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What is CKG?

o A 3 order metric theory of gravitation due to Harada (2023)
with field equations (HFEs) G(ab 0= T(ab C)

where G, = G.p Ggab and Tap = Tap Tgab

‘‘‘‘‘‘‘‘‘

CKG 2/13



What is CKG?

o A 3 order metric theory of gravitation due to Harada (2023)
with field equations (HFEs) G(ab o) = T(ab C)
where G, = G.p Ggab and Tap = Tap Tgab

@ Any solution in General Relativity (with or without A) is a
solution in CKG.

‘‘‘‘‘‘‘‘‘‘

CKG 2/13



What is CKG?

o A 3 order metric theory of gravitation due to Harada (2023)
with field equations (HFEs) G(ab o) = T(ab C)
where G, = G.p Ggab and Tap = Tap Tgab

@ Any solution in General Relativity (with or without A) is a
solution in CKG.

o Note Top = Top+ 1/27'gab.

‘‘‘‘‘‘‘‘‘‘

CKG 2/13



What is CKG?

o A 3 order metric theory of gravitation due to Harada (2023)
with field equations (HFEs) G(ab o) = T(ab C)
where G, = G.p Ggab and Tap = Tap Tgab

@ Any solution in General Relativity (with or without A) is a
solution in CKG.

o Note Top = Top+ 1/27'gab.
o Contracting the HFEs implies T7 = 0.

‘‘‘‘‘‘‘‘‘‘

CKG 2/13



What is CKG?

o A 3 order metric theory of gravitation due to Harada (2023)
with field equations (HFEs) G(ab o) = T(ab C)

where G, = G.p Ggab and Tap = Tap Tgab

@ Any solution in General Relativity (with or without A) is a
solution in CKG.

o Note Top = Top+ 1/27'gab.
o Contracting the HFEs implies T7 = 0.

@ Mantica & Molinari's alternative form of HFEs:
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where C,p, is a conformal Killing tensor. Hence the name
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What is CKG?

o A 3 order metric theory of gravitation due to Harada (2023)
with field equations (HFEs) G(ab o) = T(ab C)
where G, = G.p Ggab and Tap = Tap Tgab

@ Any solution in General Relativity (with or without A) is a
solution in CKG.

o Note Top = Top+ 1/27'gab.
o Contracting the HFEs implies T7 = 0.

@ Mantica & Molinari's alternative form of HFEs:
Gab = Tab + Cab

where C,p, is a conformal Killing tensor. Hence the name
conformal Killing gravity.

o Actually Kap = Gap — Tap is a Killing tensor and
Cab = Kab + %Kgab %University
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Yet another theory — why study CKG?

@ Harada considered the evolution of the scale factor a(t) of the
Friedmann-Robertson-Walker-Lemaitre (FRWL) metric:

dr?

1 — kr?

ds? = dt® — a%(t) ( + r2d6? 4 r?sin? 9d¢2> .

@ He obtained a third order ODE which has the first integral:
a i 2k 4

2
e A
2(2) 2452 )
<a> St 2 3 (504 3p) + 3
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Yet another theory — why study CKG?

@ Harada considered the evolution of the scale factor a(t) of the
Friedmann-Robertson-Walker-Lemaitre (FRWL) metric:

dr?

1 — kr?

ds? = dt® — a%(t) ( + r2d6? 4 r?sin? 9d¢2> .

@ He obtained a third order ODE which has the first integral:

N 2 .
a a 2k 4nG A
2(2) - 242 =2 (5p+3p) + =
<a> 2@ 3(ij p)—|—3

@ He showed that even in the case of a matter-dominated
universe (p = 0) with A = 0 there could be a transition from
deceleration to accelerating expansion.

