Francisco Fernández-Álvarez

University of the Basque Country (UPV/EHU)

arXiv:2407.14909 [gr-qc]

 \odot

EREP2024 Coimbra, July 23, 2024

- 1. [Motivation](#page-2-0)
- 2. [Foliated null hypersurface](#page-7-0)
- 3. [Conformal space-time](#page-25-0)
- 4. [Conclusions](#page-41-0)

Francisco Fernández-Álvarez **News tensor on null hypersurfaces** 2/19

 \triangleright Gravitational radiation in full GR is well understood at infinity \mathscr{J} for $\Lambda = 0$. A a lot of achievements in the last 6 decades.

- \triangleright Gravitational radiation in full GR is well understood at infinity \mathscr{J} for $\Lambda = 0$. A a lot of achievements in the last 6 decades.
- \triangleright One fundamental piece is the *news tensor*. It determines the presence of gravitational radiation at \mathscr{J} .

- \triangleright Gravitational radiation in full GR is well understood at infinity \mathscr{J} for $\Lambda = 0$. A a lot of achievements in the last 6 decades.
- \triangleright One fundamental piece is the *news tensor*. It determines the presence of gravitational radiation at \mathscr{J} .
- \blacktriangleright There is recent interest in understanding bulk null hypersurfaces in analogy to \mathcal{J} : BMS symmetries, WIH structure, Carrollian approaches...

- \triangleright Gravitational radiation in full GR is well understood at infinity \mathscr{J} for $\Lambda = 0$. A a lot of achievements in the last 6 decades.
- \triangleright One fundamental piece is the *news tensor*. It determines the presence of gravitational radiation at \mathscr{J} .
- \blacktriangleright There is recent interest in understanding bulk null hypersurfaces in analogy to \mathscr{J} : BMS symmetries, WIH structure, Carrollian approaches...

Can one define a **news tensor** on null hypersurfaces in the **bulk**?

2. [Foliated null hypersurface](#page-7-0)

 $\blacktriangleright \;\Big(M, g_{\alpha \beta} \Big)$ 4-dimensional space-time.

Francisco Fernández-Álvarez News tensor on null hypersurfaces 4/19

- $\blacktriangleright \;\Big(M, g_{\alpha \beta} \Big)$ 4-dimensional space-time.
- \blacktriangleright $(\mathcal{N}, \overline{g}_{ab})$ null hypersurface.

- $\blacktriangleright \;\Big(M, g_{\alpha \beta} \Big)$ 4-dimensional space-time.
- \blacktriangleright $(\mathcal{N}, \overline{g}_{ab})$ null hypersurface.
- \blacktriangleright *k*^{*a*} degeneration vector $k^b \overline{g}_{ab} = 0$.

- $\blacktriangleright \;\Big(M, g_{\alpha \beta} \Big)$ 4-dimensional space-time.
- \blacktriangleright $(\mathcal{N}, \overline{q}_{ab})$ null hypersurface.
- \blacktriangleright *k*^{*a*} degeneration vector $k^b \overline{g}_{ab} = 0$.
- \blacktriangleright Foliation of N by 2-dimensional leaves S_C . *C* constant values of a function *F*

- $\blacktriangleright \;\Big(M, g_{\alpha \beta} \Big)$ 4-dimensional space-time.
- \blacktriangleright $(\mathcal{N}, \overline{q}_{ab})$ null hypersurface.
- \blacktriangleright *k*^{*a*} degeneration vector $k^b \overline{g}_{ab} = 0$.
- \blacktriangleright Foliation of N by 2-dimensional leaves S_C . *C* constant values of a function *F*

$$
\dot{F} := k^a \partial_a F \neq 0 \tag{2.1}
$$

$$
\ell_b := -\frac{1}{F} \partial_b F \ , \quad k^p \ell_p = -1 \ . \tag{2.2}
$$

Set-up. Kinematic quantities For k^{α} ,

$$
\underline{\kappa}_{AB} := \underline{E}^{\alpha}{}_{A} \underline{E}^{\beta}{}_{B} \nabla_{\alpha} k_{\beta} , \qquad (2.3)
$$

$$
\underline{\kappa} := \underline{q}^{AB} \underline{\kappa}_{AB} \,, \tag{2.4}
$$

$$
\underline{\nu}_{AB} := \underline{\kappa}_{AB} - \frac{1}{2} \underline{q}_{AB} \kappa \t{,} \t(2.5)
$$

$$
k^{\mu}\nabla_{\mu}k^{\alpha} := \nu k^{\alpha} \tag{2.6}
$$

For ℓ^{α} ,

$$
\underline{\theta}_{AB} := \underline{E}^{\alpha}{}_{A} \underline{E}^{\beta}{}_{B} \nabla_{\alpha} \ell_{\beta} , \qquad (2.7)
$$

$$
\underline{\theta} := \underline{q}^{AB} \underline{\theta}_{AB} , \qquad (2.8)
$$

$$
\sigma_{AB} := \underline{\theta}_{AB} - \frac{1}{2} \underline{q}_{AB} \underline{\theta} \tag{2.9}
$$

