power series disappear and we get the solutions of Harada and Tarsico et al.
- When any of d, Λ or λ are non-zero, the solution is not asymptotically flat.
- When $m = \lambda = 0$, the power series disappear. We have type D 'cosmological' solutions.
- If, in addition, $q = \Lambda = 0$ we have the static Einstein Universe which is a vacuum solution in CKG!

Clément and Nouicer(2024) found the solutions of the ODE(3) in terms of inverse trig. and hyperbolic functions for the cases c > 0 and d ≠ 0 and also c < 0 and d > 0.

- Clément and Nouicer(2024) found the solutions of the ODE(3) in terms of inverse trig. and hyperbolic functions for the cases c > 0 and d ≠ 0 and also c < 0 and d > 0.
- The investigation of the singularity and asymptotic structure of the fields is so far incomplete – needs Kruskal-type coordinates and Penrose conformal diagrams!

- Clément and Nouicer(2024) found the solutions of the ODE(3) in terms of inverse trig. and hyperbolic functions for the cases c > 0 and d ≠ 0 and also c < 0 and d > 0.
- The investigation of the singularity and asymptotic structure of the fields is so far incomplete – needs Kruskal-type coordinates and Penrose conformal diagrams!
- Clément and Nouicer also obtained non-static vacuum FRWL solutions. Thus providing counter-examples to Birkhoff's theorem in CKG.

- Clément and Nouicer(2024) found the solutions of the ODE(3) in terms of inverse trig. and hyperbolic functions for the cases c > 0 and d ≠ 0 and also c < 0 and d > 0.
- The investigation of the singularity and asymptotic structure of the fields is so far incomplete – needs Kruskal-type coordinates and Penrose conformal diagrams!
- Clément and Nouicer also obtained non-static vacuum FRWL solutions. Thus providing counter-examples to Birkhoff's theorem in CKG.
- In these the scale factor *a* satisfies $\dot{a}^2 \alpha a^4 \frac{\Lambda}{3}a^2 + k$. The solutions in general involve Jacobi elliptic functions, but are elementary if $\alpha = 0$ or $\frac{\Lambda^2}{9} + 4k\alpha = 0$.

- Clément and Nouicer(2024) found the solutions of the ODE(3) in terms of inverse trig. and hyperbolic functions for the cases c > 0 and d ≠ 0 and also c < 0 and d > 0.
- The investigation of the singularity and asymptotic structure of the fields is so far incomplete – needs Kruskal-type coordinates and Penrose conformal diagrams!
- Clément and Nouicer also obtained non-static vacuum FRWL solutions. Thus providing counter-examples to Birkhoff's theorem in CKG.
- In these the scale factor *a* satisfies $\dot{a}^2 \alpha a^4 \frac{\Lambda}{3}a^2 + k$. The solutions in general involve Jacobi elliptic functions, but are elementary if $\alpha = 0$ or $\frac{\Lambda^2}{9} + 4k\alpha = 0$.
- Open question: does CKG admit spherically symmetric matter distributions emitting gravitational waves?

• Defining pp-waves as fields which admit a covariantly constant null bivector: $W_{ab;c} = 0$ where $W_{ab} = p_{[a}k_{b]}$ with $p_ap^a = -1$ and $k_ak^a = 0$, it follows that $k_{a;b} = 0$ and the metric may be written as

 $\mathrm{d}s^2 = 2\mathrm{d}u\mathrm{d}v + 2H(u, x, y)\mathrm{d}u^2 - \mathrm{d}x^2 - \mathrm{d}y^2.$

Defining pp-waves as fields which admit a covariantly constant null bivector: W_{ab;c} = 0 where W_{ab} = p_{[a}k_{b]} with p_ap^a = -1 and k_ak^a = 0, it follows that k_{a;b} = 0 and the metric may be written as

 $\mathrm{d}\boldsymbol{s}^2 = 2\mathrm{d}\boldsymbol{u}\mathrm{d}\boldsymbol{v} + 2\boldsymbol{H}(\boldsymbol{u},\boldsymbol{x},\boldsymbol{y})\mathrm{d}\boldsymbol{u}^2 - \mathrm{d}\boldsymbol{x}^2 - \mathrm{d}\boldsymbol{y}^2.$

• The Ricci tensor is zero or $R_{ab} = \lambda k_a k_b$ and the Petrov type is N or 0.

Defining pp-waves as fields which admit a covariantly constant null bivector: W_{ab;c} = 0 where W_{ab} = p_{[a}k_{b]} with p_ap^a = -1 and k_ak^a = 0, it follows that k_{a;b} = 0 and the metric may be written as

 $\mathrm{d}\boldsymbol{s}^2 = 2\mathrm{d}\boldsymbol{u}\mathrm{d}\boldsymbol{v} + 2\boldsymbol{H}(\boldsymbol{u},\boldsymbol{x},\boldsymbol{y})\mathrm{d}\boldsymbol{u}^2 - \mathrm{d}\boldsymbol{x}^2 - \mathrm{d}\boldsymbol{y}^2.$

- The Ricci tensor is zero or $R_{ab} = \lambda k_a k_b$ and the Petrov type is N or 0.
- The above definition is stronger than the assumption of a constant null vector k^a alone.

