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I. The classical spacetime

1[1]: S. Hartnoll, JHEP 23 (2023) 2208.04348

The planar AdS black hole (BH) is a solution of the Einstein’s equation with planar symmetry. The line
element of the interior of the black hole can be written as [1]

where N, k, and v are functions of r. (In the interior of the BH the radial coordinate is timelike).
v → “volume”.
k → Anisotropy variable (relative streching of gₜₜ with respect to gₓₓ).
N→ Lapse function.
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We work in Parametrised UniModular gravity (or Henneaux and Teitelboim Unimodular gravity).

The cosmological constant is now a
dynamical variable (which happens

to be a constant of motion)
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With this metric Ansatz, the action becomes

where ‘ means derivative with respect to r.

[2]: S. Gielen and LMP, Class. Quant. Grav 37 and 39 (2020 and 2021), 2005.05357, 2109.02660
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With this metric Ansatz, the action becomes

where ‘ means derivative with respect to r.

Hence, the Hamiltonian and constraint become (after a suitable unit choice for κ):

This Hamiltonian is exactly the same as the Hamiltonian of a flat homogeneous and isotropic
cosmology with a free massless scalar field and dark energy [2]!

[2]: S. Gielen and LMP, Class. Quant. Grav 37 and 39 (2020 and 2021), 2005.05357, 2109.02660

This toy model has 3 canonically conjugated pairs
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One can deparametrise the theory using T to find

This metric has two singularities:
v → 0 and k → ∞ at T=T₋=T₀-πₖ/2Λ, this one is a true singularity (Kretschmann scalar diverges).
v → 0 and k → -∞ at T=T₊=T₀+πₖ/2Λ, this one is a coordinate singularity (Kretschmann is finite).

T₋ corresponds to the BH singularity and T₊ to the BH horizon.
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Where “box” is the Laplace-Beltrami operator associated with g.  
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This leads to the Wheeler-DeWitt equation

Where “box” is the Laplace-Beltrami operator associated with g.  

We use T as relational time, so “box” becomes the Hamiltonian of the system hence the physical
inner product is���
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The solutions to the Wheeler-DeWitt equation are Bessel functions in a superposition of
cosmological constants

However, this theory is not unitary (the operator “box” is not self-adjoint), but Unitarity can be
restored by the boundary condition
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The solutions to the Wheeler-DeWitt equation are Bessel functions in a superposition of
cosmological constants

However, this theory is not unitary (the operator “box” is not self-adjoint), but Unitarity can be
restored by the boundary condition

This boundary condition ensures that there is no probability flux “past” v=0. 
The solutions to the Wheeler-DeWitt equation and the boundary condition are
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where 

Parametrises the self-adjoint extensions

The parameter θ(p) is left up to choice. This will influence quantitatively the dynamics and could have
applications. We choose 
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where 

Parametrises the self-adjoint extensions

The parameter θ(p) is left up to choice. This will influence quantitatively the dynamics and could have
applications. We choose 

Close to v → 0, the Bessel functions look like plane waves

Hence, close to the coordinate singularity and the BH singularity, the wave functions look like a
superposition of plane waves both incoming and outgoing from the singularities. 
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To analyse singularity resolution, we calculate expectation values of observables

where Ψ is a suitable semiclassical state 

Gaussian superposition

We compare the quantum expectation values with classical trajectories for which
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Some comments on the figure
Both the singularity and the black hole horizon are “resolved”.
The state is semiclassical (small variance) for T’s in which the classical solution is well defined but
then the variance grows.
We are unsure the oscillations continue or stop after some point (numerics might not be reliable).
Different values of the parameters influence the oscillations pattern. 
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Conclusions:
As it has also been shown in cosmology, BH singularity resolution can also occur in the WDW
theory.
Note tha the resolution of the BH horizon could potentially be avoided by choosing a different
foliation of spacetime.

Possible future directions:
LQC quantisation of the same spacetime
Can the exterior of the BH tell us something about the interior? Junction conditions? Choice of
self-adjoint extensions?
How to go past homogeneity?



Thank you!

write me maybe
lumene02@ucm.es