Francisco Fernández-Álvarez **News tensor on null hypersurfaces** 5/19

$$
v^a\overline{\nabla}_a w^b:=\omega_\beta{}^bv^\alpha\nabla_\alpha w^\beta\ ,\quad \forall\quad v^\alpha=e^\alpha{}_av^a\ ,\quad w^\alpha=e^\alpha{}_aw^a\ .
$$

Francisco Fernández-Álvarez News tensor on null hypersurfaces 6/19

$$
v^a\overline{\nabla}_aw^b:=\omega_\beta{}^bv^\alpha\nabla_\alpha w^\beta\ ,\quad \forall\quad v^\alpha=e^\alpha{}_av^a\ ,\quad w^\alpha=e^\alpha{}_aw^a\ .
$$

$$
v^A \mathcal{D}_A w^B := W_b{}^B v^a \nabla_a w^b , \quad \forall \quad v^a = E^a{}_A v^A , \quad w^a = E^a{}_A w^A ,
$$

Francisco Fernández-Álvarez News tensor on null hypersurfaces 6/19

$$
v^a\overline{\nabla}_aw^b:=\omega_\beta{}^bv^\alpha\nabla_\alpha w^\beta\ ,\quad \forall\quad v^\alpha=e^\alpha{}_av^a\ ,\quad w^\alpha=e^\alpha{}_aw^a\ .
$$

$$
v^A \mathcal{D}_A w^B := W_b{}^B v^a \nabla_a w^b , \quad \forall \quad v^a = E^a{}_A v^A , \quad w^a = E^a{}_A w^A ,
$$

 \blacktriangleright Notation: curvature tensors \overline{R}_{abc}^{d}, <u>A</u> R_{ABC}^D .

Francisco Fernández-Álvarez News tensor on null hypersurfaces 6/19

$$
v^a\overline{\nabla}_a w^b:=\omega_\beta{}^bv^\alpha\nabla_\alpha w^\beta\ ,\quad \forall\quad v^\alpha=e^\alpha{}_av^a\ ,\quad w^\alpha=e^\alpha{}_aw^a\ .
$$

$$
v^A \mathcal{D}_A w^B := W_b{}^B v^a \nabla_a w^b , \quad \forall \quad v^a = E^a{}_A v^A , \quad w^a = E^a{}_A w^A ,
$$

- \blacktriangleright Notation: curvature tensors \overline{R}_{abc}^{d}, \underline{R}_{ABC}^{D}.
- \blacktriangleright Schouten tensor: $S_{\alpha\beta} := R_{\alpha\beta} \frac{1}{6}g_{\alpha\beta}$ $\frac{1}{6}g_{\alpha\beta}R$.

$$
v^a\overline{\nabla}_a w^b:=\omega_\beta{}^bv^\alpha\nabla_\alpha w^\beta\ ,\quad \forall\quad v^\alpha=e^\alpha{}_av^a\ ,\quad w^\alpha=e^\alpha{}_aw^a\ .
$$

$$
v^A \mathcal{D}_A w^B := W_b{}^B v^a \nabla_a w^b , \quad \forall \quad v^a = E^a{}_A v^A , \quad w^a = E^a{}_A w^A ,
$$

- \blacktriangleright Notation: curvature tensors \overline{R}_{abc}^{d}, \underline{R}_{ABC}^{D}.
- \blacktriangleright Schouten tensor: $S_{\alpha\beta} := R_{\alpha\beta} \frac{1}{6}g_{\alpha\beta}$ $\frac{1}{6}g_{\alpha\beta}R$.
- **Projections:**

$$
\overline{S}_{ab} := \frac{1}{2} e^{\alpha}{}_{a} e^{\beta}{}_{b} S_{\alpha\beta} ,
$$

$$
S_{AB} := E^a{}_A E^b{}_B \overline{S}_{ab} .
$$

Consider conformal rescalings

$$
(k'^a, \overline{g}'_{ab}) = \left(\lambda^{-1}k^a, \lambda^2 \overline{g}_{ab}\right) , \qquad (2.10)
$$

Consider conformal rescalings

$$
(k'^a, \overline{g}'_{ab}) = \left(\lambda^{-1}k^a, \lambda^2 \overline{g}_{ab}\right) , \qquad (2.10)
$$

$$
S'_{AB} = S_{AB} - \lambda^{-1} \mathcal{D}_A \lambda_B + 2\lambda^{-2} \lambda_A \lambda_B - \frac{1}{2} \lambda^{-2} \underline{q}_{AB} \lambda_M \lambda^M
$$

$$
+ \lambda^{-1} \left(\underline{\theta}_{AB} k^\mu \lambda_\mu + \underline{\kappa}_{AB} \ell^\mu \lambda_\mu \right) + \lambda^{-2} \underline{q}_{AB} k^\mu \lambda_\mu \ell^\nu \lambda_\nu
$$
(2.11)

