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Introduction

♦ Casimir effect and Hawking radiation are among
the most important phenomena in Quantum Field
Theory in Curved Spacetimes.

♦ The latter has deep roots in BH physics and is at
the heart of one of the most important open prob-
lems in fundamental physics: information loss
problem (quantum gravity at the rescue).

♦ It is very difficult to closely observe realistic
black holes, even more Hawking radiation.

♦ This fact has led to propose several experiments
to verify Hawking radiation. One of the earli-
est theoretical proposals are moving (accelerat-
ing) mirrors. However, a realistic implementation
is very hard ... but not impossible.
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Analogue gravity
♦ Bose-Einstein condensates: detection of spontaneous Hawking effect reported by Steinhauer

(2016) and criticized by Leonhardt (2018).

♦ Surface waves in water flows allow for the study of stimulated effect.

♦ Nonlinear optics systems (electromagnetic waveguides, optical fibres, quantum fluids of light).
Promising experiments.

♦ Moving mirrors (AnaBHEL, CPW ended in SQUIDs).

C. Barceló, Nature Phys. 15, 210 (2019).
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I. Agullo, A. J. Brady, D. Kranas, Phys. Rev. Lett. 128, 091301 (2022).
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The original model (Fulling & Davies - 76)
♦ The field theory we consider is

S = −
1
2

∫
d2x

√
−ηηµν∂µϕ∂νϕ,

where ηµν is the 1+1 flat spacetime metric.

♦ The Klein-Gordon equation

1
√
−η

∂µ
(√

−ηηµν∂ν
)
ϕ = 0.

♦ A boundary condition ϕ(t, x = g(t)) = 0 with t ∈ (−∞,∞) has non-trivial consequences
on the field evolution.

♦ For instance, consider a mirror initially at rest at g(t) = L0 for t < 0, and at t ≥ 0 following
the trajectory

g(t) = L0 − B + t + Be−2κt.

♦ At very late times t → +∞, it radiates with a Planckian spectrum

|βωω′ |2 =
1

2πκω′
1

(e2πω/κ − 1)
, where κ/(2π) = kBT/ℏ.
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The Fourier space & equations of motion

♦ We are interested in two boundary conditions ϕ(t, x = f (t)) = 0 = ϕ(t, x = g(t)).

♦ For our purposes it is useful to introduce the following Fourier decomposition

ϕ(τ, ξ) =
∞∑

n=1

ϕn(τ) sin(nπξ), t = τ, ξ = L0
x − f (t)

L(t)
, L(t) = g(t)− f (t) > 0.

which guaranties that the field fulfills ϕ(τ, ξ = 0) = 0 = ϕ(τ, ξ = 1), namely, (stationary)
Dirichlet boundary conditions.

♦ The Hamilton’s equations of motion are

ϕ̇n =
1
L
πn −

L̇
2L

ϕn + 2
∑
m ̸=n

mn
m2 − n2

[
ḟ
L

(
(−1)m+n − 1

)
+

L̇
L
(−1)m+n

]
ϕm

π̇n = −
1
L
(nπ)2ϕn +

L̇
2L

πn + 2
∑
m ̸=n

nm
m2 − n2

[
ḟ
L

(
(−1)n+m − 1

)
+

L̇
L
(−1)n+m

]
πm.

We infer that if L̇(τ) ̸= 0 and/or ḟ (τ) ̸= 0 there will be dynamical mode mixing.
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KG product & complex basis of solutions

♦ A complex solution U(τ)

U(τ) =
(
ϕ1(τ), π1(τ), ϕ2(τ), π2(τ), · · ·

)
,

is an element of a (complexified) space of solutions, i.e. U(τ) ∈ SC, endowed with a natural
Klein-Gordon product

⟨U(1)(τ),U(2)(τ)⟩ =
i
2

∞∑
n=1

ϕ̄
(1)
n (τ)π

(2)
n (τ)− π̄

(1)
n (τ)ϕ

(2)
n (τ),

which is preserved under the evolution and is not positive definite.

♦ We now choose a basis of (orthonormal) complex solutions
(
u(I), ū(I)

)
, with I = 1, 2, . . .

This basis satisfies

⟨u(I)(τ), u(J)(τ)⟩ = δIJ , ⟨u(I)(τ), ū(J)(τ)⟩ = 0, ⟨ū(I)(τ), ū(J)(τ)⟩ = −δIJ ,

♦ Any real solution can be written as U(τ) =
∑

I aIu(I)(τ) + āI ū(I)(τ), with aI and āI anni-
hilation and creation variables.
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The in basis

♦ We assume that the plates are stationary in the past. The in basis is given by the initial condi-
tions

u(1) (τ0) =

(
1

√
ω1

,−i
√
ω1, 0, 0, · · ·

)
,

u(2) (τ0) =

(
0, 0,

1
√
ω2

,−i
√
ω2, 0, 0, · · ·

)
,

...

u(I) (τ0) =

(
0, 0, . . . ,

1
√
ωI

,−i
√
ωI , 0, 0, . . .

)
...

and the complex conjugate, where ω1 = π, ω2 = 2π, . . . are frequencies of the modes
n = 1, 2, . . ., respectively. These modes correspond to standard “plane waves” in a cavity.

