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Motivation

Strong gravity is nonlinear, needs
numerical relativity to be accurately
described

Cosmological tensions H0 and DESI
variable dark energy results suggest
something is missing in GR

Theoretical understanding of the
metric affine framework gives insights
about GR itself
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Teleparallel framework

Metric and affine connection are two separate entities. The metric
can be defined from the tetrad θ and cotetrad e

gµν = θaµθ
b
νηab, ηab = gµνea

µeb
ν . (1)

The most general linear connection is related to the spin
connection ω and the tetrad as

Γρ
µν = e ρ

a ∂νθ
a
µ + e ρ

a ω
a
bνθ

b
µ (2)

In the metric affine framework Γρ
µν is free but in teleparallelism it

satisfies some conditions.
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Metric and affine connection

−→ gµν

−→ Γρµν
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Curvature, Torsion, Nonmetricity

https://www.akadeemia.ee/wp-content/uploads/2020/08/ev preemaid 2020 veebi1.pdf
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Teleparallel framework

The condition of vanishing curvature

Rα
βµν(Γ) = ∂µΓ

α
νβ − ∂νΓ

α
µβ + Γα

µλΓ
λ
νβ − Γα

νλΓ
λ
µβ ≡ 0 (3)

is satisfied by the most general connection parameterised by an
element Lµ

ν of the general linear group GL(4,R) as

metric tele symmetric tele

Γα
µν = (L−1)αλ∂µL

λ
ν

ωa
bµ = Λa

c ∂µ(Λ
−1)cb Γρ

µν =
∂xρ

∂ξσ
∂

∂xµ

(
∂ξσ

∂xν

)

Marı́a José Guzmán M. (University of Tartu) STEGR, numerical relativity and f(Q) cosmology July 24, 2024 7 / 27



Teleparallel framework

Rρ
σµν = 0

and

Qρµν = 0

metric tele

or T ρ
µν = 0

symm tele
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Symmetric teleparallel

The nonmetricity scalar

Q =
1

4
QρµνQ

ρµν − 1

2
QρµνQ

µνρ − 1

4
QµQ

µ +
1

2
QµQ̃

µ (4)

is a special quadratic combination of the nonmetricity tensor
Qρµν = ∇ρgµν , since it is equivalent to the Ricci scalar up to a
boundary term

◦
R = −Q−

◦
∇µ(Q

µ − Q̃µ) (5)

where it has been defined the following two (independent) traces of the
nonmetricity tensor

Qµ = Qµν
ν , Q̃µ = Qν

µν = Qν
νµ.
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Boundary term

After setting the coincident gauge and writing the STEGR Lagrangian
as the ΓΓ part of the Ricci scalar, we obtain

S = − 1

2κ

∫
d4x

√
γα

[
−(3)Q−Di(Q

i − Q̃i) +K2 −KijKij

]
, (6)

where it has been defined the 3 dimensional nonmetricity scalar as

(3)Q = (3)Γi
ij
(3)Γjk

k − (3)Γi
jk

(3)Γj k
i (7)

Without any further action, this action is equivalent to the
Einstein-Hilbert action of GR, since it can be proved that

(3)R = −(3)Q−Di(Q
i − Q̃i). (8)

[F. D’Ambrosio, M. Garg, L. Heisenberg, S. Zentarra, 2007.03261]
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Modified Hamiltonian constraint

After integration by parts, it can be obtained

S = − 1

2κ

∫
d4x

√
γα

[
−(3)Q+K2 −KijKij +

∂iα

α
(Qi − Q̃i)

]
. (9)

Evidently, the Hamiltonian constraint is modified as

H = −(3)Q+K2 −KijKij +
∂iα

α
(Qi − Q̃i) (10)

[M.J. Guzman, 2311.01424]
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Modified Hamiltonian constraint

For an intrinsic metric with spherical symmetry

dl2 = A(t, r)dr2 + r2B(t, r)
[
dθ2 + sin2(θ)dφ2

]
= γijdx

idxj , (11)

the Hamiltonian constraint in STEGR is

H = AKB(2KA +KB) +
∂rα

α

(
4

Ar
+

2

AB
∂rB

)
+ (3)Q (12)

which is actually simpler than the GR one [Alcubierre (2008)]

H = AKB(2KA +KB) +
1

r2B
(A−B)− ∂rDB

+
1

r
(DA − 3DB) +

DADB

2
−

3D2
B

4
.