The news tensor is going to be extracted from the **traceless** and **conformal-invariant** part of

$$
U_{AB} := S_{AB} + \frac{1}{2}q_{AB} \left(\nu_{MC} \sigma^{MC} - \frac{1}{2} \kappa \theta + \frac{1}{2} C_{MD}{}^{MD} \right) - \frac{1}{2} \left(\theta \nu_{AB} + \kappa \sigma_{AB} \right) . \tag{2.12}
$$

The news tensor is going to be extracted from the **traceless** and **conformal-invariant** part of

$$
U_{AB} := S_{AB} + \frac{1}{2} q_{AB} \left(\nu_{MC} \sigma^{MC} - \frac{1}{2} \kappa \theta + \frac{1}{2} C_{MD}{}^{MD} \right) - \frac{1}{2} \left(\theta \nu_{AB} + \kappa \sigma_{AB} \right) . \tag{2.12}
$$

This has the following properties

$$
U_M{}^M = K \t\t(2.13)
$$
\n
$$
U'_{AB} = U_{AB} - \lambda^{-1} \mathcal{D}_A \lambda_B + 2\lambda^{-2} \lambda_A \lambda_B - \frac{1}{2} \lambda^{-2} q_{AB} \lambda_M \lambda^M \t\t(2.14)
$$

A sketched version of a result from FFÁ-Senovilla (Geroch tensor)...

Theorem 1 (The tensor *ρ*)

If \mathcal{S}_C has \mathbb{S}^2 -topology, there is a unique symmetric tensor field ρ_{AB} whose behaviour under conformal rescalings [\(2.10\)](#page-19-0) is as in [\(2.14\)](#page-21-0) and satisfies the equation

$$
\mathcal{D}_{[C}\rho_{A]B} = 0\tag{2.15}
$$

in any conformal frame. (...) Furthermore, it is given for round spheres by $\rho_{AB} = q_{AB} a K/2$.

This is then generalised for the foliation as ϱ_{AB} on $\mathcal{N}.$ ¯

Theorem 2 (News tensor for a foliated null hypersurface)

Let N be a null hypersurface foliated by leaves with \mathbb{S}^2 -topology and with *F* the defining function [\(2.1\)](#page-8-0). Then, there is a one-parameter family (depending on *F*) of symmetric, traceless, conformal-invariant tensor fields

$$
N_{AB} := U_{AB} - \rho_{AB} \tag{2.16}
$$

that satisfies the conformal-invariant equation

$$
\mathcal{D}_{[A}U_{B]C} = \mathcal{D}_{[A}N_{B]C} , \qquad (2.17)
$$

Besides, N_{AB} is unique with these properties.

UPV EHL

3. [Conformal space-time](#page-25-0)

Francisco Fernández-Álvarez News tensor on null hypersurfaces 10/19

Conformal completion

Now let $\left(M, g_{\alpha \beta} \right)$ be the conformal completion à la Penrose of a physical space-time

$$
g_{\alpha\beta} = \Omega^2 \hat{g}_{\alpha\beta}
$$

Francisco Fernández-Álvarez **News tensor on null hypersurfaces** 11/19

Conformal completion

Now let $\left(M, g_{\alpha \beta} \right)$ be the conformal completion à la Penrose of a physical space-time

$$
g_{\alpha\beta} = \Omega^2 \hat{g}_{\alpha\beta}
$$

up to conformal gauge freedom Ω → *ω*Ω.

Francisco Fernández-Álvarez News tensor on null hypersurfaces 11/19

Conformal completion

Francisco Fernández-Álvarez **News tensor on null hypersurfaces** 12/19

rescaled Weyl tensor

$$
\Omega d_{\alpha\beta\gamma}{}^\delta:=C_{\alpha\beta\gamma}{}^\delta
$$

Francisco Fernández-Álvarez News tensor on null hypersurfaces 13/19

rescaled Weyl tensor

$$
\Omega d_{\alpha\beta\gamma}{}^\delta:=C_{\alpha\beta\gamma}{}^\delta
$$

The radiative parts (ϕ_3 and ϕ_4) are encoded in

$$
{}^{N}D^{ab} := \omega_{\alpha}{}^{a} \omega_{\beta}{}^{b} N^{\mu} N^{\nu} d^{\alpha}{}_{\mu}{}^{\beta}{}_{\nu},\tag{3.1}
$$

$$
{}^{N}C^{ab} := \omega_{\alpha}{}^{a} \omega_{\beta}{}^{b} N^{\mu} N^{\nu} {}^{*}d^{\alpha}{}_{\mu}{}^{\beta} \tag{3.2}
$$

