Parallel session 5 23rd July 2024

New windows onto nHz Gravitational Wave science with astrometry

Giorgio Mentasti

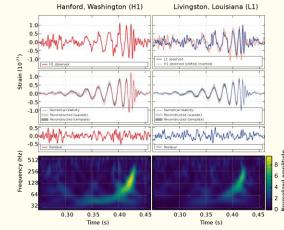
Parallel session 5

23rd July 2024

Outline

- Gravitational waves and detectors
- Stochastic Gravitational Waves Backgrounds (SGWB).
- The low frequency SGWB
 - Pulsar Timing Arrays
 - Astrometry
- Present and future of GW astrometry

Gravitational Wave interferometry

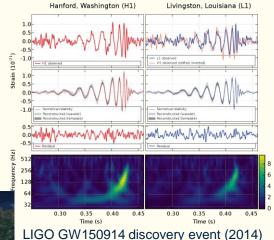

• 2014: First direct detection of a binary BH merger by LIGO-Virgo (m ~ 30 M_{sun} , f ~ 100Hz, d ~ 400 Mpc)

Imperial College

London

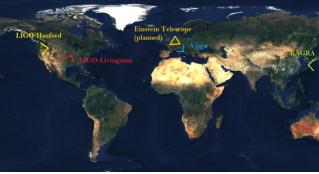
Gravitational Wave interferometry

• 2014: First direct detection of a binary BH merger by LIGO-Virgo (m ~ 30 M_{sun} , f ~ 100Hz, d ~ 400 Mpc)

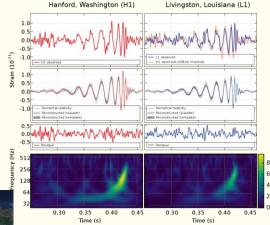

LIGO GW150914 discovery event (2014)

Gravitational Wave interferometry

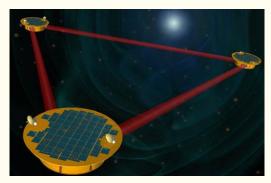
- 2014: First direct detection of a binary BH merger by LIGO-Virgo (m ~ 30 M_{sun} , f ~ 100Hz, d ~ 400 Mpc)
- 2024: A network of terrestrial gravitational wave interferometers



The network of ground based detectors

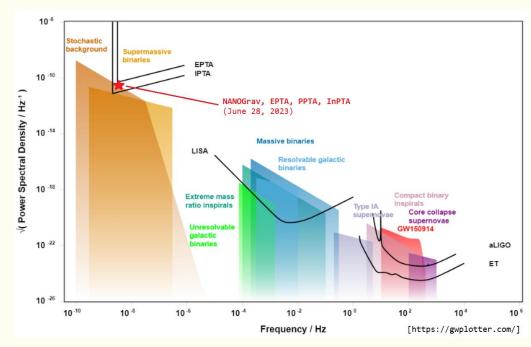


Gravitational Wave interferometry


- 2014: First direct detection of a binary BH merger by LIGO-Virgo (m ~ 30 M_{sun} , f ~ 100Hz, d ~ 400 Mpc)
- 2024: A network of terrestrial gravitational wave interferometers
- ~ 2035: Space based (LISA) and future ground based instruments (ET, CE...)

The network of ground based detectors

LIGO GW150914 discovery event (2014)

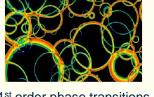


LISA, the planned space-based interferometer

Low frequency gravitational waves

Imperial College London

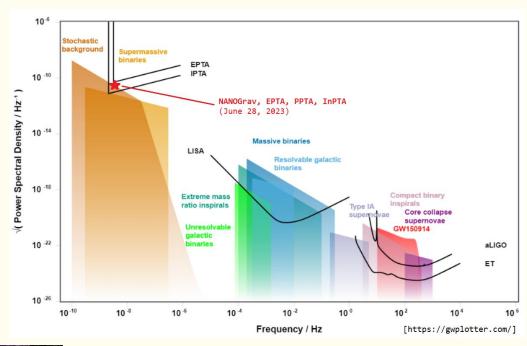
- GW interferometry: $f \ge uHz$
- Pulsar Timing Array and astrometry probe the nHz band

