2407.xxxxx

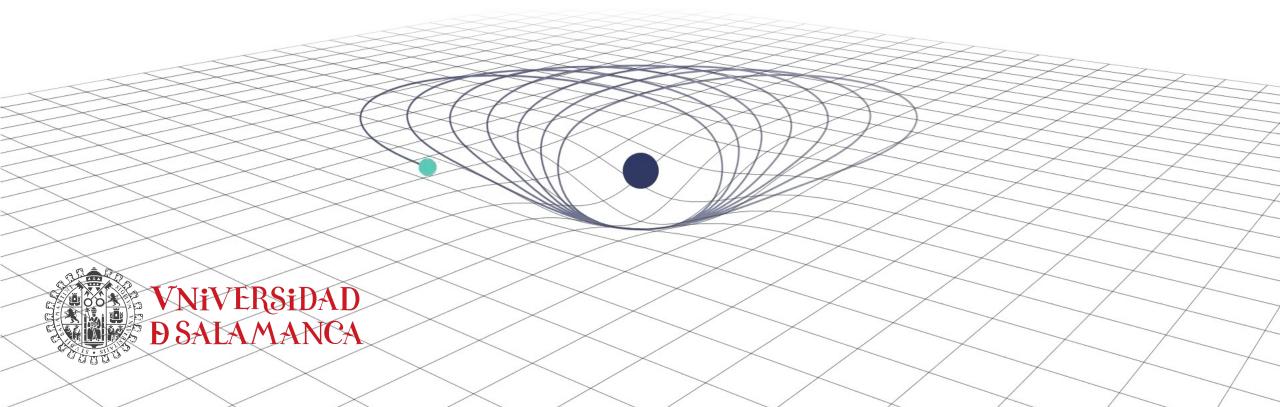
EREP 2024

Coimbra | July 23, 2024

The Galactic Center

as a gravitational laboratory

Riccardo Della Monica



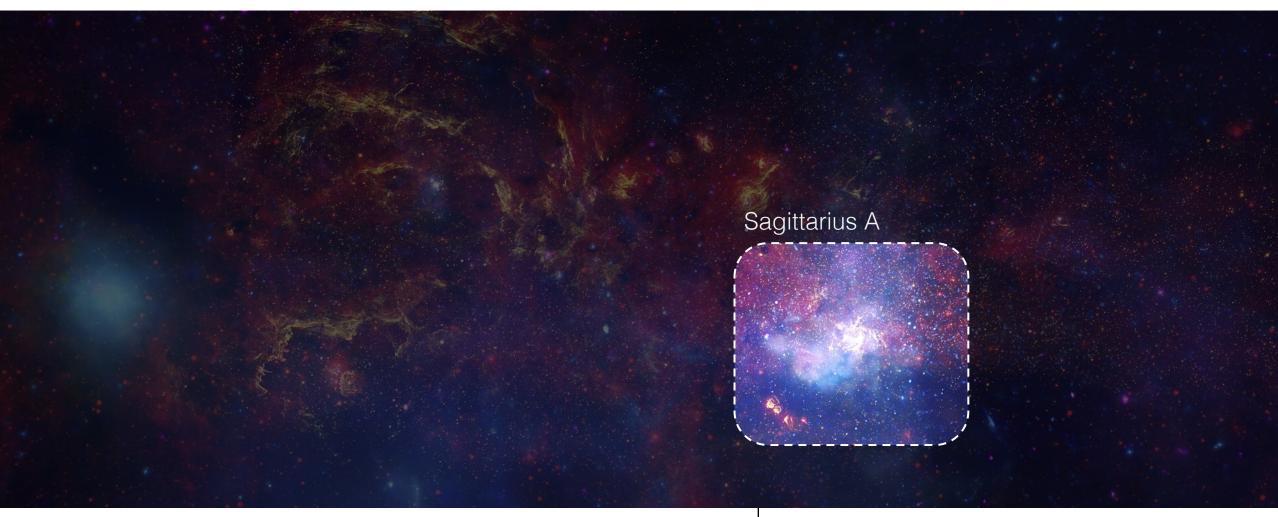
The Galactic Center

The Galactic Center

Hubble Space Telescope, the Spitzer Space Telescope, and the Chandra X-ray Observatory (2009)

