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Motivation
The Nariai solution was presented back in the 1950’s, and can be
described in suitable coordinates by the line element

ds2 =
(

1− r2

r2
0

)
dt2 −

(
1− r2

r2
0

)−1

dr2 − r2
0dΩ2,

with r ∈ (−r0, r0), where r0 is a non-null constant, and dΩ2 is the line
element of the 2-sphere.

Static and spherically symmetric solution of GR (with positive
cosmological constant λ = 1/r2

0).
Usually characterized as the limit of Schwarzschild-de Sitter when the
two cosmological and event horizon coincides. ← not defined in a
meaningful sense:

S. Stotyn, A tale of two horizons. Can. J. Phys. 93, 995 (2015).

Other ways to characterize Nariai?
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Weyl decomposition of the Riemann tensor

The Riemann tensor can be decomposed as

where C is the Weyl tensor, with the following properties:
Is traceless, so it is related with pure gravitational fields (curvature
not due to matter content: Schwarzschild, Kerr, etc.)
Is invariant under conformal transformations (volume changes,
g̃ = e2λ(xµ)g).
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Petrov classification of the Weyl tensor

Petrov developed a classification of spacetimes studying the algebraic
structure of the Weyl tensor.

This study can be carried out by studying the eigenvibectors of the Weyl
tensor, which are associated to four null vectors which determine the so
called principal null directions (PNDs) of the Weyl tensor (at most 4
different).

In particular, static and spherically symmetric spacetimes are of type D:
there are two (double) principal null directions, which we denote l and n.

This classification induces the use of Newman and Penrose formalism
(NP).
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Characterization of Nariai spacetime
The main idea is to construct a null tetrad {l, n, m, m}, i.e. a new basis
of the tangent space, formed by

Two real null vectors, l and n, which we take as the principal null
directions of the Weyl tensor.
Two complex null vectors, m and m, are constructed by combining a
pair of real orthogonal spacelike unit vectors.

They must satisfy the relations lµnµ = 1, mµm̄µ = −1 and others are
zero.

The principal null directions in the Nariai solution are non-expanding.
In terms of NP this is ρ = µ = 0. In fact, is the only static and spherically
symmetric vacuum solution with this property.

Question
Is the Nariai solution the only static and spherically symmetric spacetime
with non-expanding principal null directions for f(R) theories?
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Brief introduction to f(R) gravity

The action in f(R) formalism is given by

S =
∫

d4x
√
−gf(R).

The field equations are
−Rµν = ∆tµν ,

where we have defined the effective stress-energy tensor

∆tµν ≡ F (R)−1
(
− 1

2f(R)gµν +
[
∇µ∇ν − gµν□

]
F (R)

)
,

with F (R) = df(R)/dR. The associated trace equation is

R = F (R)−1 (2f(R) + 3□F (R)) .
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Initial Ansatz
Let (M, g) be a static and spherically symmetric spacetime with

ds2 = p(r)dt2 − s(r)dr2 − q(r)dΩ2,

Remark
The coordinate changes to remove q(r) for r2 in the angular part of the
metric is not always possible. It is only possible when q′(r) ̸= 0.

In this case, the principal null directions are

lµ = 1√
2

(
p(r)1/2, s(r)1/2, 0, 0

)
,

nµ = 1√
2

(
p(r)1/2,−s(r)1/2, 0, 0

)
,

and we complete the null tetrad with mµ = q(r)√
2 (0, 0, 1,−i sin θ) ,

Imposing the non-expanding condition on l, i.e. ρ = 0, then q(r) = r2
0

(and n is non-expanding).
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Field equations

Therefore, the metric can always be transformed into

ds2 = p(r)dt2 − p(r)−1dr2 − r2
0dΩ2,

We present the field equations in the new basis.

The so called Ricci scalars, Φab with a, b ∈ {0, 1, 2}, are defined as the
contractions of the Ricci tensor with the null tetrad vectors. The only
non-vanishing Ricci scalar is

Φ11 = −1
2Rµν lµnν + 3Λ,

where Λ = R/24, with R being the Ricci scalar curvature.
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Field equations

We define the physical contractions of the effective stress-energy tensor
in an analogous way as the Ricci scalars. The only non-vanishing scalars are

Φph
00 = 1

2∆tµν lµlµ,

Φph
11 = 1

2∆tµν lµnν + 3Λph,

Φph
22 = 1

2∆tµνnµnν ,

with Λph = R/24, where R is now obtained in terms of f(R) by using the
trace equation.

At this point, the only field equations which are not identically zero in
the new basis are given by

Φph
00 = Φph

22 = 0, Φph
11 = Φ11 and Λph = Λ.
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Field equations

Equation Φph
00 = 0 implies

F (r) ≡ F (R(r)) = a(1 + br),

where a and b are constants having dimensions of one over length.

We distinguish between two different cases:
b ̸= 0, which corresponds to non-constant Ricci scalar.
b = 0, which corresponds to constant Ricci scalar.

This will allow us to fully characterize the solutions in terms of the
Ricci scalar.

We now solve the remaining field equations.
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Non-constant Ricci scalar solutions
Assuming b ̸= 0, the solution is given by

p(r) = c1 −
r

br2
0
− r2

2r2
0

+ γ

b2r2
0

log |1 + br| ,

where γ = 1 + c2br2
0, being c1 and c2 two integration constants which

cannot be removed under changes of coordinates.

The Ricci scalar is given by

R(r) = 1
r2

0

(
3 + γ

(1 + br)2

)
,

and it shows a curvature singularity at r = −1/b.

The solution(s) come from a only f(R) theory which has the form

f(R) = 1
r0

∣∣∣∣R− 3
r2

0

∣∣∣∣1/2
.
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Constant Ricci scalar solutions

For completeness, assuming b = 0, we reobtain the Nariai solution.

The set of compatible f(R) theories are those functions fulfilling the one
point differential equation

R0
df

dR
(R0) = 2f(R0),

which is actually the trace equation for constant Ricci scalar.

These theories are not necessarily GR although the corresponding field
equations can be interpreted, for constant R = R0, in terms of GR with a
cosmological constant given by λ = R0

2 −
f(R0)

2F (R0) .
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Thanks!
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