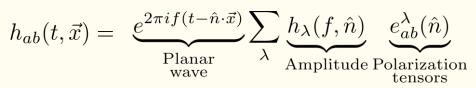

Frequency band of the gravitational wave sources and detectors

Low frequency gravitational waves

Imperial College London

- GW interferometry: $f \ge uHz$
- Pulsar Timing Array and astrometry probe the nHz band
- Many expected sources of nHz gravitational waves (supermassive BHs, phase transitions, ultralight DM...)





Frequency band of the gravitational wave sources and detectors

Ultralight Dark Matter

Imperial College Coherent and stochastic searches London

• **Coherent** search: a deterministic template for the GW signal

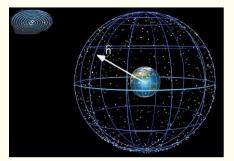
Imperial College Coherent and stochastic searches London

- **Coherent** search: a deterministic template for the GW signal
- Stochastic search: superposition of many weak independent signals $h_{ab}(t, \vec{x}) =$

$$h_{ab}(t, \vec{x}) = \underbrace{e^{2\pi i f(t-\hat{n}\cdot\vec{x})}}_{\text{Wave}} \sum_{\lambda} \underbrace{h_{\lambda}(f, \hat{n})}_{\text{Amplitude Polarization}} \underbrace{e^{\lambda}_{ab}(\hat{n})}_{\text{tensors}}$$

$$\vec{x}) = \int_{-\infty}^{+\infty} df \int d^2 \hat{n} \quad \underbrace{e^{2\pi i f(t-\hat{n}\cdot\vec{x})}}_{\text{Name}} \sum_{\lambda} \underbrace{h_{\lambda}(f,\hat{n})}_{\text{Amplitude Polarization}} \underbrace{e^{\lambda}_{ab}(\hat{n})}_{\text{tensors}}$$

Imperial College Coherent and stochastic searches


- **Coherent** search: a deterministic template for the GW signal
- Stochastic search: superposition of many weak independent signals $h_{ab}(t, \vec{x})$

$$h_{ab}(t,\vec{x}) = \underbrace{e^{2\pi i f(t-\hat{n}\cdot\vec{x})}}_{\text{Planar}} \sum_{\lambda} \underbrace{h_{\lambda}(f,\hat{n})}_{\text{Amplitude Polarization tensors}} \underbrace{e^{\lambda}_{ab}(\hat{n})}_{\text{Hensors}}$$
$$= \underbrace{\int_{-\infty}^{+\infty} df \int d^{2}\hat{n}}_{-\infty} \underbrace{e^{2\pi i f(t-\hat{n}\cdot\vec{x})}}_{\text{Planar}} \sum_{\lambda} \underbrace{h_{\lambda}(f,\hat{n})}_{\text{Amplitude Polarization tensors}} \underbrace{e^{\lambda}_{ab}(\hat{n})}_{\text{Hensors}}$$

Imperial College Coherent and stochastic searches

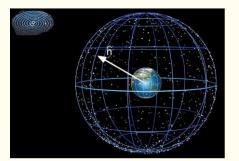
- **Coherent** search: a deterministic template for the GW signal
- Stochastic search: superposition of many weak independent signals $h_{ab}(t, \vec{x})$

$$h_{ab}(t,\vec{x}) = \underbrace{e^{2\pi i f(t-\hat{n}\cdot\vec{x})}}_{\text{Planar}} \sum_{\lambda} \underbrace{h_{\lambda}(f,\hat{n})}_{\text{Amplitude Polarization tensors}} \underbrace{e^{\lambda}_{ab}(\hat{n})}_{\text{tensors}}$$
$$= \underbrace{\int_{-\infty}^{+\infty} df \int d^{2}\hat{n}}_{-\infty} \underbrace{e^{2\pi i f(t-\hat{n}\cdot\vec{x})}}_{\text{Planar}} \sum_{\lambda} \underbrace{h_{\lambda}(f,\hat{n})}_{\text{Amplitude Polarization tensors}} \underbrace{e^{\lambda}_{ab}(\hat{n})}_{\text{tensors}}$$

