Parallel session 5 23rd July 2024

New windows onto nHz Gravitational Wave science with astrometry

Giorgio Mentasti

Parallel session 5

23rd July 2024

Outline

- Gravitational waves and detectors
- Stochastic Gravitational Waves Backgrounds (SGWB).
- The low frequency SGWB
	- Pulsar Timing Arrays
	- Astrometry
- Present and future of GW astrometry

Gravitational Wave interferometry

• 2014: First direct detection of a binary BH merger by LIGO-Virgo (m ~ 30 M_{sun} , f ~ 100Hz, d ~ 400 Mpc)

Gravitational Wave interferometry

• 2014: First direct detection of a binary BH merger by LIGO-Virgo (m ~ 30 M_{sun} , f ~ 100Hz, d ~ 400 Mpc)

LIGO GW150914 discovery event (2014)

Gravitational Wave interferometry

- 2014: First direct detection of a binary BH merger by LIGO-Virgo (m ~ 30 M_{sun} , f ~ 100Hz, d ~ 400 Mpc)
- terrestrial gravitational wave interferometers

The network of ground based detectors

Gravitational Wave interferometry

- 2014: First direct detection of a binary BH merger by LIGO-Virgo (m ~ 30 M_{sun} , f ~ 100Hz, d ~ 400 Mpc)
- terrestrial gravitational wave interferometers
- \sim 2035: Space based (LISA) and future ground based instruments (ET, CE…)

The network of ground based detectors

LISA, the planned space-based interferometer

Low frequency gravitational waves

Imperial College London

- GW interferometry: f ≥ uHz
- Pulsar Timing Array and astrometry probe the nHz band

Frequency band of the gravitational wave sources and detectors

Low frequency gravitational waves

Imperial College London

- GW interferometry: $f \geq uHz$
- Pulsar Timing Array and astrometry probe the nHz band
- Many expected sources of nHz gravitational waves (supermassive BHs, phase transitions, ultralight DM…)

(Power Spectral Density / Hz⁻¹)

 10^{-6} **Stochastic** background **Supermassive** binaries EPTA **IPTA** 10^{-10} ANOGrav, EPTA, PPTA, InPTA (June 28, 2023) $10 - 14$ **Massive binaries** LISA **Resolvable galactic** binaries $10 - 18$ Compact binary **Extreme mass** ratio inspirals Type I/ Core collapse supernovae **Unresolvable** SW150914 **alactic** 10^{-22} inaries aLIGO ET 10^{-26} 10^{-10} 10^{-8} 10^{-6} 10^{-2} 10^{-4} $10⁰$ $10²$ $10⁴$ $10⁶$ Frequency / Hz [https://gwplotter.com/]

Frequency band of the gravitational wave sources and detectors

Coherent and stochastic searches Imperial College London

• **Coherent** search: a deterministic template for the GW signal

- **Coherent** search: a deterministic template for the GW signal
- **Stochastic search: superposition** of many weak independent $h_{ab}(t, \bar{x})$ signals

$$
h_{ab}(t, \vec{x}) = \underbrace{e^{2\pi i f(t-\hat{n}\cdot\vec{x})}}_{\text{Planar}} \sum_{\lambda} \underbrace{h_{\lambda}(f, \hat{n})}_{\text{Amplitude Polarization}} \underbrace{e^{\lambda}_{ab}(\hat{n})}_{\text{tensors}}
$$

$$
\vec{E} = \int_{-\infty}^{+\infty} df \int d^2 \hat{n} \underbrace{e^{2\pi i f(t-\hat{n}\cdot\vec{x})}}_{\text{Planar}} \sum_{\lambda} \underbrace{h_{\lambda}(f,\hat{n})}_{\text{Amplitude Polarization}} \underbrace{e^{\lambda}_{ab}(\hat{n})}_{\text{tensors}}
$$