• Defining pp-waves as fields which admit a covariantly constant null bivector: $W_{ab;c} = 0$ where $W_{ab} = p_{[a}k_{b]}$ with $p_ap^a = -1$ and $k_ak^a = 0$, it follows that $k_{a;b} = 0$ and the metric may be written as

 $\mathrm{d} s^2 = 2\mathrm{d} u \mathrm{d} v + 2H(u, x, y)\mathrm{d} u^2 - \mathrm{d} x^2 - \mathrm{d} y^2.$

- The Ricci tensor is zero or $R_{ab} = \lambda k_a k_b$ and the Petrov type is N or 0.
- The above definition is stronger than the assumption of a constant null vector k^a alone.
- The CKG solutions differ from the GR ones only by a term $+c(x^2 + y^2)$ added to H where c is an arbitrary constant leading to an extra constant circularly polarized mode in addition to those in GR.

• Defining pp-waves as fields which admit a covariantly constant null bivector: $W_{ab;c} = 0$ where $W_{ab} = p_{[a}k_{b]}$ with $p_ap^a = -1$ and $k_ak^a = 0$, it follows that $k_{a;b} = 0$ and the metric may be written as

 $\mathrm{d}\boldsymbol{s}^2 = 2\mathrm{d}\boldsymbol{u}\mathrm{d}\boldsymbol{v} + 2\boldsymbol{H}(\boldsymbol{u},\boldsymbol{x},\boldsymbol{y})\mathrm{d}\boldsymbol{u}^2 - \mathrm{d}\boldsymbol{x}^2 - \mathrm{d}\boldsymbol{y}^2.$

- The Ricci tensor is zero or $R_{ab} = \lambda k_a k_b$ and the Petrov type is N or 0.
- The above definition is stronger than the assumption of a constant null vector k^a alone.
- The CKG solutions differ from the GR ones only by a term $+c(x^2 + y^2)$ added to H where c is an arbitrary constant leading to an extra constant circularly polarized mode in addition to those in GR.
- if $H = c(x^2 + y^2)$ the metric is a non-flat vacuum conformally flat field in CKG.

Multiple Matter Sources in CKG

• If $\tilde{T}_{ab} \& \tilde{T}'_{ab}$ are trace-modified em tensors whose difference K_{ab} is a Killing tensor, the metric is the same whether T_{ab} or T'_{ab} is the source.

Multiple Matter Sources in CKG

- If $\tilde{T}_{ab} \& \tilde{T}'_{ab}$ are trace-modified em tensors whose difference K_{ab} is a Killing tensor, the metric is the same whether T_{ab} or T'_{ab} is the source.
- Thus different matter sources may produce the same metric. The metric does not uniquely determine the energy-momentum tensor.

Multiple Matter Sources in CKG

- If $\tilde{T}_{ab} \& \tilde{T}'_{ab}$ are trace-modified em tensors whose difference K_{ab} is a Killing tensor, the metric is the same whether T_{ab} or T'_{ab} is the source.
- Thus different matter sources may produce the same metric. The metric does not uniquely determine the energy-momentum tensor.
- Thus, if $\tilde{T}_{ab} \& \tilde{T}'_{ab}$ differ by the Killing tensor $\lambda g_{ab}/3$, (λ constant) then $T_{ab} \& T'_{ab}$ differ by a dark energy term λg_{ab} . Hence dark energy does not gravitate in CKG.

• If a metric admits symmetries generated by Killing vectors $\xi_I^a, I = 1 \dots N$, then $K_{ab} = kg_{ab} + \sum_{I=1}^N \sum_{J=1}^N k_{IJ}\xi_{I(a}\xi_{|J|b)}$, where k and the k_{IJ} are constants, is a Killing tensor.

- If a metric admits symmetries generated by Killing vectors ξ_I^a , $I = 1 \dots N$, then $K_{ab} = kg_{ab} + \sum_{I=1}^N \sum_{J=1}^N k_{IJ}\xi_{I(a}\xi_{|J|b)}$, where k and the k_{IJ} are constants, is a Killing tensor.
- If there are N Killing vectors, there are 1 + (N + 1)N/2possible terms in K_{ab} that may contribute to the matter source \tilde{T}_{ab} .