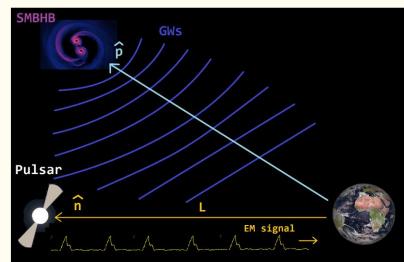
Imperial College Coherent and stochastic searches

- **Coherent** search: a deterministic template for the GW signal
- Stochastic search: superposition of many weak independent signals $h_{ab}(t, \vec{x})$
- GW amplitude promoted to a stochastic gaussian variable

$$h_{ab}(t,\vec{x}) = \underbrace{e^{2\pi i f(t-\hat{n}\cdot\vec{x})}}_{\text{Planar}} \sum_{\lambda} \underbrace{h_{\lambda}(f,\hat{n})}_{\text{Amplitude Polarization tensors}} \underbrace{e^{\lambda}_{ab}(\hat{n})}_{\text{tensors}}$$
$$= \underbrace{\int_{-\infty}^{+\infty} df \int d^{2}\hat{n}}_{-\infty} \underbrace{e^{2\pi i f(t-\hat{n}\cdot\vec{x})}}_{\text{Planar}} \sum_{\lambda} \underbrace{h_{\lambda}(f,\hat{n})}_{\text{Amplitude Polarization tensors}} \underbrace{e^{\lambda}_{ab}(\hat{n})}_{\text{tensors}}$$

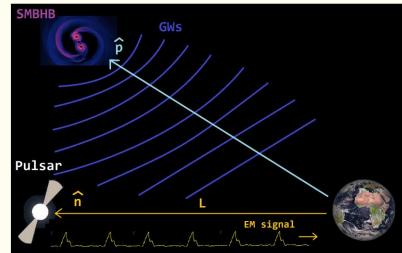

Imperial College Coherent and stochastic searches

- **Coherent** search: a deterministic template for the GW signal
- Stochastic search: superposition of many weak independent signals $h_{ab}(t, \vec{x})$

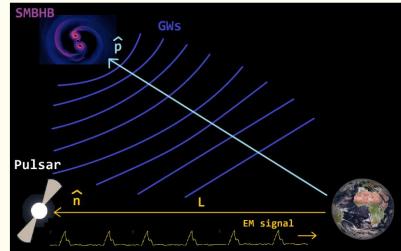

$$h_{ab}(t,\vec{x}) = \underbrace{e^{2\pi i f(t-\hat{n}\cdot\vec{x})}}_{\text{Planar}} \sum_{\lambda} \underbrace{h_{\lambda}(f,\hat{n})}_{\text{Amplitude Polarization tensors}} \underbrace{e^{\lambda}_{ab}(\hat{n})}_{\text{Hensors}}$$
$$= \int_{-\infty}^{+\infty} df \int d^2 \hat{n} \underbrace{e^{2\pi i f(t-\hat{n}\cdot\vec{x})}}_{\text{Planar}} \sum_{\lambda} \underbrace{h_{\lambda}(f,\hat{n})}_{\text{Amplitude Polarization tensors}} \underbrace{e^{\lambda}_{ab}(\hat{n})}_{\text{Hensors}}$$

- GW amplitude promoted to a stochastic gaussian variable
- Power spectrum

 $\langle h_{\lambda}^{*}(f,\hat{n}) h_{\lambda'}(f,\hat{n}) \rangle = \delta_{\lambda\lambda'} \delta(f-f') \delta(\hat{n}-\hat{n}') \mathcal{H}_{\lambda}(|f|,\hat{n})$