♦ We solve the dynamics numerically with an explicit embedded Runge-Kutta-Prince-Dormand
(8,9). It can integrate a finite (but large) number of modes. Limit of infinite modes adopting a
Richardson extrapolation. Error controlled by inner products and closure relations of u(I)(τ).
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The Hawking effect: accelerating mirrors

i +

i

i 0i 0

+
R
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+
L

L

The explicit trajectories for a light ray (green line), and for the boundaries are (blue line) f (t) = 0
and (red line)

g(t) =1 +
s

2κ
+

1
2κ

[
log

(
cosh

(
κ(t − t0)

))
− log

(
cosh

(
s − κ(t − t0)

))]
.
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Particle production & Hawking radiation
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We show here the results (blue dots) for κ = 1200 and s = 150. It amounts to g(t = +∞) = (1+ϵ)
(with ϵ = s/κ = 0.25). The numerical results fit very well the spectrum (green line)

|β(fit)
IJ |2 =

2∆ωI∆ωJ

πκωJ

Γ(κ, ϵ)

(e2πωI/κ − 1)
, Γ(κ, ϵ) ≃

[
A + B sin2 (ϵ ωI)

]
,

where ωI = πI/(L0 + ϵ), ωJ = πJ/L0, ∆ωI = π/(L0 + ϵ), ∆ωJ = π/L0,
(
in the continuum

∆ωI∆ωJ → dωdω′). Here A = 7.3 · 10−3 and B(κ) = 0.91.
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The dynamical Casimir effect: Introduction

♦ The (dynamical) Casimir effect is
one of the most well-known phe-
nomena in quantum field theory.

♦ It involves the conversion of vir-
tual particles into real particles
(photons) due to changes in the
boundary conditions of the field.

♦ This effect was first predicted by
Gerald T. Moore 50 years ago.

♦ Its experimental verification has
been claimed by J. R. Johansson,
G. Johansson, C. M. Wilson, and
F. Nori in 2010 using a coplanar
waveguided ended in supercon-
ducting interference device.a

a
Also by P. Lähteenmäki, G. S. Paraoanu, J. Hassel, and P. J. Hakonen in 2013.
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Trajectory for the dynamical Casimir effect

♦ We will assume that the boundaries follow simple damped oscillatory trajectories

g(t) = 1 + ϵ1B(t)(sin(q1πt + ϕ)− sin(ϕ)),

f (t) = ϵ2B(t) sin(q2πt),

in coordinates (t, x), where ϵ1 and ϵ2 control the amplitudes of the oscillations of the bound-
aries, q1 = q2 = q is an integer that controls their frequency, ϕ is a relative phase, and B(t) is
the bump function

♦ Moreover, we have studied the trajectories with several values of q, and separately the cases i)
ϕ = π and ϵ1 = 1/40 and ϵ2 = 0 (one moving boundary), ii) ϕ = π and ϵ1 = 1/40 = ϵ2
(breathing configuration), and iii) ϕ = 0 and ϵ1 = 1/40 = ϵ2 (translational configuration).
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Cooling down of a thermal state for traj. i) and q = 1
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We show here ⟨N̂I⟩T =
∑

J |βJI |2 +
∑

J(|αJI |2 + |βJI |2) 1
eEJ/T−1

for q = 1. The occupation number
of IR modes is smaller (cooling down effect). This happens at the expenses of warming up the UV
modes (stimulated particle production), since there is a relatively small particle production while we
are pumping energy in the system.
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Cooling down of a thermal state for traj. i) and q = 10
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We now consider the plates oscillating with q = 10. The occupation number of only resonant modes
is smaller (selective cooling down effect).
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SQUID-terminated CPW
♦ For the experimental proposals based on a coplanar wave guide (CPW) ended in supercon-

ducting interference devices (SQUIDs) acting as effective boundary conditions that oscillate
with frequencies smaller than ωp = 37.3 GHz.

♦ For a CPW as large as L0 = 10.0 cm, a change in size as large as δL = 0.25 cm, and a speed of
propagation of the phase field (the time integral of the electric field) around v ≃ 1010 (cm/s),
we get ωd = 3.14 GHz ∼ ωp/10 for q = 1 and ωd = 31.4 GHz ∼ ωp for q = 10. The
configurations we have explored are within the experimental capabilities since ωd ≲ ωp for
the study of the cooling down within the DCE.

♦ Regarding the Hawking effect, for ωd = ωp/2 = 18.6 GHz, δL ∼ 0.25 cm ∼ Lcav/4. If v ∼
1010 (cm/s), the maximum acceleration of the boundary κ ≃ ω2

pδL ≃ 3.5 · 1020 (cm/s2), and
the maximum Hawking temperature can be as large as T ≃ 0.5 K. Current CPW experimental
temperatures are T ≃ 0.025 K.

♦ The inductance and capacitance of the CPW can be modified, either by suitable changes in their
geometry or by considering substrates with large dielectric permittivities (there exist materials
like perovskite or polymers with permittivities higher than 104). Large permittivities imply
lower v and hence higher T . They also induce a strong polarization field and likely a modified
dispersion relation for the phase field.

♦ As a final remark, the trajectory shown here corresponds to κ ≃ 6·1018 (cm/s2) and a Hawking
temperature TH ≃ 0.005 K.
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Summary

♦ We study a field theory enclosed in a cavity with moving boundaries in the non-perturbative
regime with some novel numerical tools.

♦ Concretely, we apply them to study, on one hand the dynamical Casimir effect, like the cooling
down (upconversion) of some modes when the field is initially in a thermal state. Within the
Hawking effect, we show that some band frequencies can be excited into a thermal state with
the temperature given by the acceleration of the boundary (and a graybody factor).

♦ We suggest to use a known setup to studying both the cooling down effect discovered by
Dodonov and Hawking radiation, experimentally. It involves a CPW with two SQUIDs at-
tached to its endings, where the phase of the electromagnetic field propagating along the CPW
can be well-described by a real, scalar quantum field ϕ(t, x) and with (tunable) time-dependent
boundary conditions determined by the magnetic field threading the SQUIDs.

♦ We are currently studying the entanglement structure of the out state (log neg for partitions
1× (N − 1)) and its robustness against thermal noise and measurement imperfections with an
eye on future experiments.
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