- If a metric admits symmetries generated by Killing vectors $\xi_I^a, I = 1 \dots N$, then $K_{ab} = kg_{ab} + \sum_{I=1}^N \sum_{J=1}^N k_{IJ}\xi_{I(a}\xi_{|J|b)}$, where k and the k_{IJ} are constants, is a Killing tensor.
- If there are N Killing vectors, there are 1 + (N+1)N/2 possible terms in K_{ab} that may contribute to the matter source \tilde{T}_{ab} .
- All known exact solutions in CKG admit Killing vectors: Static spherically symmetric 4KVs, pp-waves at least 1KV plane waves at least 5KVs, FRWL metrics 6KVs Einstein Universe 7KVs, Minkowski, de Sitter & ADS 10 KVs. Thus there are a plethora of possible sources in these cases.

- If a metric admits symmetries generated by Killing vectors $\xi_I^a, I = 1 \dots N$, then $K_{ab} = kg_{ab} + \sum_{I=1}^N \sum_{J=1}^N k_{IJ}\xi_{I(a}\xi_{|J|b)}$, where k and the k_{IJ} are constants, is a Killing tensor.
- If there are N Killing vectors, there are 1 + (N+1)N/2 possible terms in K_{ab} that may contribute to the matter source \tilde{T}_{ab} .
- All known exact solutions in CKG admit Killing vectors: Static spherically symmetric 4KVs, pp-waves at least 1KV plane waves at least 5KVs, FRWL metrics 6KVs Einstein Universe 7KVs, Minkowski, de Sitter & ADS 10 KVs. Thus there are a plethora of possible sources in these cases.
- Even with no symmetries there is the ubiquitous dark energy ambiguity.

- All static spherically symmetric vacuum & electrovac metrics in CKG are known.
- pp-waves metrics are known and are very similar to those in GR.

- All static spherically symmetric vacuum & electrovac metrics in CKG are known.
- pp-waves metrics are known and are very similar to those in GR.
- Birkhoff's theorem is not valid in CKG. There are time-dependent vacuum FRWL metrics.

- All static spherically symmetric vacuum & electrovac metrics in CKG are known.
- pp-waves metrics are known and are very similar to those in GR.
- Birkhoff's theorem is not valid in CKG. There are time-dependent vacuum FRWL metrics.
- Dark energy does not gravitate in CKG.

- All static spherically symmetric vacuum & electrovac metrics in CKG are known.
- pp-waves metrics are known and are very similar to those in GR.
- Birkhoff's theorem is not valid in CKG. There are time-dependent vacuum FRWL metrics.
- Dark energy does not gravitate in CKG.
- Many solutions have multiple possible matter sources.

- All static spherically symmetric vacuum & electrovac metrics in CKG are known.
- pp-waves metrics are known and are very similar to those in GR.
- Birkhoff's theorem is not valid in CKG. There are time-dependent vacuum FRWL metrics.
- Dark energy does not gravitate in CKG.
- Many solutions have multiple possible matter sources.
- Minkowski, de Sitter and ADS are all vacuum solutions; equally they may be regarded as having an arbitrary dark energy source $T_{ab} = \lambda g_{ab}$ (λ is unrelated to Λ in de Sitter & ADS metrics).

- All static spherically symmetric vacuum & electrovac metrics in CKG are known.
- pp-waves metrics are known and are very similar to those in GR.
- Birkhoff's theorem is not valid in CKG. There are time-dependent vacuum FRWL metrics.
- Dark energy does not gravitate in CKG.
- Many solutions have multiple possible matter sources.
- Minkowski, de Sitter and ADS are all vacuum solutions; equally they may be regarded as having an arbitrary dark energy source $T_{ab} = \lambda g_{ab}$ (λ is unrelated to Λ in de Sitter & ADS metrics).
- Do the last 4 points make CKG somewhat unphysical?

- All static spherically symmetric vacuum & electrovac metrics in CKG are known.
- pp-waves metrics are known and are very similar to those in GR.
- Birkhoff's theorem is not valid in CKG. There are time-dependent vacuum FRWL metrics.
- Dark energy does not gravitate in CKG.
- Many solutions have multiple possible matter sources.
- Minkowski, de Sitter and ADS are all vacuum solutions; equally they may be regarded as having an arbitrary dark energy source $T_{ab} = \lambda g_{ab}$ (λ is unrelated to Λ in de Sitter & ADS metrics).
- Do the last 4 points make CKG somewhat unphysical?
- Thank you for listening if you have been! Questions?

Bibliography

- Harada J (2023) Phys. Rev. D 108, 044031 arXiv:2308.07634
- Harada J (2023) Phys. Rev. D 108, 104037 arXiv:2308.02115
- Mantica J C & Molinari L G (2023) Phys. Rev. D 108, 124029 arXiv:2308.06803 [gr-qc]
- Tarciso Junior, J S S et al. (2023) arXiv:2310.19508 [gr-qc]
- Barnes A (2023) arXiv:2309.05336 & arXiv:2311.09171 [gr-qc]
- Barnes A (2024) Class. Quantum Grav. 41, 155007
- Clément G and Nouicer K (2024) arXiv:2404.00328 [gr-qc]
- Barnes A (2024) arXiv:2404.09310 [gr-qc]