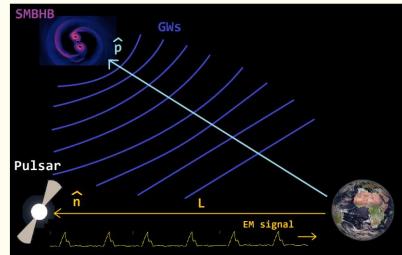


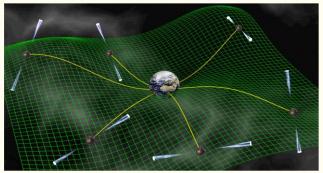
Redshift measurement


Redshift measurement

$$z(t) \equiv \frac{f_s - f_o(t)}{f_s}$$

Redshift measurement


$$z(t) \equiv \frac{f_s - f_o(t)}{f_s} \propto \frac{1}{2} \frac{\hat{n}^i \hat{n}^j}{1 + \hat{n} \cdot \hat{p}} h_{ij}(t)$$



Redshift measurement

$$z(t) \equiv \frac{f_s - f_o(t)}{f_s} \propto \frac{1}{2} \frac{\hat{n}^i \hat{n}^j}{1 + \hat{n} \cdot \hat{p}} h_{ij}(t)$$

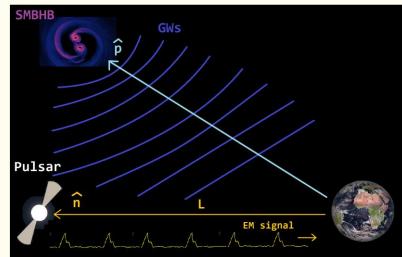
• Correlated signals (GW passing throung many pulsar locations)

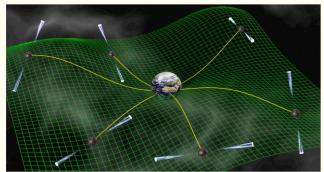
[David Champion, MPIRA]

Redshift measurement

$$z(t) \equiv \frac{f_s - f_o(t)}{f_s} \propto \frac{1}{2} \frac{\hat{n}^i \hat{n}^j}{1 + \hat{n} \cdot \hat{p}} h_{ij}(t)$$

 Correlated signals (GW passing throung many pulsar locations)

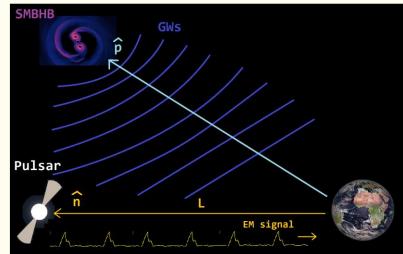

$$\langle z_i(t)z_j(t)\rangle \propto \chi(\zeta_{ij})$$

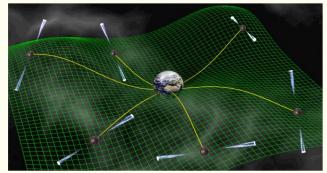

$$\int df$$

$$\underbrace{H(f)}_{H(f)} e^{2\pi i f_{GW} t}$$

 $HD\ curve$

 $Power\ spectrum$




[David Champion, MPIRA]

Redshift measurement

$$z(t) \equiv \frac{f_s - f_o(t)}{f_s} \propto \frac{1}{2} \frac{\hat{n}^i \hat{n}^j}{1 + \hat{n} \cdot \hat{p}} h_{ij}(t)$$

• Correlated signals (GW passing throung many pulsar locations) $\langle z_i(t)z_j(t)\rangle \propto \underbrace{\chi(\zeta_{ij})}_{HD\ curve} \int df \underbrace{H(f)}_{Power\ spectrum} e^{2\pi i f_{GW} t}$ $\zeta_{ij} = \arccos(\hat{n}_i \cdot \hat{n}_j)$

