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Gravitational waves. A new portal to gravity

Ever since their first observation, gravitational waves (GWs) have acquired
central role in the empirical exploration of gravity.

Usually GWs conceived in the context of linearized Einstein equations, in
which one considers perturbations on top of Minkowski:

gab = ηab + hab , hab << 1 .

Linear perturbation h̄ab = hab − 1
2hηab satisfies wave equation:

□h̄ab = −16πTab

Do there exist exact solutions of GR which admit a
gravitational-wave interpretation?
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PP-waves

There are exact solutions of GR with a GW interpretation. Prominent
example: pp-waves [Brinkmann ’25; Hély ’59; Peres ’59].

Locally isometric to:

ds2pp−wave = H(v, x, y)dv2 + 2dudv − dx2 − dy2 .

(x, y)

`a

PP-waves possess parallel null vector field ℓa:

∇aℓb = 0 , ℓa∂a = ∂u .

The associated Einstein tensor reads:

Gab = − (Hxx +Hyy) ℓaℓb .

Space-times with pure-radiation. Exact vac-
uum solution iff Hxx +Hyy = 0.

Physical interpretation: plane-fronted waves with parallel rays propagating
on Minkowski [e.g. Ehlers, Kundt ’62; Roche, Aazami, Cederbaum ’22].
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PP-waves and parallel spinors

If our space-time (M, g) is spin, pp-waves are equivalent to existence of
parallel spinor! [e.g. Tod ’83; Bryant ’00; ÁM, Shahbazi ’21; Araneda ’22]

∇mψ = 0 .

Unless (M, g) is flat, ψ = (oA, õA′)
T can be taken to be Majorana. Parallel

vector field given by:
ℓa = oAõA′ .

Note: parallel spinor is 1st-order differential equation. Fixes Ricci curvature
(2nd-order operator) up to function H(v, x, y) determining null dust fluid!

Parallel spinor: Geometric technique to solve Einstein
equations (2nd order) through 1st order equation!
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Siklos space-times

So far: pp-waves are exact GW-like solutions of GR. Equivalent to existence
of parallel spinor.

Which space-times arise if we consider more general spinors?

Inspired by supersymmetry conditions in supergravity, Siklos analyzed space-
times (M, g) endowed with the following type of spinors [Siklos ’85]:

∇mψ =
b√
2
γmψ , b ∈ C .

We call (M, g) a Siklos space-time. ψ is said to be a Killing spinor with
Killing constant b.

If (M, g) not AdS, b ∈ R and the Killing spinor ψ = (oA, õA′)
T is Majorana

[Araneda, ÁM ’24]. Now ℓa = oAõA
′
is no longer parallel. It is Killing:

∇(aℓb) = 0 .
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Properties of Siklos space-times

Siklos space-times are locally isometric to [Siklos ’85]:

ds2Siklos =
1

b2x2
[
H(v, x, y)dv2 + 2dudv − dx2 − dy2

]
.

Einstein tensor of Siklos space-times:

Gab = −b4x4
(
Hxx +Hyy −

2

x
Hx

)
ℓaℓb + 6b2gab .

Pure radiation fluid with negative cosmological constant.

Physical interpretation: Siklos space-times correspond to exact GWs prop-
agating on top of AdS [Podolský ’97], with propagation vector ℓa.
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Generalized Siklos space-times

Inspired by properties of Siklos space-times, interesting to study space-times
endowed with even more general spinors.

A given space-time is said to be generalized Siklos if it possesses a spinor ψ
satisfying [Araneda, ÁM ’24]:

∇mψ =
λ√
2
γmψ , λ ∈ C∞(M,C) .

ψ is said to be a Killing spinor with Killing function λ.

Motivation to study more general spinors:

1 Explored in literature in (pseudo-)Riemannian setting [e.g. Rademacher
’91; Friedrich, Kim ’00, ’01; Bär, Gauduchon, Moroianu ’05; Shahbazi ’24].

2 May be useful to construct solutions to Einstein equations with certain
matter content.
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Generalized Siklos space-times

If (M, g) is a generalized Siklos space-time:

1 If (M, g) not conformally flat, Killing function λ is real and ψ = (oA, õA′)
may be taken to be Majorana.

2 Null vector ℓa = oAõA
′
is geodesic, has vanishing optical scalars and is

Killing.

3 (M, g) conformal to pp-wave:

ds2gen−Siklos =
1

Ω2(x, v)

[
2dudv − dx2 − dy2 +Hdv2

]
,

Ω(x, v) =

∫
λ(x, v) dx+ f(v) , f ∈ C∞(R) .
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Generalized Siklos space-times

4 Weyl tensor is type N, so gravitational dofs are interpreted as waves:
u is affine parameter along the rays given by ℓa = (∂u)

a and wave
surfaces are spanned by coordinates (x, y).

ds2gen−Siklos = Ω−2
[
2dudv − dx2 − dy2 +Hdv2

]
.

ℓa

(x, y)
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Generalized Siklos space-times

Einstein tensor of generalized Siklos space-time:

Gab = −(T
(ℓ)
ab + T

(s)
ab ) ,

T
(ℓ)
ab = ρ(ℓ)ℓaℓb T

(s)
ab = (ρ(s) + p(s))sasb − p(s)gab,

with sasa = −2Ω2
xx < 0 and

ρ(ℓ) = 2Ω3

[
Ω
2 (Ĥxx + Ĥyy) + Ωvv − ΩxĤx − Ω2

vx

Ωxx

]
,

p(s) = 6Ω2
x − 4ΩΩxx , ρ(s) = − p(s) + 2

Ω

Ωxx
.

1 If Ωxx ̸= 0, superposition of perfect fluids: pure radiation and space-
like fluid.

2 Physically relevant case: Ωxx = 0, which is equivalent to standard
Siklos space-times.
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Conclusions

Space-times with spinors satisfying a given differential condition:

1 Prescribed form of Ricci curvature.

2 GW interpretation.

We have introduced generalized Siklos space-times:
1 Admit a spinor ψ such that ∇mψ = λ√

2
γmψ, with λ ∈ C∞(M,C).

2 Gravitational dofs correspond to waves. Associated matter sources to
superposition of pure radiation and spacelike perfect fluid.

3 Physically relevant case: absent spacelike fluid, corresponding to stan-
dard Siklos space-times.

Muito obrigado!
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