@ Thus removing the need to assume the existence of dark
energy. Aston University
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Static black hole solutions

o Harada(2023) obtained a metric for a static spherically
symmetric vacuum field in CKG:

ds? = edt? — (e7Vdr? + r2(d6? +sin0d¢?)) (1)

where () =1 — 20 _ IAr2 — 1Ar% where m, A and A are
integration constants. Generalised Schwarzschild-Kottler

solution.
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Static black hole solutions

o Harada(2023) obtained a metric for a static spherically
symmetric vacuum field in CKG:

ds? = edt? — (e7Vdr? + r2(d6? +sin0d¢?)) (1)

r
integration constants. Generalised Schwarzschild-Kottler

solution.

where () =1 — 2m _ %/\r2 — %)\r“ where m, A and \ are

e Tarsico et al.(2023) obtained a generalised
Reissner-Nordstrom solution of the form(1) where now
e =1 27'" + qé — %/\r2 — %/\r4/5

r
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Static black hole solutions

o Harada(2023) obtained a metric for a static spherically
symmetric vacuum field in CKG:

ds? = edt? — (e7Vdr? + r2(d6? +sin0d¢?)) (1)

where () =1 — 20 _ IAr2 — 1Ar% where m, A and A are
integration constants. Generalised Schwarzschild-Kottler

solution.

e Tarsico et al.(2023) obtained a generalised
Reissner-Nordstrom solution of the form(1) where now
e =1 27'" + qé — %/\r2 — %/\r4/5

r
@ However (1) is not the most general form for a spherically
symmetric static metric which is

ds? = Nde2 — (P)dr? 4 r2(d6? + sin?0d¢?)). (2
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The general case

@ The HFEs for the metric(2) with T,, = 0 lead to 2 ODEs of
third order for a(r) and b(r). However, writing b = 2f — a
one may deduce a 2nd order ODE rf” — 2rf"?> — f' = 0.
Hence e? = ¢=2/(c + dr?) where ¢ and d are constants.
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The general case

@ The HFEs for the metric(2) with T,, = 0 lead to 2 ODEs of
third order for a(r) and b(r). However, writing b = 2f — a
one may deduce a 2nd order ODE rf” — 2rf"?> — f' = 0.
Hence e? = e=2/(c + dr?) where ¢ and d are constants.

@ Eliminating b the remaining field equation may be linearised
by writing y = €? to yield
(c+drA)r*y" —(2c—dr*)r?y" —(2c+dr*)ry’ +8cy = 8. (3)
For the electrovac case the only difference is an extra term
—2449°/r? on the rhs of the preceding equation.

o If d =0, ¢ may be set to 1 by a rescaling of the t-coordinate.
Similarly if ¢ =0, d may be set to 1. In either case the ODE
becomes homogeneous and easy to solve.
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The general case

@ The HFEs for the metric(2) with T,, = 0 lead to 2 ODEs of
third order for a(r) and b(r). However, writing b = 2f — a
one may deduce a 2nd order ODE rf” — 2rf"?> — f' = 0.
Hence e? = e=2/(c + dr?) where ¢ and d are constants.

@ Eliminating b the remaining field equation may be linearised
by writing y = €? to yield

(c+drA)r*y" —(2c—dr*)r?y" —(2c+dr*)ry’ +8cy = 8. (3)

For the electrovac case the only difference is an extra term
—2449°/r? on the rhs of the preceding equation.

o If d =0, ¢ may be set to 1 by a rescaling of the t-coordinate.
Similarly if ¢ =0, d may be set to 1. In either case the ODE
becomes homogeneous and easy to solve. Otherwise we may
set ¢ = +1. For Lorentzian signature ¢ + dr? > 0.
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The solutions 1

@ For d = 0 generalised Schwarzschild-Kottler and
Reissner-Nordstrom solutions are obtained.
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The solutions 1

@ For d = 0 generalised Schwarzschild-Kottler and
Reissner-Nordstrom solutions are obtained.

@ For ¢ = 0 there are strange vacuum & electrovac solutions
(Barnes 2023):

y =€ = A=Ar?/3+mlog r—1/(2r*)+¢%/(4r"), e’ =e"?/r%.

@ Physical Interpretation 77711
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The solutions 2

e For ¢ > 0 and d # 0, Barnes(2023) obtained solutions
involving power series with radius of convergence 1/\/@
y = e = 14+(14+2dr2)q?/r>—2mp1(r)/r—Apa(r)r* /5—NAr?/3
pi(r) =1+dr?/2 — d?r* ...
pa(r) =1 — 4dr?/7 +8d%r*/21. ..
eb = e ?/(1 +dr?).
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@ When any of d, A or A\ are non-zero, the solution is not
asymptotically flat.
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e For ¢ > 0 and d # 0, Barnes(2023) obtained solutions
involving power series with radius of convergence 1/\/@
y = e = 14+(14+2dr2)q?/r>—2mp1(r)/r—Apa(r)r* /5—NAr?/3
pi(r) =1+dr?/2 — d?r* ...
pa(r) =1 — 4dr?/7 +8d%r*/21. ..
eb = e ?/(1 +dr?).

e If d =0 c > 0, the power series disappear and we get the
solutions of Harada and Tarsico et al.