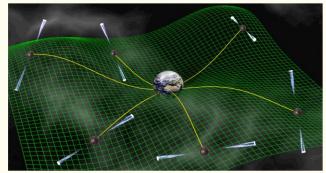
[David Champion, MPIRA]

Imperial College **Pulsar Timing Array** London

Redshift measurement ۲

$$z(t) \equiv \frac{f_s - f_o(t)}{f_s} \propto \frac{1}{2} \frac{\hat{n}^i \hat{n}^j}{1 + \hat{n} \cdot \hat{p}} h_{ij}(t)$$

Correlated signals (GW passing throung many pulsar locations) $\langle z_i(t)z_j(t)\rangle\propto \chi(\zeta_{ij}) \int df$ H(f) $HD \ curve \mathbb{N}$ $Power\ spectrum$

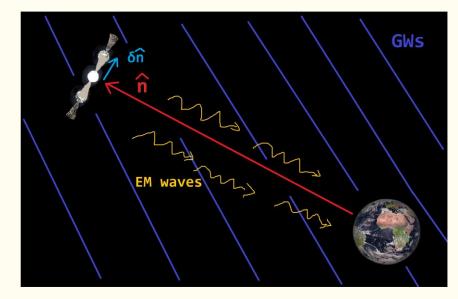

$$\zeta_{ij} = \arccos \left\{ \zeta_{ij} = 3 \right\} \right\} \right\} \right\}$$

$$\zeta_{ij} = \arccos(\hat{n}_i \cdot \hat{n}_j)$$

$$e^{2\pi i f_{GW} t}$$

$$e^{2\pi i f_{GW}t}$$

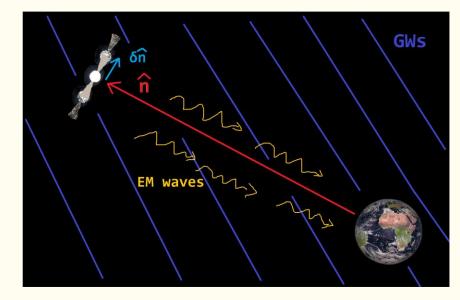
$$\zeta_{ij} = \arccos(\hat{n}_i \cdot \hat{n}_j)$$



[David Champion, MPIRA]

Imperial College **GW** A

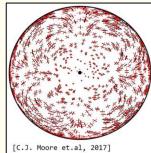
GW Astrometry

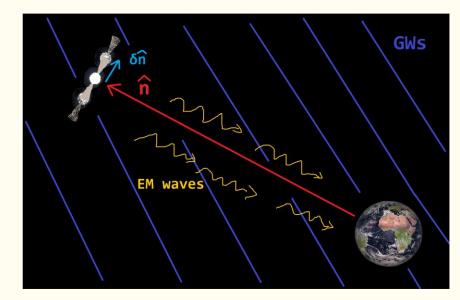

 Light traveling through GWs: geodesics aberrated

GW Astrometry

- Light traveling through GWs: geodesics aberrated
- The apparent position of objects in the sky varies in time

$$\delta n_i(t) = \frac{1}{2} \left[\frac{n_i - p_i}{1 - p \cdot n} n^j n^k - n^j \delta_i^k \right] h_{jk}(t)$$

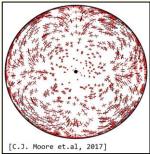


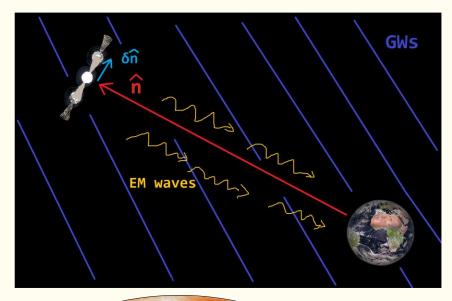

GW Astrometry

- Light traveling through GWs: geodesics aberrated
- The apparent position of objects in the sky varies in time

$$\delta n_i(t) = \frac{1}{2} \left[\frac{n_i - p_i}{1 - p \cdot n} n^j n^k - n^j \delta_i^k \right] h_{jk}(t)$$