Francisco Fernández-Álvarez News tensor on null hypersurfaces 13/19

rescaled Weyl tensor

$$
\Omega d_{\alpha\beta\gamma}{}^\delta:=C_{\alpha\beta\gamma}{}^\delta
$$

The radiative parts (ϕ_3 and ϕ_4) are encoded in

$$
{}^{N}D^{ab} := \omega_{\alpha}{}^{a} \omega_{\beta}{}^{b} N^{\mu} N^{\nu} d^{\alpha}{}_{\mu}{}^{\beta}{}_{\nu},\tag{3.1}
$$

$$
{}^{N}C^{ab} := \omega_{\alpha}{}^{a} \omega_{\beta}{}^{b} N^{\mu} N^{\nu} {}^{*}d^{\alpha}{}_{\mu}{}^{\beta} \tag{3.2}
$$

or, for convenience, in

$$
{}^{N}C^{A} := \ell_b \underline{W}_a {}^{A} {}^{N}C^{ab} , \qquad (3.3)
$$

$$
{}^{N}D_{AB} := W_a {}^{A}W_b {}^{B} {}^{N}D^{ab} . \qquad (3.4)
$$

adapted ${\cal N}$

$$
{}^{N}\!C_{A} = \underline{\epsilon}^{SR} \Big[\mathcal{D}_{R} \underline{N}_{SA} - \mathcal{D}_{R} \underline{L}_{SA} - \underline{\kappa}_{AR} (\mathcal{D}_{M} \underline{\sigma}_{S}{}^{M} - \frac{1}{2} \mathcal{D}_{S} \underline{\theta} - \frac{1}{4} \underline{\theta} \varphi_{S} + \frac{1}{2} \underline{\varphi}{}^{M} \underline{\sigma}_{SM} + \underline{\ell}_{S}) - \underline{\theta}_{AR} \Big(\mathcal{D}_{M} \underline{\nu}_{S}{}^{M} - \frac{1}{2} \mathcal{D}_{S} \underline{\kappa} + {}^{N}\! \underline{\ell}_{S} \Big) \Big] + \Omega^{*} \underline{\nu}_{A} ,
$$

$$
{}^{N}\!D_{AB} = \pounds_{\vec{N}} \underline{N}_{AB} + \pounds_{\vec{N}} \underline{\rho}_{AB} - \pounds_{\vec{N}} \underline{\mu}_{AB} - \underline{\kappa}^{E} {}_{A} \Big[- \frac{1}{2} \underline{S}_{\mu\nu} N^{\mu} \underline{\ell}{}^{\nu} \underline{\varphi}_{EB} + \pounds_{\vec{N}} \underline{\sigma}_{EB} + \frac{1}{2} \underline{\nu}_{EB} \underline{\theta} - \frac{1}{2} \underline{\sigma}_{EB} \underline{\kappa} - 2 \underline{\nu}_{C(E} \underline{\sigma}_{B)}{}^{C} - \frac{1}{2} \underline{L}{}^{M} {}_{M} \underline{\varphi}_{EB} + k^{d} \varphi_{d} \underline{\sigma}_{EB} - \underline{\varphi}_{E} \underline{\varphi}_{B} - \mathcal{D}_{(B} \underline{\varphi}_{E)} + 2 \underline{\varphi}_{(E} \underline{\mathcal{D}}_{B}) \ln \dot{F} - \frac{1}{2} \underline{\varphi}_{EB} \Big(2 \underline{\varphi}{}^{M} \underline{\mathcal{D}}_{M} \ln \dot{F} - \underline{\varphi}_{C} \underline{\varphi}^{C} \Big) - \mathcal{D}_{C} \underline{\varphi}^{C} \Big) + F_{EB} + \frac{1}{2} \underline{\varphi}_{EB} \underline{K} \Big] - 2 \frac{{}^{N}\!S}_{B} \underline{\varphi}_{(E} \Big(\underline{E}^{m} {}_{A}) N^{p} H_{pm} - \underline{\varphi}_{A}) \Big) + \frac{{}^{N}\!S}_{B
$$

$$
14/19
$$

Infinity $\mathscr J$ with $\Lambda = 0$

Several simplifications take place:

 $1.$ The Weyl tensor $C_{\alpha\beta\gamma}^{\phantom\beta\delta}$ vanishes but $d_{\alpha\beta\gamma}^{\phantom\delta\delta}$ $\stackrel{\mathscr{J}}{\neq} 0.$

Infinity $\mathscr J$ with $\Lambda = 0$

Several simplifications take place:

- $1.$ The Weyl tensor $C_{\alpha\beta\gamma}^{\phantom\beta\delta}$ vanishes but $d_{\alpha\beta\gamma}^{\phantom\delta\delta}$ $\stackrel{\mathscr{J}}{\neq} 0.$
- 2. $(\mathscr{J}, \overline{g}_{ab})$ is umbilical $(\underline{\nu}_{AB} = 0)$ but, in general, it is \exp expanding $\kappa \neq 0$ and th ¯ $\underline{\kappa} \neq 0$ and the leaves are not isometric.