(13)

(DA := ∂r lnA, DB := ∂r lnB)
[M.J.Guzman, 2311.01424]
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f(Q) gravity

The nonlinear modification of STEGR is f(Q) gravity

S = − 1

2κ2

∫
d4x

√
−gf(Q) + Sm(g) , (14)

with metric equations of motion

fQ
◦
Gµν + 2fQQP

λ
µν∂λQ+

1

2
gµν (QfQ − f) = κ2Tµν , (15)

and connection equation (dependent on the previous ones)

∇µ∇ν

(√
−gfQPµν

α

)
= 0. (16)
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Traditional cosmological solutions in f(Q)

Known cosmological solutions in f(Q) for the metric

ds2 = −dt2 + a2(t)(dr2 + r2dθ2 + r2 sin2 θdϕ2), (17)

require the presence of a nonvanishing connection

Γ
ρ
µν =



γ(t), γ(t) + γ̇/γ,− γ̇(t)

γ(t)
0 0 0

0 γ(t) 0 0

0 0 r2γ(t) 0

0 0 0 r2γ(t) sin2 θ




0 γ(t) 0 0
γ(t) 0 0 0
0 0 −r 0

0 0 0 −r sin2 θ




0 0 γ(t) 0

0 0 1
r

0

γ(t) 1
r

0 0
0 0 0 − sin θ cos θ




0 0 0 γ(t)

0 0 0 1
r

0 0 0 cot θ

γ(t) 1
r

cot θ 0


 . (18)

Marı́a José Guzmán M. (University of Tartu) STEGR, numerical relativity and f(Q) cosmology July 24, 2024 14 / 27



Symmetry assumptions

One common approach to solve the eom of f(T)/f(Q) is to impose the
Lie derivative along the Killing vectors of the metric

Lξgµν = ξσ∂σgµν + ∂µξ
σgσν + ∂νξ

σgµσ = 0, (19)

also on the connection

LξΓ
µ
νρ = ξσ∂σΓ

µ
νρ−∂σξµΓσ

νρ+∂νξ
σΓµ

σρ+∂ρξ
σΓµ

νσ+∂ν∂ρξ
µ. (20)

The procedure works, but what if we are missing other families of
solutions?
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Cosmological stability of f(Q) with different
connections

Stability of cosmological background evolution can be studied
near the general relativity regime across radiation, matter, dark
energy, and geometric dark energy dominated eras.
In connection set 1 the general relativity regime can be realized in
two ways and both exhibit stable behavior throughout all
evolutionary epochs.
However, in connection set 2, trivial GR limit is stable. Nontrivial
limit exhibits stability during radiation era and marginal stability
during matter era. For dark energy and geometric dark energy,
results are inconclusive.
For a generic f(Q) the connection sets 2 and 3 are prone to
trigger a sudden singularity.

[M.J.Guzman, L. Järv, L. Pati, arxiv:gr-qc/2406.11621.]
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Letting go of connection symmetries: work in progress!

Firstly, we can generate flat symmetric connections from

Γ̃α
µβ =

∂xα

∂ξρ
∂µ∂βξ

ρ, (21)

where ξρ = ξρ(xµ).
A connection will be called nontrivial if the Lie derivative along the
Killing vectors of a certain metric does not vanishes [B. Siimon, BSc
thesis].
Another premise to be tested is to work with a nondiagonal metric,
trying to hit the presumably existing remnant symmetries in f(Q)
[Blixt, Golovnev, Guzman, Maksyutov 2306.09289] that also exist in f(T ).

[M.J.Guzman, B. Siimon, work in progress.]

Marı́a José Guzmán M. (University of Tartu) STEGR, numerical relativity and f(Q) cosmology July 24, 2024 17 / 27



Conclusions

The geometrical trinity of gravity could imply fruitful reformulations
of the numerical relativity formalism [Guzman, Jaarma, work in
progress.]

f(Q) gravity is a popular modified gravity model, with
cosmological equations prone to sudden singularities (even before
the ghosts!) [Guzman, Järv, Pati, 2406.11621].

Therefore, new methods for finding novel background
cosmologies are interesting and under investigation.[Guzman,
Siimon, work in progress.]
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Suur tänan! Muito obrigada!