 E.g. Quadrupolar pattern from a single GW along the z-axis




GW Astrometry

- Light traveling through GWs: geodesics aberrated
- The apparent position of objects in the sky varies in time

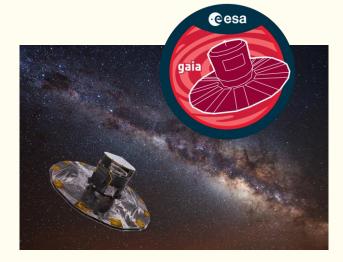
$$\delta n_i(t) = \frac{1}{2} \left[\frac{n_i - p_i}{1 - p \cdot n} n^j n^k - n^j \delta_i^k \right] h_{jk}(t)$$

 E.g. Quadrupolar pattern from a single GW along the z-axis

 $|\delta n_{\perp}(t)|$

0 uas

[Golat & Contaldi 2022]


0.002 µas

Astrometry with GAIA Imperial College

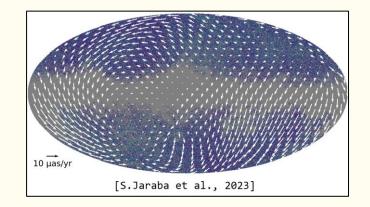
Launched in 2013

London

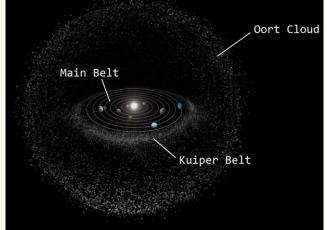
- Observation of 10⁹ sources with astrometric precision of 10-100 µas.
- Each source is observed 80 times (5-year • nominal mission) —10⁻⁹-10⁻⁷ Hz window.
- Extension to 8-10 years.

Astrometry with GAIA

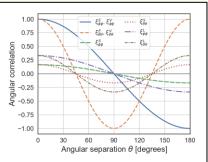
Launched in 2013

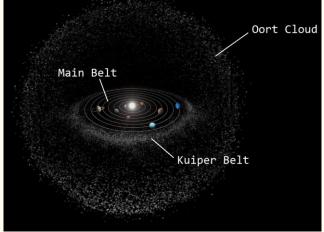

Imperial College

London

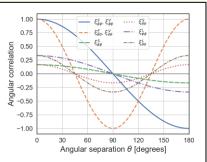

- Observation of 10⁹ sources with astrometric precision of 10-100 µas.
- Each source is observed 80 times (5-year nominal mission) —10⁻⁹-10⁻⁷ Hz window.
- Extension to 8-10 years.

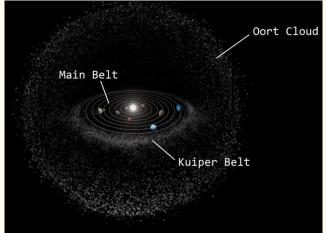
• Ω_{GW} <10⁻² constraint on the stochastic GW background (cf. Ω_{GW} ~10⁻⁸ from PTA)





- ~10⁹ small-sized objects in the solar system, ~10⁶ already known.
- Closer (L<< λ_{GW}) but fainter (apparent magnitude m > 9)

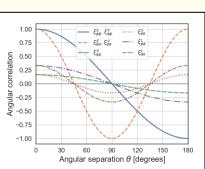

- ~10⁹ small-sized objects in the solar system,
 ~10⁶ already known.
- Closer (L<< λ_{GW}) but fainter (apparent magnitude m > 9)
- Angular correlation functions (like HD)



