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Motivation
• Inflationary cosmology has demonstrated remarkable success in predicting CMB                                                    

anisotropies. 

• Many single field slow-roll models can lead to the desired 50-60 efoldings.  

• However, these models are sensitive to UV physics: can shorten necessary slow 
roll efoldings. 

• Solution: shift symmetric particles -> Axion like particles (ALPs) as the inflaton. 
• In our case coupled to a U(1) gauge field. 
• Why? Very efficient energy transport between 

 both. 
• Leads to interesting phenomenology: metric  

perturbations that lead to PBHs and GWs, 
for example. 
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Ḣ

/H
2

Also:

Our free parameter is       : controls 
the strength of the backreaction!



Inflation duration

°2 0 2 4 6 8 10
N

0.5

1.0

1.5

2.0

≤ H
=

°
Ḣ
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Conclusions
• In the full backreaction approach, which includes the contribution of the 

inhomogeneities, when in the the strong backreaction regime we can see: 
1. Exponential lengthening of the inflationary period with increasing 

coupling. 
2. “Magnetic slow-roll” behavior during the extra efoldings. 
3. Power in the gauge field spectrum is transferred to the UV scales, 

implying that a wide dynamical range is necessary to fully capture the 
physics for the highest couplings considered. 

• Homogenous approach is not sufficient to fully capture the                                 
non-linear dynamics 

• Phenomenological results should be re-studied in the full                      
backreaction regime: ongoing work! 

• As for now, the only way is to make use of                                                       
“Lattice cosmology”.
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Helicities and longitudinal mode
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