The self dual action: Ashtekar variables without gauge fixing

J. Fernando Barbero G.

Instituto de Estructura de la Materia, CSIC. EREP 2024, Coimbra, July 24, 2023

With M. Basquens and E. J. S. Villaseñor, PRD, 109 (2024) 064047.

• The self dual action.

• A few words on the **GNH method** for **singular Hamiltonian Systems**.

• Ashtekar formulation without the time gauge.

The self-dual action for Euclidean GR

- Basic fields: $\mathbf{e}^i \in \Omega^1(\mathcal{M})$, $\boldsymbol{\omega}^i \in \Omega^1(\mathcal{M})$, $\boldsymbol{\alpha} \in \Omega^1(\mathcal{M})$; i = 1, 2, 3.
- α and \mathbf{e}^i chosen so that $\alpha \otimes \alpha + \mathbf{e}_i \otimes \mathbf{e}^i$ is a Euclidean metric. As a consequence (α, \mathbf{e}^i) defines a non-degenerate tetrad.
- Covariant exterior differential \mathbf{D} acting on \mathbf{e}_i as

$$\mathbf{D}\mathbf{e}_i := \mathbf{d}\mathbf{e}_i + \varepsilon_{ijk}\boldsymbol{\omega}^j \wedge \mathbf{e}^k \,,$$

Curvature 2-form

$$\mathbf{F}^{i} := \mathbf{d} \boldsymbol{\omega}^{i} + rac{1}{2} arepsilon^{i}_{jk} \boldsymbol{\omega}^{j} \wedge \boldsymbol{\omega}^{k} \,.$$

• The Euclidean self-dual action for General Relativity is

$$\mathcal{S}(\mathbf{e},oldsymbol{\omega},oldsymbol{lpha}) := \int_{\mathcal{M}} \left(rac{1}{2} arepsilon_{ijk} \mathbf{e}^i \wedge \mathbf{e}^j \wedge \mathbf{F}^k - oldsymbol{lpha} \wedge \mathbf{e}_i \wedge \mathbf{F}^i
ight) \, .$$

• $\mathcal{M} = \mathbb{R} \times \Sigma$.

The self-dual action for Euclidean GR

- The first term is the Husain-Kuchař action.
- The indices i, j, k = 1, 2, 3 are "SO(3) indices" because the action is invariant under the infinitesimal gauge transformations $[\Lambda^k \in C^{\infty}(\mathcal{M})]$

$$\begin{split} \delta_1 \boldsymbol{\omega}^i &= \mathbf{D} \mathbf{\Lambda}^i \,, \\ \delta_1 \boldsymbol{\alpha} &= \mathbf{0} \,, \\ \delta_1 \mathbf{e}^i &= \varepsilon^i{}_{jk} \mathbf{e}^j \mathbf{\Lambda}^k \end{split}$$

• The action is also invariant under the transformations $[\mathbf{\Upsilon}^k \in C^\infty(\mathcal{M})]$

$$\begin{split} \delta_2 \boldsymbol{\omega}^i &= 0, \\ \delta_2 \boldsymbol{\alpha} &= \boldsymbol{\Upsilon}_i \mathbf{e}^i, \\ \delta_2 \mathbf{e}^i &= -\boldsymbol{\Upsilon}^i \boldsymbol{\alpha} + \varepsilon^i{}_{jk} \mathbf{e}^j \boldsymbol{\Upsilon}^k, . \end{split}$$

δ₁ and δ₂ are *independent* but do not commute. Some linear combinations of them do commute. Full symmetry: SO(4) = SO(3) ⊗ SO(3).

• The field equations are

$$\begin{split} \mathbf{D}(\boldsymbol{\alpha} \wedge \mathbf{e}_k) + \epsilon_{ijk} \mathbf{e}^i \wedge \mathbf{D} \mathbf{e}^j &= 0 \,, \\ \epsilon_{ijk} \mathbf{e}^j \wedge \mathbf{F}^k + \boldsymbol{\alpha} \wedge \mathbf{F}_i &= 0 \,, \\ \mathbf{e}^i \wedge \mathbf{F}_i &= 0 \,. \end{split}$$

They are equivalent to the Euclidean Einstein equations in vacuum.