Infinity $\mathscr J$ with $\Lambda = 0$

Several simplifications take place:

- $1.$ The Weyl tensor $C_{\alpha\beta\gamma}^{\phantom\beta\delta}$ vanishes but $d_{\alpha\beta\gamma}^{\phantom\delta\delta}$ $\stackrel{\mathscr{J}}{\neq} 0.$
- 2. $(\mathscr{J}, \overline{g}_{ab})$ is umbilical $(\underline{\nu}_{AB} = 0)$ but, in general, it is expanding $k \neq 0$ and the leaves are not isometric. ¯
- 3. The expansion *κ*, Friedrich scalar *f* and the acceleration scalar *ν* coincide $2\nu = 2f =$ ¯ *κ* .
Infinity $\mathscr J$ with $\Lambda = 0$

Several simplifications take place:

- $1.$ The Weyl tensor $C_{\alpha\beta\gamma}^{\phantom\beta\delta}$ vanishes but $d_{\alpha\beta\gamma}^{\phantom\delta\delta}$ $\stackrel{\mathscr{J}}{\neq} 0.$
- 2. $(\mathscr{J}, \overline{g}_{ab})$ is umbilical $(\underline{\nu}_{AB} = 0)$ but, in general, it is expanding $k \neq 0$ and the leaves are not isometric. ¯
- 3. The expansion *κ*, Friedrich scalar *f* and the acceleration scalar *ν* coincide $2v = 2f = \kappa$.
- ¯ 4. The projection φ_A of φ_a to the leaves vanishes. ¯

Infinity $\mathscr J$ with $\Lambda=0$

$$
{}^{N}D_{AB} \stackrel{\mathscr{J}}{=} \mathcal{L}_{\vec{N}} N_{AB} , \qquad (3.5)
$$

$$
{}^{N}C_{A} \stackrel{\mathscr{J}}{=} -\epsilon^{RS} \mathcal{D}_{R} N_{SA} . \qquad (3.6)
$$

Infinity $\mathscr J$ with $\Lambda=0$

$$
{}^{N}D_{AB} \stackrel{\mathscr{J}}{=} \mathcal{L}_{\vec{N}} N_{AB} , \qquad (3.5)
$$

$$
{}^{N}C_{A} \stackrel{\mathscr{J}}{=} -\epsilon^{RS} \mathcal{D}_{R} N_{SA} . \qquad (3.6)
$$

$$
N_{AB} \stackrel{\mathscr{J}}{=} 0 \Longleftrightarrow C_A \stackrel{\mathscr{J}}{=} 0 \stackrel{\mathscr{J}}{=} D_{AB} \Longleftrightarrow \phi_3 \stackrel{\mathscr{J}}{=} 0 \stackrel{\mathscr{J}}{=} \phi_4
$$

Infinity $\mathscr J$ with $\Lambda=0$ $N_{AB}\neq 0$ $N_{AB}=0$

$$
\text{Infinity} \mathscr{J} \text{ with } \Lambda = 0
$$

General expression in terms of the time derivative of the shear

$$
N_{AB} \stackrel{\mathscr{J}}{=} \mathcal{L}_{\vec{N}} \sigma_{AB} - \frac{1}{2} \sigma_{AB} \kappa - \rho_{AB} + \frac{1}{2} \sigma_{AB} K + F_{AB}
$$

1. A conformal-invariant news tensor on null hypersurfaces has been geometrically defined.

- 1. A conformal-invariant news tensor on null hypersurfaces has been geometrically defined.
- 2. Assuming the CEFE, this tensor gives the right answer in arbitrary conformal gauge at infinity $\mathscr J$ when $\Lambda = 0$.

- 1. A conformal-invariant news tensor on null hypersurfaces has been geometrically defined.
- 2. Assuming the CEFE, this tensor gives the right answer in arbitrary conformal gauge at infinity $\mathscr J$ when $\Lambda = 0$.
- 3. For null hypersurfaces in the bulk, the analysis is much more complicated.

- 1. A conformal-invariant news tensor on null hypersurfaces has been geometrically defined.
- 2. Assuming the CEFE, this tensor gives the right answer in arbitrary conformal gauge at infinity $\mathscr J$ when $\Lambda = 0$.
- 3. For null hypersurfaces in the bulk, the analysis is much more complicated.
- 4. Recall that the radiative structure of $\mathscr J$ is very special, without any gauge fixing ($\mathcal I$ can expand).

- 1. A conformal-invariant news tensor on null hypersurfaces has been geometrically defined.
- 2. Assuming the CEFE, this tensor gives the right answer in arbitrary conformal gauge at infinity $\mathscr J$ when $\Lambda = 0$.
- 3. For null hypersurfaces in the bulk, the analysis is much more complicated.
- 4. Recall that the radiative structure of $\mathscr J$ is very special, without any gauge fixing ($\mathscr J$ can expand).