@ When any of d, A or A\ are non-zero, the solution is not
asymptotically flat.

@ When m = X =0, the power series disappear. We have type
D 'cosmological’ solutions.

e If, in addition, g = A = 0 we have the static Einstein

Universe which is a vacuum solution in CKG! Aston University
CKG 7/13



The solutions 3

@ Clément and Nouicer(2024) found the solutions of the
ODE(3) in terms of inverse trig. and hyperbolic functions for
the cases ¢ > 0 and d # 0 and also ¢ < 0 and d > 0.
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ODE(3) in terms of inverse trig. and hyperbolic functions for
the cases ¢ > 0 and d # 0 and also ¢ < 0 and d > 0.

@ The investigation of the singularity and asymptotic structure
of the fields is so far incomplete — needs Kruskal-type
coordinates and Penrose conformal diagrams!
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@ Clément and Nouicer(2024) found the solutions of the
ODE(3) in terms of inverse trig. and hyperbolic functions for
the cases ¢ > 0 and d # 0 and also ¢ < 0 and d > 0.

@ The investigation of the singularity and asymptotic structure
of the fields is so far incomplete — needs Kruskal-type
coordinates and Penrose conformal diagrams!

@ Clément and Nouicer also obtained non-static vacuum FRWL
solutions. Thus providing counter-examples to Birkhoff's
theorem in CKG.

@ In these the scale factor a satisfies 8% — aa* — %32 + k.

The solutions in general involve Jacobi elliptic functions, but
are elementary if a =0 or %2 +4ka = 0.

Aston University

Bimingham
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The solutions 3

@ Clément and Nouicer(2024) found the solutions of the
ODE(3) in terms of inverse trig. and hyperbolic functions for
the cases ¢ > 0 and d # 0 and also ¢ < 0 and d > 0.

@ The investigation of the singularity and asymptotic structure
of the fields is so far incomplete — needs Kruskal-type
coordinates and Penrose conformal diagrams!

@ Clément and Nouicer also obtained non-static vacuum FRWL
solutions. Thus providing counter-examples to Birkhoff's
theorem in CKG.

@ In these the scale factor a satisfies 8% — aa* — %32 + k.

The solutions in general involve Jacobi elliptic functions, but
are elementary if a =0 or %2 +4ka = 0.

@ Open question: does CKG admit spherically symmetric matter
distributions emitting gravitational waves?
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@ Defining pp-waves as fields which admit a covariantly
constant null bivector: Wop,c = 0 where Wap = pi,kp) with
pap? = —1 and k;k? = 0, it follows that k,, = 0 and the
metric may be written as

ds? = 2dudv + 2H(u, x, y)du? — dx? — dy?.
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N or Q.

@ The above definition is stronger than the assumption of a
constant null vector k? alone.

@ The CKG solutions differ from the GR ones only by a term
+c(x? + y?) added to H where c is an arbitrary constant
leading to an extra constant circularly polarized mode in
addition to those in GR.
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Defining pp-waves as fields which admit a covariantly
constant null bivector: Wop,c = 0 where Wap = pi,kp) with
pap? = —1 and k;k? = 0, it follows that k,, = 0 and the
metric may be written as

ds? = 2dudv + 2H(u, x, y)du? — dx? — dy?.
The Ricci tensor is zero or R,, = Akskp and the Petrov type is
N or Q.

The above definition is stronger than the assumption of a
constant null vector k? alone.

The CKG solutions differ from the GR ones only by a term
+c(x? + y?) added to H where c is an arbitrary constant
leading to an extra constant circularly polarized mode in
addition to those in GR.

if H= c(x?+ y?) the metric is a non-flat vacuum conformally
flat field in CKG.