- An alternative to Dirac's "algorithm".
- If we are interested only in the dynamics in Hamiltonian form we can look for vector fields on the primary constraint hypersurface where the Hamiltonian is uniquely defined (quantization is a different issue).
- We have to work with the **pull-back** ω of the canonical symplectic form Ω to the primary constraint submanifold. This ω is generically degenerate: the solutions to $\imath_X \omega - d H = 0$ are not unique. Some components of X may be arbitrary (gauge symmetries!).
- The equation $i_X \omega d H = 0$ is **inhomogeneous**, hence, extra conditions may be necessary to guarantee its solvability (secondary constraints).
- **Consistency** of the dynamics is enforced through **tangency conditions**.
- From a practical point of view an advantage of this method is that **we** can avoid using Poisson brackets (boundaries).
- Another beneficial side-effect is that **computations are shorter**.

Hamiltonian description of the self-dual action

- In a "phase space" M spanned by the fields ($e_t, e^i, \omega_t, \omega^i, \alpha_t, \alpha$).
- Vector fields in M have components $\mathbb{Y}_0 = (Y_{e_t}^i, Y_e^i, Y_{\omega_t}^i, Y_{\alpha}^i, Y_{\alpha_t}, Y_{\alpha}).$
- The presymplectic 2-form on M can be written as

$$\omega = \int_{\Sigma} \mathrm{d}\omega^{i} \wedge \mathrm{d}\left(\frac{1}{2}\epsilon_{ijk}e^{j} \wedge e^{k} + e_{i} \wedge \alpha\right) \,,$$

or, acting on vector fields $\mathbb{Y}\,,\mathbb{Z}$ in M

$$\begin{split} \omega(\mathbb{Z}_0, \mathbb{Y}_0) = & \int_{\Sigma} \Big(Y_e^i \wedge (\epsilon_{ijk} e^j \wedge Z_{\omega}^k + \alpha \wedge Z_{\omega i}) \\ & + Y_{\omega}^i \wedge (Z_{\alpha} \wedge e_i - \epsilon_{ijk} Z_e^j \wedge e^k - Z_e^i \wedge \alpha) + Y_{\alpha} \wedge Z_{\omega}^i \wedge e_i \Big) \,. \end{split}$$

7/14

Hamiltonian description of the self-dual action

• Secondary constraints

$$\begin{split} \epsilon_{ijk} e^{j} \wedge F^{k} + \alpha \wedge F_{i} &= 0, \\ D(\frac{1}{2} \epsilon_{ijk} e^{j} \wedge e^{k} + e_{i} \wedge \alpha) &= 0, \\ e_{i} \wedge F^{i} &= 0. \end{split}$$

• Equations for the components of the Hamiltonian vector field \mathbb{Z}_0

$$\begin{aligned} (\epsilon_{ijk}e^{j} + \delta_{ik}\alpha) \wedge (Z_{\omega}^{k} - D\omega_{t}^{k}) &= (\delta_{ik}\alpha_{t} + \epsilon_{ijk}e_{t}^{j})F^{k}, \\ (\epsilon_{ijk}e^{j} - \delta_{ik}\alpha) \wedge (Z_{e}^{k} - De_{t}^{k} - \epsilon^{k}{}_{\ell m}e^{\ell}\omega_{t}^{m}) + e_{i} \wedge (Z_{\alpha} - d\alpha_{t}) \\ &= e_{t}^{i}d\alpha + (\epsilon_{ijk}e_{t}^{j} - \alpha_{t}\delta_{ik})De^{k} \\ e_{i} \wedge (Z_{\omega}^{i} - D\omega_{t}^{i}) &= e_{t}^{i}F_{i}. \end{aligned}$$

• There are **no conditions** on $Z_{e_t}^i$, $Z_{\omega_t}^i$ and Z_{α_t} . They are **arbitrary** and, hence, the dynamics of e_t^i , ω_t^i and α_t is also arbitrary.