Future work:

Use this news tensor on null hypersurfaces that 'touch' $\mathcal J$ and analyse its asymptotic behaviour for any Λ . Also, take the limit on horizons that 'almost touch' \mathscr{J} .

LIPV FHL

Bulk $\mathcal N$

Vacuum will be assumed on N , $T_{\alpha\beta} \stackrel{\mathcal{N}}{=} 0.$

Bulk $\mathcal N$

Vacuum will be assumed on N , $T_{\alpha\beta} \stackrel{\mathcal{N}}{=} 0.$ Then,

$$
\overline{\nabla}_a f \stackrel{\mathcal{N}}{=} 0 , \qquad (5.1)
$$

Bulk $\mathcal N$

Vacuum will be assumed on N , $T_{\alpha\beta} \stackrel{\mathcal{N}}{=} 0.$ Then,

$$
\overline{\nabla}_a f \stackrel{\mathcal{N}}{=} 0 , \qquad (5.1)
$$

No more simplifications occur, in general.

Bulk N : non-expanding horizon (NEH)

One imposes ¯ $\underline{k}=0$ (non-expanding condition).

Bulk \mathcal{N} : non-expanding horizon (NEH)

One imposes $\underline{k}=0$ (non-expanding condition). ¯ Raychaudhuri equation implies $\nu_{AB} = 0.$

Bulk N : non-expanding horizon (NEH)

One imposes $\underline{k}=0$ (non-expanding condition). ¯ Raychaudhuri equation implies $\nu_{AB} = 0$. Then

$$
{}^{N}C_{A} = 0 = {}^{N}D_{AB} , \quad \phi_3 = 0 = \phi_4
$$

Therefore, there is no radiation, but...

Bulk N : non-expanding horizon (NEH)

One imposes $\underline{k}=0$ (non-expanding condition). ¯ Raychaudhuri equation implies $\nu_{AB} = 0$. Then

$$
{}^{N}C_{A} = 0 = {}^{N}D_{AB} , \quad \phi_3 = 0 = \phi_4
$$

Therefore, there is no radiation, but...

$$
N_{AB} = \frac{1}{2} q_{AB} K - \rho_{AB} . \tag{5.2}
$$

Only vanishes if the leaves are round!

For this one has to require ¯ $\theta = 0.$

For this one has to require $\underline{\theta}=0.$ However, equations are still very involved. Put further conditions:

For this one has to require $\underline{\theta}=0.$ However, equations are still very involved. Put further conditions:round leaves and $\sigma_{AB}=0.$

For this one has to require $\underline{\theta}=0.$ However, equations are still very involved. Put further conditions:round leaves and $\sigma_{AB}=0.$

$$
N_{AB} = -\frac{1}{\Omega} \nu_{AB} .
$$

For this one has to require $\underline{\theta}=0.$ However, equations are still very involved. Put further conditions:round leaves and $\sigma_{AB}=0.$

$$
N_{AB} = -\frac{1}{\Omega} \nu_{AB} .
$$

$$
{}^{N}\!D_{AC} = E^{a}{}_{A} E^{c}{}_{C} k^{b} \overline{\nabla}_{b} (\underline{N}_{ac}) - \underline{N}_{AC} (\nu - \underline{\kappa}) ,
$$

$$
{}^{N}\!C_{A} = \underline{\epsilon}^{SR} \left[\underline{\mathcal{D}}_{R} \underline{N}_{SA} + \Omega \underline{N}_{AR} \underline{d}_{S} - \frac{1}{2} \underline{q}_{AR} \underline{\kappa} \underline{d}_{S} - \frac{1}{4} \underline{q}_{AS} \underline{\mathcal{D}}_{R} C_{PQ}{}^{PQ} \right]
$$

.

For this one has to require $\underline{\theta}=0.$ However, equations are still very involved. Put further conditions:round leaves and $\sigma_{AB}=0.$

$$
N_{AB} = -\frac{1}{\Omega} \nu_{AB} .
$$

$$
{}^{N}\!D_{AC} = E^{a}{}_{A} E^{c}{}_{C} k^{b} \overline{\nabla}_{b} (\underline{N}_{ac}) - \underline{N}_{AC} (\nu - \underline{\kappa}) ,
$$

$$
{}^{N}\!C_{A} = \underline{\epsilon}^{SR} \left[\underline{\mathcal{D}}_{R} \underline{N}_{SA} + \Omega \underline{N}_{AR} \underline{d}_{S} - \frac{1}{2} \underline{q}_{AR} \underline{\kappa} \underline{d}_{S} - \frac{1}{4} \underline{q}_{AS} \underline{\mathcal{D}}_{R} C_{PQ}{}^{PQ} \right]
$$

If $N_{AB}=0$, 'tangential' radiation (ϕ_1,ϕ_0) and Coulomb term (ϕ_2) still source ¯ ${}^N\!C_A!$

.