Aston University

Bimingham
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Multiple Matter Sources in CKG

o If Top & 7~';b are trace-modified em tensors whose difference
K,p is a Killing tensor, the metric is the same whether T, or
T, is the source.
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o If Top & 7~';b are trace-modified em tensors whose difference
K,p is a Killing tensor, the metric is the same whether T, or
T, is the source.

@ Thus different matter sources may produce the same metric.
The metric does not uniquely determine the
energy-momentum tensor.

‘‘‘‘‘‘‘‘‘

CKG 10/13



Multiple Matter Sources in CKG

o If Top & 7~';b are trace-modified em tensors whose difference
K,p is a Killing tensor, the metric is the same whether T, or
T, is the source.

@ Thus different matter sources may produce the same metric.
The metric does not uniquely determine the
energy-momentum tensor.

o Thus, if T, & Téb differ by the Killing tensor Agap/3, (A
constant) then T,, & T, differ by a dark energy term A\gyp.
Hence dark energy does not gravitate in CKG.
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Multiple Matter Sources 2

@ If a metric admits symmetries generated by Killing vectors

N N
ff7 I'=1...N, then K, = kgap + 2121 ZJ:l kIJfl(a§|J|b)v
where k and the k;; are constants, is a Killing tensor.
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Multiple Matter Sources 2

@ If a metric admits symmetries generated by Killing vectors
.1 =1...N, then Koy = kgap + 311 351 kis€i(a€pui).
where k and the k;; are constants, is a Killing tensor.

o If there are N Killing vectors, there are 1 + (N + 1)N/2
possible terms in K, that may contribute to the matter
source Tap.
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@ If a metric admits symmetries generated by Killing vectors
.1 =1...N, then Koy = kgap + 311 351 kis€i(a€pui).
where k and the k;; are constants, is a Killing tensor.

o If there are N Killing vectors, there are 1 + (N + 1)N/2
possible terms in K, that may contribute to the matter
source Tap.

@ All known exact solutions in CKG admit Killing vectors:
Static spherically symmetric 4KVs, pp-waves at least 1KV
plane waves at least 5KVs, FRWL metrics 6KVs
Einstein Universe 7KVs, Minkowski, de Sitter & ADS 10 KVs.
Thus there are a plethora of possible sources in these cases.
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Multiple Matter Sources 2

@ If a metric admits symmetries generated by Killing vectors
.1 =1...N, then Koy = kgap + 311 351 kis€i(a€pui).
where k and the k;; are constants, is a Killing tensor.

o If there are N Killing vectors, there are 14+ (N +1)N/2
possible terms in K, that may contribute to the matter
source Tap.

@ All known exact solutions in CKG admit Killing vectors:
Static spherically symmetric 4KVs, pp-waves at least 1KV
plane waves at least 5KVs, FRWL metrics 6KVs
Einstein Universe 7KVs, Minkowski, de Sitter & ADS 10 KVs.
Thus there are a plethora of possible sources in these cases.

@ Even with no symmetries there is the ubiquitous dark energy
ambiguity.
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Conclusions

o All static spherically symmetric vacuum & electrovac metrics
in CKG are known.

@ pp-waves metrics are known and are very similar to those in
GR.
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Minkowski, de Sitter and ADS are all vacuum solutions;
equally they may be regarded as having an arbitrary dark
energy source T, = Agap (A is unrelated to A in de Sitter &
ADS metrics).
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equally they may be regarded as having an arbitrary dark
energy source T, = Agap (A is unrelated to A in de Sitter &
ADS metrics).

Do the last 4 points make CKG somewhat unphysical?
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Conclusions

All static spherically symmetric vacuum & electrovac metrics
in CKG are known.

pp-waves metrics are known and are very similar to those in
GR.

Birkhoff's theorem is not valid in CKG. There are
time-dependent vacuum FRWL metrics.

Dark energy does not gravitate in CKG.
Many solutions have multiple possible matter sources.

Minkowski, de Sitter and ADS are all vacuum solutions;
equally they may be regarded as having an arbitrary dark
energy source T, = Agap (A is unrelated to A in de Sitter &
ADS metrics).

Do the last 4 points make CKG somewhat unphysical?

Thank you for listening if you have been! Questions?
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