- **Coherent** search: a deterministic template for the GW signal
- **Stochastic search: superposition** of many weak independent $h_{ab}(t, \vec{x})$ signals

$$
h_{ab}(t, \vec{x}) = \underbrace{e^{2\pi i f(t-\hat{n}\cdot\vec{x})}}_{\text{Planar}} \sum_{\lambda} \underbrace{h_{\lambda}(f, \hat{n})}_{\text{Amplitude Polarization}} \underbrace{e^{\lambda}_{ab}(\hat{n})}_{\text{ensors}}
$$
\n
$$
= \int_{-\infty}^{+\infty} df \int d^2 \hat{n} \underbrace{e^{2\pi i f(t-\hat{n}\cdot\vec{x})}}_{\text{Planar}} \sum_{\lambda} \underbrace{h_{\lambda}(f, \hat{n})}_{\text{Amplitude Polarization}} \underbrace{e^{\lambda}_{ab}(\hat{n})}_{\text{tensors}}
$$

- **Coherent** search: a deterministic template for the GW signal
- **Stochastic search: superposition** of many weak independent $h_{ab}(t, \vec{x})$ signals

$$
h_{ab}(t, \vec{x}) = \underbrace{e^{2\pi i f(t-\hat{n}\cdot\vec{x})}}_{\text{Planar}} \sum_{\lambda} \underbrace{h_{\lambda}(f, \hat{n})}_{\text{Amplitude Polarization}} \underbrace{e_{ab}^{\lambda}(\hat{n})}_{\text{ensors}}
$$
\n
$$
= \int_{-\infty}^{+\infty} df \int d^2 \hat{n} \underbrace{e^{2\pi i f(t-\hat{n}\cdot\vec{x})}_{\text{Planar}} \sum_{\lambda} \underbrace{h_{\lambda}(f, \hat{n})}_{\text{Amplitude Polarization}} \underbrace{e_{ab}^{\lambda}(\hat{n})}_{\text{tensors}}
$$

- **Coherent** search: a deterministic template for the GW signal
- **Stochastic search: superposition** signals
- $h_{ab}(t, \vec{x}) = e^{\frac{2\pi i f(t \hat{n} \cdot \vec{x})}{P \cdot \text{lanar}}} \sum_{\lambda} \underbrace{h_{\lambda}(f, \hat{n})}_{\text{Amplitude Polarization}}$ Amplitude Polarization wave tensors of many weak independent
 $h_{ab}(t, \vec{x}) = \left(\int_{-\infty}^{+\infty} df \int d^2 \hat{n} \right) e^{2\pi i f(t-\hat{n}\cdot \vec{x})} \sum_{\text{Planar}\atop \text{wave}} \frac{h_{\lambda}(f, \hat{n})}{\lambda} \underbrace{e_{ab}^{\lambda}(\hat{n})}_{\text{Amplitude Polarization}}$ Amplitude Polarization tensors
- GW amplitude promoted to a **stochastic** gaussian variable

- **Coherent** search: a deterministic template for the GW signal
- **Stochastic search: superposition** of many weak independent $h_{ab}(t, \vec{x})$ signals

$$
h_{ab}(t, \vec{x}) = \underbrace{e^{2\pi i f(t-\hat{n}\cdot\vec{x})}}_{\text{Plane}} \sum_{\lambda} \underbrace{h_{\lambda}(f, \hat{n})}_{\text{Amplitude Polarization}} \underbrace{e^{\lambda}_{ab}(\hat{n})}_{\text{ensors}}
$$
\n
$$
h_{ab}(t, \vec{x}) = \underbrace{e^{2\pi i f(t-\hat{n}\cdot\vec{x})}}_{\text{Wave}} \sum_{\lambda} \underbrace{h_{\lambda}(f, \hat{n})}_{\text{Amplitude Polarization}} \underbrace{e^{\lambda}_{ab}(\hat{n})}_{\text{tensors}}
$$

- GW amplitude promoted to a **stochastic** gaussian variable
- Power spectrum

$$
\langle h_{\lambda}^*(f,\hat{n})\,h_{\lambda'}(f,\hat{n})\rangle = \delta_{\lambda\lambda'}\delta(f-f')\delta(\hat{n}-\hat{n}')\mathcal{H}_{\lambda}(|f|,\hat{n})
$$