UPV FHU

Bulk N : non-expanding horizon (NEH)

One imposes ¯ $\underline{k}=0$ (non-expanding condition).

Bulk \mathcal{N} : non-expanding horizon (NEH)

One imposes $\underline{k}=0$ (non-expanding condition). ¯ Raychaudhuri equation implies $\nu_{AB}=0.$

Bulk $\mathcal N$: non-expanding horizon (NEH)

One imposes $\underline{k}=0$ (non-expanding condition). ¯ Raychaudhuri equation implies $\nu_{AB} = 0$. Then

$$
{}^{N}C^{a}{}_{c} \stackrel{\Delta}{=} \frac{1}{\Omega} \bar{\epsilon}^{ars} \left[\overline{\nabla}_{r} K_{sc} + \varphi_{s} K_{rc} \right] = 0 \ . \tag{5.3}
$$

Therefore, there is no radiation, but...

Bulk $\mathcal N$: non-expanding horizon (NEH)

One imposes $\underline{k}=0$ (non-expanding condition). ¯ Raychaudhuri equation implies $\nu_{AB} = 0$. Then

$$
{}^{N}C^{a}{}_{c} \stackrel{\Delta}{=} \frac{1}{\Omega} \bar{\epsilon}^{ars} \left[\overline{\nabla}_{r} K_{sc} + \varphi_{s} K_{rc} \right] = 0 \ . \tag{5.3}
$$

Therefore, there is no radiation, but...

$$
N_{AB} = \frac{1}{2} q_{AB} K - \rho_{AB} . \tag{5.4}
$$

Only vanishes if the leaves are round!

UPV FHU

 \blacktriangleright $\{E^a{}_A\}$ and $\left\{W_a{}^A\right\}$ sets of 2 linearly-independent vector fields $\begin{bmatrix} - & A & A \\ C & & D \end{bmatrix}$ and forms. ¯ $\underline{F}^a{}_A \ell_a = 0, \ \underline{W}$ $W_a{}^A k^a = 0.$

- \blacktriangleright $\{E^a{}_A\}$ and $\left\{W_a{}^A\right\}$ sets of 2 linearly-independent vector fields $\begin{bmatrix} - & A & A \\ C & & D \end{bmatrix}$ and forms. $E^a{}_A \ell_a = 0$, $W_a{}^A k^a = 0$.
- \blacktriangleright Notation: $A_a{}^b = E^b{}_B W_a{}^A A_A{}^B$ ¯ ¯ ¯ ¯

- \blacktriangleright $\{E^a{}_A\}$ and $\left\{W_a{}^A\right\}$ sets of 2 linearly-independent vector fields $\begin{bmatrix} - & A & A \\ C & & D \end{bmatrix}$ and forms. $E^a{}_A \ell_a = 0$, $W_a{}^A k^a = 0$.
- \blacktriangleright Notation: $A_a{}^b = E^b{}_B W_a{}^A A_A{}^B$
- \blacktriangleright Select unique inverse metric as $\overline{g}_{da}\overline{g}^{dc}\overline{g}_{cb} = \overline{g}_{ab}$, $\ell_a\overline{g}^{ab} = 0$.

- \blacktriangleright { ¯ $E^a{}_A$ } and $\left\{\frac{M}{2}\right\}$ $\left\vert \frac{W_{a}}{A}\right\rangle$ sets of 2 linearly-independent vector fields and forms. $E^a{}_A \ell_a = 0$, $W_a{}^A k^a = 0$.
- \blacktriangleright Notation: $A_a{}^b = E^b{}_B W_a{}^A A_A{}^B$
- \blacktriangleright Select unique inverse metric as $\overline{g}_{da}\overline{g}^{dc}\overline{g}_{cb} = \overline{g}_{ab}$, $\ell_a\overline{g}^{ab} = 0$.
- \blacktriangleright Two dimensional metrics: ¯ $q_{AB} \coloneqq E$ $E^a{}_A E$ $E^b{}_B\overline{g}_{ab}$.

- \blacktriangleright { ¯ $E^a{}_A$ } and $\left\{\frac{M}{2}\right\}$ $\left\vert \frac{W_{a}}{A}\right\rangle$ sets of 2 linearly-independent vector fields and forms. $E^a{}_A \ell_a = 0$, $W_a{}^A k^a = 0$.
- \blacktriangleright Notation: $A_a{}^b = E^b{}_B W_a{}^A A_A{}^B$
- \blacktriangleright Select unique inverse metric as $\overline{g}_{da}\overline{g}^{dc}\overline{g}_{cb} = \overline{g}_{ab}$, $\ell_a\overline{g}^{ab} = 0$.
- Two dimensional metrics: $q_{AB} := \underline{B}$ $E^a{}_A E$ $E^b{}_B\overline{g}_{ab}$.
- ► Bases on \mathcal{N} : $\{\omega_{\alpha}^{\ a}\} = \left\{-\ell_{\alpha}, \underline{W}\right\}$ $\left\{W_{\alpha}{}^{A}\right\}$ and $\left\{e^{\alpha}{}_{a}\right\} = \left\{k^{\alpha},E^{\alpha}{}_{a}\right\}$.

