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Introduction

Gundlach and Martín-García(2007)

• Critical solutions are well 
established for spherically 
symmetric distributions;

• Critical solutions separate black 
hole formation and dissipation;

• In phase space, the critical point 
verifies a local one-dimensional 
unstable submanifold
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Critical black holes are the smallest possible obtainable. As such 
they:

• May denote regions of high spacetime curvature;

• May give rise to naked singularities.

Motivation
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Relativistic Elasticity
Consider the 4-manifold, spacetime, and a projection into a 3-

submanifold, “material” space.
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Relativistic Elasticity

• Comparison between physical and reference manifolds yields 
relations between geometry and physical invariants

Initial Physical State
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Relativistic Elasticity

• Comparison between physical and reference manifolds yields 
relations between geometry and physical invariants
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Matter Model
For the elastic matter model, Alho et al. (2024) found the scale 

invariant elastic model

Where:  

This generalizes the perfect fluid, recovered for  
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Matter Model
For the elastic matter model, Alho et al. (2024) found the scale 

invariant elastic model
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• We consider a spherically symmetric metric given by

Metric ansatz

• A spacetime is continuously self-similar if there is a homothetic vector 
field, Z:
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The self-similarity of spacetime can be brought out by the choice 
of new metric functions

Metric transformation

The choice of metric function then reflects on the EFE, showing the 
correct self-similar form of the matter functions
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Elastic Equations of Motion
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Elastic Equations of Motion

Becomes singular at sonic point!

Origin requires special care!
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Asymptotic behavior at the center (x→-∞)
• Assuming regularity, the origin can be used to determine the 

asymptotic behavior of physical solutions.
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Asymptotic behavior at the center (x→-∞)
• Assuming regularity, the origin can be used to determine the 

asymptotic behavior of physical solutions.

• The choice M=N∙V shows the origin is a fixed point with

• And replace them in the EFE
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Asymptotic behavior at the center (x→-∞)
• Assuming regularity, the origin can be used to determine the 

asymptotic behavior of physical solutions.

• Thus we obtain

• The asymptotic rate factors related by
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We’ve found that:
• Elastic self-similar models show several instances of similar 

behavior to perfect fluids.

However, to clear the uniqueness of this model we still need to:
• Obtain numerical solutions around the sonic point, validating 

them with the required asymptotic behavior;
• Develop simulations around the regular center using both 

Schwarzschild and comoving coordinates;
• Obtain the critical exponent and compare with other matter 

models.

Conclusion and Future Work
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