**Imperial College
London Pulsar Timing Array**

• Redshift measurement

**Imperial College
London Pulsar Timing Array**

• Redshift measurement

$$
z(t) \equiv \frac{f_s - f_o(t)}{f_s}
$$

**Imperial College
London Pulsar Timing Array**

• Redshift measurement

$$
z(t) \equiv \frac{f_s - f_o(t)}{f_s} \propto \frac{1}{2} \frac{\hat{n}^i \hat{n}^j}{1 + \hat{n} \cdot \hat{p}} h_{ij}(t)
$$

Imperial College London **Pulsar Timing Array**

• Redshift measurement

$$
z(t) \equiv \frac{f_s - f_o(t)}{f_s} \propto \frac{1}{2} \frac{\hat{n}^i \hat{n}^j}{1 + \hat{n} \cdot \hat{p}} h_{ij}(t)
$$

• Correlated signals (GW passing throung many pulsar locations)

[David Champion, MPIRA]

Imperial College London **Pulsar Timing Array**

• Redshift measurement

$$
z(t) \equiv \frac{f_s - f_o(t)}{f_s} \propto \frac{1}{2} \frac{\hat{n}^i \hat{n}^j}{1 + \hat{n} \cdot \hat{p}} h_{ij}(t)
$$

• Correlated signals (GW passing throung many pulsar locations)

$$
\langle z_i(t) z_j(t) \rangle \propto \chi(\zeta_{ij})
$$

$$
\int df
$$

$$
f) \qquad e^{2\pi i f_{GW}t}
$$

 HD curve

Power spectrum

[David Champion, MPIRA]

Imperial College Pulsar Timing Array London

• Redshift measurement

$$
z(t) \equiv \frac{f_s - f_o(t)}{f_s} \propto \frac{1}{2} \frac{\hat{n}^i \hat{n}^j}{1 + \hat{n} \cdot \hat{p}} h_{ij}(t)
$$

• Correlated signals (GW passing throung many pulsar locations) $\langle z_i(t) z_j(t) \rangle \propto \chi(\zeta_{ij})$ $e^{2\pi i f_{GW}t}$ df HD curve Power spectrum $\zeta_{ii} = \arccos(\hat{n}_i \cdot \hat{n}_i)$

[David Champion, MPIRA]

Imperial College Pulsar Timing Array London

• Redshift measurement

Separation angle between pulsars [deg]

$$
z(t) \equiv \frac{f_s - f_o(t)}{f_s} \propto \frac{1}{2} \frac{\hat{n}^i \hat{n}^j}{1 + \hat{n} \cdot \hat{p}} h_{ij}(t)
$$

• Correlated signals (GW passing throung many pulsar locations) $e^{2\pi i f_{GW}t}$ $\langle z_i(t) z_j(t) \rangle \propto \chi(\zeta_{ij})$ df HD curve Power spectrum [normalized] $\zeta_{ij} = \arccos(\hat{n}_i \cdot \hat{n}_j)$ 0.6 0.2 Correlation 0.0 -0.2 -0.4 NANOGrav, 202360 90 150 180 Ω 30 120

[David Champion, MPIRA]

GW Astrometry

• Light traveling through GWs: geodesics aberrated

GW Astrometry

- Light traveling through GWs: geodesics aberrated
- The apparent position of objects in the sky varies in time

$$
\delta n_i(t) = \frac{1}{2} \left[\frac{n_i - p_i}{1 - p \cdot n} n^j n^k - n^j \delta_i^k \right] h_{jk}(t)
$$

GW Astrometry

- Light traveling through GWs: geodesics aberrated
- The apparent position of objects in the sky varies in time

$$
\delta n_i(t) = \frac{1}{2} \left[\frac{n_i - p_i}{1 - p \cdot n} n^j n^k - n^j \delta_i^k \right] h_{jk}(t)
$$

• E.g. Quadrupolar pattern from a single GW along the z-axis

GW Astrometry

- Light traveling through GWs: geodesics aberrated
- The apparent position of objects in the sky varies in time

$$
\delta n_i(t) = \frac{1}{2} \left[\frac{n_i - p_i}{1 - p \cdot n} n^j n^k - n^j \delta_i^k \right] h_{jk}(t)
$$

• E.g. Quadrupolar pattern from a single GW along the z-axis

FIG. 1. Realisations of astr ometr ic deflection (at time *t*) and timing r esidual (at time *t* ⁺ ⌧) r esponses to an SGWB of

Astrometry with GAIA

• Launched in 2013

Imperial College

London

- Observation of 10⁹ sources with astrometric precision of 10-100 μas.
- Each source is observed 80 times (5-year nominal mission) —10⁻⁹-10⁻⁷ Hz window.
- Extension to 8-10 years.