Thank you!

mjguzman(at)ut.ee
cosmologa.xyz
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Appendix

Extra slides
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Numerical relativity: learning by examples

Numerical implementation of a self-gravitating scalar field

Tµν = ϕ,µϕ,ν −
1

2
gµν [ϕ

,αϕ,α + 2V (ϕ)] (22)

in spherical symmetry:

ds2 = −α2(t, r)dt2 + a2(t, r)dr2 + r2dΩ2 (23)

with equations of motion

Gµν = κTµν , □ϕ(t, r)− ϕ(t, r) = 0. (24)

The setup will be κ = 8πG therefore c = 1, V (ϕ) = m2ϕ2/2, m
mass of a spinless boson (scalar field).
In order to eliminate constants from eom it was used the scaled
variables ϕ→

√
κϕ, r → mr and t→ mt.

F.S.Guzmán (2006), Introduction to numerical relativity through examples
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3+1 splitted eom

A convenient choice of first order variables is ψ = ∂rϕ and π = a∂tϕ/α.
Using those, Einstein’s equations become

∂ra

a
=

1− a2

2r
+
r

4

[
ψ2 + π2 + a2ϕ2

]
, (25)

∂rα

α
=
∂ra

a
+
a2 − 1

r
− 1

2
ra2ϕ2, (26)

∂ta =
1

2
rαϕπ, (27)

and the Klein-Gordon equations are

∂tϕ =
α

a
π, (28)

∂tπ =
1

r2
∂r

(
r2αψ

a

)
− aαϕ, (29)

∂tψ = ∂r

(απ
a

)
. (30)

Marı́a José Guzmán M. (University of Tartu) STEGR, numerical relativity and f(Q) cosmology July 24, 2024 22 / 27



Initial conditions and parameters

We provide a Gaussian profile as initial condition for the scalar
field

ψ(0, r) = Ae−r2/σ2
, (31)

which determines the spatial derivative ψ(0, r).
Time symmetry at the initial time implies π = 0.
These initial conditions are used to integrate the Hamiltonian
constraint (t,t) assuming spatial flatness at the origin (a = 1,
∂ra = 0) up to the edge of the radial domain rN ,
there it is assumed Schwarzschild-like spacetime, therefore
α(0, rN ) = 1/a(0, rN ), ∂rα(0, rN ) = 0, and integrate the slicing
condition (r,r) for α inwards. A fourth-order Runge-Kutta integrator
was used.
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Evolution

The initial data obtained previously is evolved in time through the
Klein-Gordon equations.
Boundary conditions are enforced for π and ψ.
The Hamiltonian constraints is solved outwards assuming spatial
flatness at the origin a(r0) = 1.
At the outer boundary the spacetime is again Schwarzschild lile,
therefore α(rN ) = 1/a(rN ) and the slicing condition is integrated
inwards up to the origin.
The new values of α and a are used to calculate new values for
the scalar field variables using Klein-Gordon equations,
then boundary conditions are applied.
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Results

Figure 1: Time evolution of α2 (upper) and a2 (lower) for A = 0.3,
σ = 5.35 (left) and A = 0.4, σ = 0.35 (right).
[full Python simulation and gif creation by M.F. Jaarma, BSc thesis]
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Some attempts

We attempted to find solutions for a connection that does not satisfy
the symmetries of the metric. The set of functions

ξµ = (f1(t), f2(R), f3(θ), f4(ϕ)) (32)

generates the following flat torsionless connection

Γ̃0
00 = γ(t) ≡ f̈1(t)

ḟ1(t)
, Γ̃1

11 = α(R) ≡ f̈2(R)

ḟ2(R)
,

Γ̃2
22 = β(θ) ≡ f̈3(θ)

ḟ3(θ)
, Γ̃3

33 = δ(ϕ) ≡ f̈4(ϕ)

ḟ4(ϕ)
.

(33)

while the remaining components vanish. It has a simple form without
imposing symmetries, but in combination with a diagonal metric gives
inhomogeneous cosmology.

[M.J.Guzman, B. Siimon, work in progress.]
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Another attempt

For nondiagonal metric, we have chosen the McVittie metric (black
hole in an expanding universe) without the black hole

ds2 =
(
1−H(t)2R2

)
dt2 + 2H(t)RdRdt− dR2 −R2dΩ2. (34)

This is in coordinates (t, R, θ, ϕ) that imitate better the static form of
Scharzschild metric, proposed by Kaloper, Kleban and Martin (2010).
One set of equations found with connection set 1

−f − 4fQḢ = 2κ(p+ ρ), 6fQH
2 − fQQ = 2κρ, (35)

does not have the correct GR limit.
[M.J.Guzman, B. Siimon, work in progress.]
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