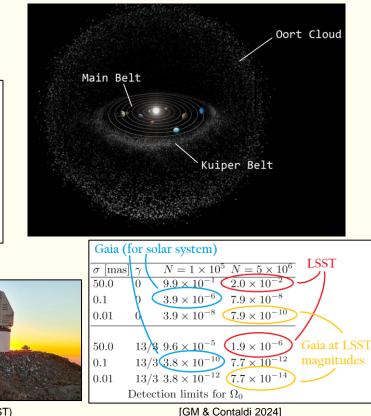


[GM & Contaldi 2024]

- ~10⁹ small-sized objects in the solar system,
 ~10⁶ already known.
- Closer (L<< λ_{GW}) but fainter (apparent magnitude m > 9)
- Angular correlation functions (like HD)



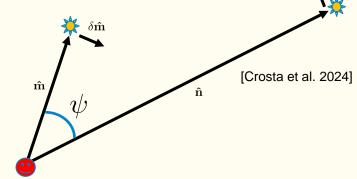
LSST coming soon! (high accuracy, good cadence, widefield)



Vera C. Rubin (LSST)

- ~10⁹ small-sized objects in the solar system,
 ~10⁶ already known.
- Closer (L<< λ_{GW}) but fainter (apparent magnitude m > 9)
- Angular correlation functions (like HD)

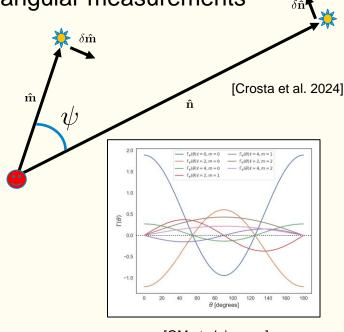
[GM & Contaldi 2024]


- LSST coming soon! (high accuracy, good cadence, widefield)
- Forecast detectability of the GW background

Imperial College Other astrometric techniques

• Measuring absolute angles is difficult -> differential angular measurements

$$\delta\psi = -\frac{1}{\sin\psi} \left[\eta_{ij} (n^i \delta m^j + m^i \delta n^j) + h^{\rm GW}_{ij} n^i n^j \right]$$

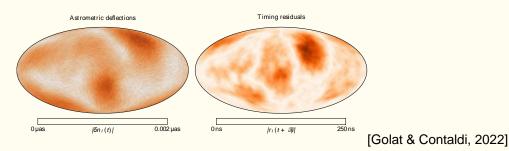

 $\delta \hat{\mathbf{n}}$

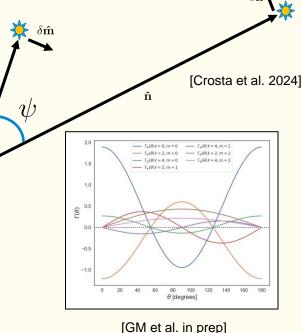
Imperial College Other astrometric techniques

Measuring absolute angles is difficult -> differential angular measurements

$$\delta\psi = -\frac{1}{\sin\psi} \left[\eta_{ij} (n^i \delta m^j + m^i \delta n^j) + h_{ij}^{\rm GW} n^i n^j \right]$$

• Cross-correlating differential $\langle \delta \psi({\bf n},t) \delta \psi^*({\bf n}',t') \rangle$ measurements


[GM et al. in prep]


Imperial College Other astrometric techniques

• Measuring absolute angles is difficult -> differential angular measurements

$$\delta\psi = -\frac{1}{\sin\psi} \left[\eta_{ij} (n^i \delta m^j + m^i \delta n^j) + h^{\rm GW}_{ij} n^i n^j \right]$$

- Cross-correlating differential $\langle \delta \psi({\bf n},t) \delta \psi^*({\bf n}',t') \rangle$ measurements
- Astrometry + PTA: independent and richer datasets

ŵ

Summary

- PTA shows evidence of a nHz GW signal.
- Astrometry as a probe of GWs is maturing.
- Astrometry + PTA (& solar + extrasolar astrometry) to mitigate sistematics.
- Data (optical surveys) is there, so use it
- Even more to come...