Astrometry with GAIA

• Launched in 2013

Imperial College

London

- Observation of 10⁹ sources with astrometric precision of 10-100 μas.
- Each source is observed 80 times (5-year nominal mission) —10⁻⁹-10⁻⁷ Hz window.
- Extension to 8-10 years.

 $\Omega_{\rm GW}$ <10⁻² constraint on the stochastic GW background (cf. $\Omega_{\rm GW}$ ~10⁻⁸ from PTA)

- \sim 10⁹ small-sized objects in the solar system, \sim 10 $\,$ ⁶ already known.
- Closer (L<< $\lambda_{\rm GW}$) but fainter (apparent magnitude m > 9)

- \sim 10⁹ small-sized objects in the solar system, \sim 10 $\,$ ⁶ already known.
- Closer (L<< λ_{GW}) but fainter (apparent magnitude m > 9)
- Angular correlation functions (like HD)

[GM & Contaldi 2024]

- \sim 10⁹ small-sized objects in the solar system, \sim 10 $\,$ ⁶ already known.
- Closer (L<< $\lambda_{\rm GW}$) but fainter (apparent magnitude m > 9)
- Angular correlation functions (like HD)

[GM & Contaldi 2024]

LSST coming soon! (high accuracy, good cadence, widefield)

Vera C. Rubin (LSST)

- \sim 10⁹ small-sized objects in the solar system, \sim 10 $\,$ ⁶ already known.
- Closer (L $<< \lambda_{\rm GW}$) but fainter (apparent magnitude $m > 9$)
- Angular correlation functions (like HD)

[GM & Contaldi 2024]

- LSST coming soon! (high accuracy, good cadence, widefield)
- Forecast detectability of the GW background

Other astrometric techniques Imperial College London

• Measuring absolute angles is difficult -> differential angular measurements

$$
\delta\psi = -\frac{1}{\sin\psi} \left[\eta_{ij} (n^i \delta m^j + m^i \delta n^j) + h_{ij}^{\text{GW}} n^i n^j \right]
$$

 $\delta \hat{\mathbf{n}}$

Other astrometric techniques Imperial College London

• Measuring absolute angles is difficult -> differential angular measurements

$$
\delta\psi = -\frac{1}{\sin\psi} \left[\eta_{ij} (n^i \delta m^j + m^i \delta n^j) + h_{ij}^{\text{GW}} n^i n^j \right]
$$

• Cross-correlating differential $\langle \delta \psi(\mathbf{n},t) \delta \psi^*(\mathbf{n}',t') \rangle$. measurements

Other astrometric techniques Imperial College London

• Measuring absolute angles is difficult -> differential angular measurements

$$
\delta\psi = -\frac{1}{\sin\psi} \left[\eta_{ij} (n^i \delta m^j + m^i \delta n^j) + h_{ij}^{\text{GW}} n^i n^j \right]
$$

- Cross-correlating differential $\langle \delta \psi(\mathbf{n},t) \delta \psi^*(\mathbf{n}',t') \rangle$. measurements
- Astrometry + PTA: independent and richer datasets

 \mathcal{S} produced using the HEALPIX package. The t importance of the t importance of the t importance of the t

cosmological or igin (with spectr al index *β* = 0) and ⌦g w (*f* ⁰ = 50Hz) = 10

m

Summary

- PTA shows evidence of a nHz GW signal.
- Astrometry as a probe of GWs is maturing.
- Astrometry + PTA (& solar + extrasolar astrometry) to mitigate sistematics.
- Data (optical surveys) is there, so use it
- Even more to come...