Hamiltonian description of the self-dual action

• Tangency conditions

$$\begin{aligned} &(\epsilon_{ijk}Z_e^j + \delta_{ik}Z_\alpha) \wedge F^k + (\epsilon_{ijk}e^j + \delta_{ik}\alpha) \wedge DZ_\omega^k = 0 , \\ &D(\epsilon_{ijk}e^j \wedge Z_e^k - Z_\alpha \wedge e_i - \alpha \wedge Z_{ei}) + Z_\omega^k \wedge (e^i \wedge e_k - \epsilon^i{}_{km}\alpha \wedge e^m) = 0 , \\ &Z_e^i \wedge F_i + e_i \wedge DZ_\omega^i = 0 . \end{aligned}$$

- One has to **solve for the vector field** in the equations written above. It is important to find the simplest way to write down the solutions to these equations in order to check that the solutions **satisfy the tangency conditions**.
- This last step is highly non-trivial, but it is a crucial consistency condition that has been neglected in previous work on this subject).

Ashtekar formulation without gauge fixing

• The form of the pullback of the pre-symplectic form ω suggests to **introduce the object**

$$H_i := \frac{1}{2} \epsilon_{ijk} e^j \wedge e^k + e_i \wedge \alpha \,,$$

which would be **canonically conjugate** to ω_i in the sense that:

$$\omega = \int_{\Sigma} \mathrm{d}\omega^i \wedge \mathrm{d}H_i \,.$$

- The number of independent components in H_i and e_i are the same, hence it makes sense to write e_i in terms of Hⁱ and α to get a cleaner Hamiltonian description of Euclidean gravity.
- By proceeding in this way one arrives at the Ashtekar formulation for Euclidean gravity without having to introduce any gauge fixing. Let us see how.

Ashtekar formulation without gauge fixing 🛛 🔤

 To get usual Ashtekar variables we introduce a fiducial, non-dynamical (i.e. field independent) volume form vol₀ and define the "vector field"

$$\widetilde{H}_i := \left(\frac{\cdot \wedge H_i}{\operatorname{vol}_0}\right)$$

• Now the pre-symplectic form can be written as

$$\omega = \int_{\Sigma} \mathrm{d} \omega^i \wedge \!\!\!\wedge \mathrm{d} H_i = \int_{\Sigma} \big(\mathrm{d} \omega^i \wedge \!\!\!\wedge \mathrm{d} \widetilde{H}_i \big) \mathrm{vol}_0 \, .$$

• In terms of H_i the constraints are equivalent to

$$\begin{split} \operatorname{div}_{0} \widetilde{H}_{i} + \epsilon_{ijk} \imath_{\widetilde{H}^{k}} \omega^{j} &= 0 \\ \imath_{\widetilde{H}_{i}} F^{i} &= 0 , \\ \epsilon^{ijk} \imath_{\widetilde{H}_{i}} \imath_{\widetilde{H}_{j}} F_{k} &= 0 , \end{split}$$

which are the **Gauss law**, the **vector** and the **Hamiltonian constraint**. The Gauss law is, actually, independent of the fiducial vol_0 .

J. FERNANDO BARBERO G. (IEM-CSIC)

Self Dual no gauge

Ashtekar formulation without gauge fixing

• In order to discuss the Hamiltonian vector fields it is useful to introduce a non-degenerate triad h_i naturally associated with \tilde{H}_i [$\alpha =: \alpha_i e^i$].

$$h^{i} := \frac{1}{\sqrt{1+\alpha^{2}}} \left(e^{i} + \alpha^{i} \alpha + \epsilon^{ijk} \alpha_{j} e_{k} \right),$$

• The non-arbitrary components of the Hamiltonian vector fields are

$$\begin{split} Z_{\omega}^{k} &= D\omega_{\mathrm{t}}^{k} - \widehat{\alpha}_{t} \ ^{h}\mathbb{F}^{k}{}_{\ell}e^{\ell} - \epsilon_{\ell m n}\widehat{\mathrm{e}}_{\mathrm{t}}^{m}{}^{h}\mathbb{F}^{nk}h^{\ell} ,\\ Z_{h}^{k} &= D\widehat{\mathrm{e}}_{\mathrm{t}}{}^{k} + \epsilon^{k}{}_{\ell m}h^{\ell}\omega_{\mathrm{t}}^{m} - \frac{1}{2}\widehat{\alpha}_{\mathrm{t}}{}^{h}\mathbb{B}\,h^{k} - \epsilon_{\ell m n}\widehat{\mathrm{e}}_{\mathrm{t}}{}^{m}{}^{h}\mathbb{B}^{nk}h^{\ell} \\ &+ \epsilon^{k}{}_{\ell m}\widehat{X}^{m}h^{\ell} + \widehat{\alpha}_{\mathrm{t}}{}^{h}\mathbb{B}^{k\ell}h_{\ell} , \end{split}$$