 \blacktriangleright $\{E^a{}_A\}$ and $\left\{W_a{}^A\right\}$ sets of 2 linearly-independent vector fields $\begin{bmatrix} - & A & A \\ C & & D \end{bmatrix}$ and forms. \bar{a} $\underline{E}^a{}_A \ell_a = 0, \ \underline{W}$ $W_a{}^A k^a = 0.$

$$
\blacktriangleright \text{ Notation: } \underline{A}_a{}^b = \underline{E}^b{}_B \underline{W}_a{}^A \underline{A}_A{}^B
$$

- \blacktriangleright Select unique inverse metric as $\overline{g}_{da}\overline{g}^{dc}\overline{g}_{cb} = \overline{g}_{ab}$, $\ell_a\overline{g}^{ab} = 0$.
- Two dimensional metrics: $q_{AB} := \underline{B}$ $E^a{}_A E$ $E^b{}_B\overline{g}_{ab}$.
- ► Bases on \mathcal{N} : $\{\omega_{\alpha}^{\ a}\} = \left\{-\ell_{\alpha}, \underline{W}\right\}$ $\left\{W_{\alpha}{}^{A}\right\}$ and $\left\{e^{\alpha}{}_{a}\right\} = \left\{k^{\alpha},E^{\alpha}{}_{a}\right\}$. $e^{\alpha}{}_{a} \ell_{\alpha} = \ell_{a} , \quad \ell_{\alpha} \ell^{\alpha} = 0 , \quad \ell^{\alpha} k_{\alpha} = -1 , \quad \ell_{\alpha} E^{\alpha}{}_{A} = 0 , \quad (5.5)$

$$
W_{\alpha}{}^{A}E^{\alpha}{}_{B} = \delta^{A}_{B} , \quad e^{\alpha}{}_{a}\omega_{\alpha}{}^{b} = \delta^{a}_{b} , \quad k_{\alpha}e^{\alpha}{}_{a} = 0 = \omega_{\alpha}{}^{a}\ell^{\alpha} . \tag{5.6}
$$

Conformal completion

Assume the CEFE hold:

$$
\nabla_{\alpha} N_{\beta} = -\frac{1}{2} \Omega S_{\alpha\beta} + f g_{\alpha\beta} + \frac{1}{2} \Omega^2 \varkappa \hat{T}_{\alpha\beta} , \qquad (5.7)
$$

$$
N_{\mu}N^{\mu} = \frac{\Omega^3}{12}\varkappa T - \frac{\Lambda}{3} + 2\Omega f , \qquad (5.8)
$$

$$
\nabla_{\alpha} f = -\frac{1}{2} S_{\alpha\mu} N^{\mu} + \frac{1}{2} \Omega \varkappa N^{\mu} \dot{T}_{\alpha\mu} - \frac{1}{24} \Omega^{2} \varkappa \nabla_{\alpha} T - \frac{1}{8} \Omega \varkappa N_{\alpha} T , \tag{5.9}
$$

$$
d_{\alpha\beta\gamma}^{\mu}N_{\mu} + \nabla_{[\alpha}\left(S_{\beta]\gamma}\right) - \Omega y_{\alpha\beta\gamma} = 0 , \qquad (5.10)
$$

$$
y_{\alpha\beta\gamma} + \nabla_{\mu} d_{\alpha\beta\gamma}^{\mu} = 0 , \qquad (5.11)
$$

$$
R_{\alpha\beta\gamma\delta} = \Omega d_{\alpha\beta\gamma\delta} + g_{\alpha[\gamma} S_{\delta]\beta} - g_{\beta[\gamma} S_{\delta]\alpha} . \tag{5.12}
$$

Ę3 UPV EHU

Adapted $\mathcal N$

Definition 5.1 (Adapted null hypersurface)

A null hypersurface $(\mathcal{N}, \overline{g}_{ab})$ is said to be adapted in any of the following cases:

- 1. The conformal factor $\Omega = \text{constant} \neq 0$ and $\nabla_{\alpha} \Omega$ does not vanish at points in $M \setminus \mathscr{J}$ belonging to $\mathcal N$,
- 2. The conformal factor $\Omega = 0$ and $\nabla_{\alpha} \Omega$ does not vanish at points in N. That is, $\mathcal{N} \equiv \mathcal{J}$ with $\Lambda = 0$.

There is always a family of conformal gauges in which a bulk $\mathcal N$ is adapted. Infinity with $\Lambda = 0$ is by definition adapted in any gauge.