with
$$\widehat{\alpha}_{\mathrm{t}} := \frac{\alpha_{\mathrm{t}} - (e_{\mathrm{t}} \cdot \alpha)}{\sqrt{1 + \alpha^2}}, \widehat{e}_{\mathrm{t}}^{\ i} := \frac{e_{\mathrm{t}}^{i} + \alpha_{\mathrm{t}} \alpha^{i} - \epsilon^{ijk} e_{\mathrm{t}j} \alpha_{k}}{\sqrt{1 + \alpha^2}},$$

$${}^{h}\mathbb{F}_{ij} := \left(\frac{F_{i} \wedge h_{j}}{\mathsf{vol}_{h}}\right), {}^{h}\mathbb{B}_{ij} := \left(\frac{Dh_{i} \wedge h_{j}}{\mathsf{vol}_{h}}\right), \widehat{X}_{i} := -\frac{1}{2}\epsilon_{ijk}\left(\frac{\mathrm{d}\widehat{\alpha}_{\mathrm{t}} \wedge h^{j} \wedge h^{k}}{\mathsf{vol}_{h}}\right)$$

12/14

The time gauge

- It is very interesting to compare the formulation that we have obtained in terms of the h_i with the original one in the **time gauge** $\alpha = 0$. This can be immediately obtained by substituting $\alpha = 0$ in the pre-symplectic form ω , the constraints and the Hamiltonian vector fields Z_{ω}^k , Z_e^k .
- By doing this one immediately gets the standard Ashtekar formulation in terms of ω_i and *Ẽ_i* defined in the obvious way from the triads e_i.
- The non-arbitrary components of the Hamiltonian vector fields are now

$$\begin{split} Z_{\omega}^{k} &= D\omega_{t}^{k} - \alpha_{t} \, \mathbb{F}^{k}{}_{\ell} e^{\ell} - \epsilon_{\ell m n} e_{t}^{\ m} \, \mathbb{F}^{nk} e^{\ell} \,, \\ Z_{e}^{k} &= De_{t}^{\ k} + \epsilon^{k}{}_{\ell m} e^{\ell} \omega_{t}^{m} - \frac{1}{2} \alpha_{t} \, \mathbb{B} \, e^{k} - \epsilon_{\ell m n} e_{t}^{\ m} \, \mathbb{B}^{nk} e^{\ell} \\ &+ \epsilon^{k}{}_{\ell m} X^{m} e^{\ell} + \alpha_{t} \, \mathbb{B}^{k\ell} e_{\ell} \,, \end{split}$$

with

$$\mathbb{F}_{ij} := \left(\frac{F_i \wedge e_j}{\mathsf{vol}_e}\right) , \mathbb{B}_{ij} := \left(\frac{De_i \wedge e_j}{\mathsf{vol}_e}\right) , X_i := -\frac{1}{2}\epsilon_{ijk} \left(\frac{\mathrm{d}\alpha_t \wedge e^j \wedge e^k}{\mathsf{vol}_e}\right)$$

Comments

- A remarkable thing happens: the form of the presymplectic form, the constraints and the Hamiltonian vector fields obtained either by working with the h_i variables or going to the time gauge in the original formulation is exactly the same once we replace the arbitrary objects α_t and eⁱ_t by the, also arbitrary, â_t and êⁱ_t.
- An interesting observation regarding this replacement of parameters is the fact that this comes from one of the SO(3) factors of the SO(4) symmetry of the action.

Comments

- A remarkable thing happens: the form of the presymplectic form, the constraints and the Hamiltonian vector fields obtained either by working with the h_i variables or going to the time gauge in the original formulation is exactly the same once we replace the arbitrary objects α_t and eⁱ_t by the, also arbitrary, â_t and êⁱ_t.
- An interesting observation regarding this replacement of parameters is the fact that this comes from one of the SO(3) factors of the SO(4) symmetry of the action.