The Galactic Center

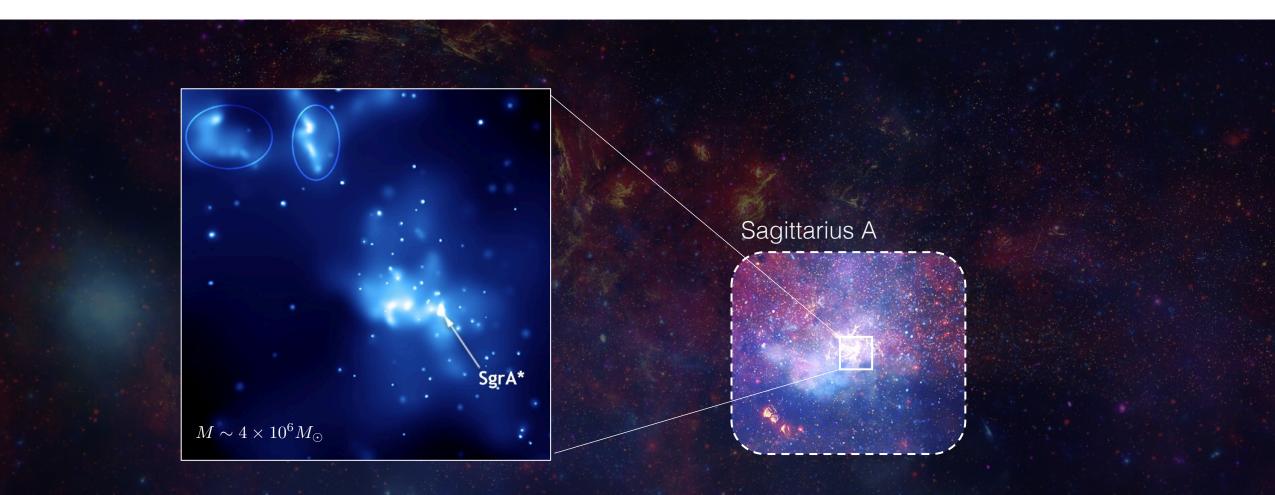
The Galactic Center



Hubble Space Telescope, the Spitzer Space Telescope, and the Chandra X-ray Observatory (2009)

The Galactic Center

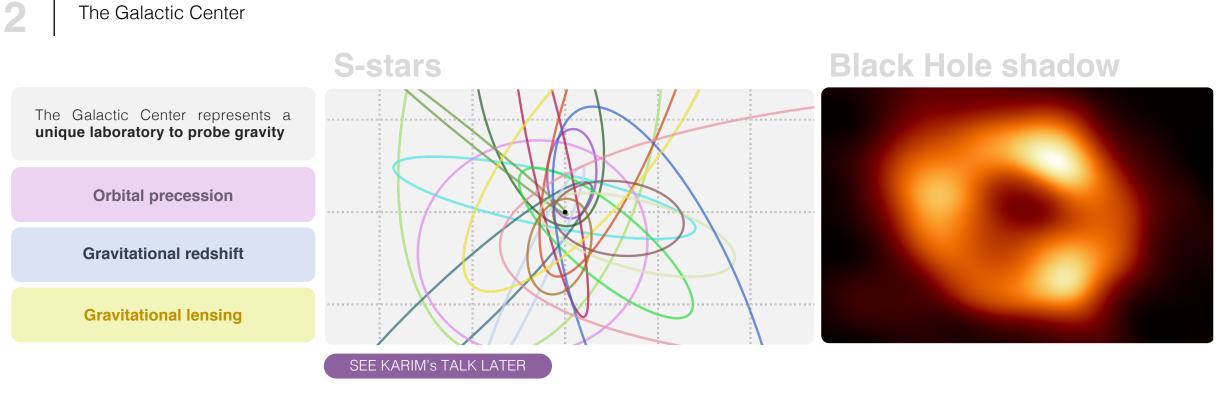
The Galactic Center

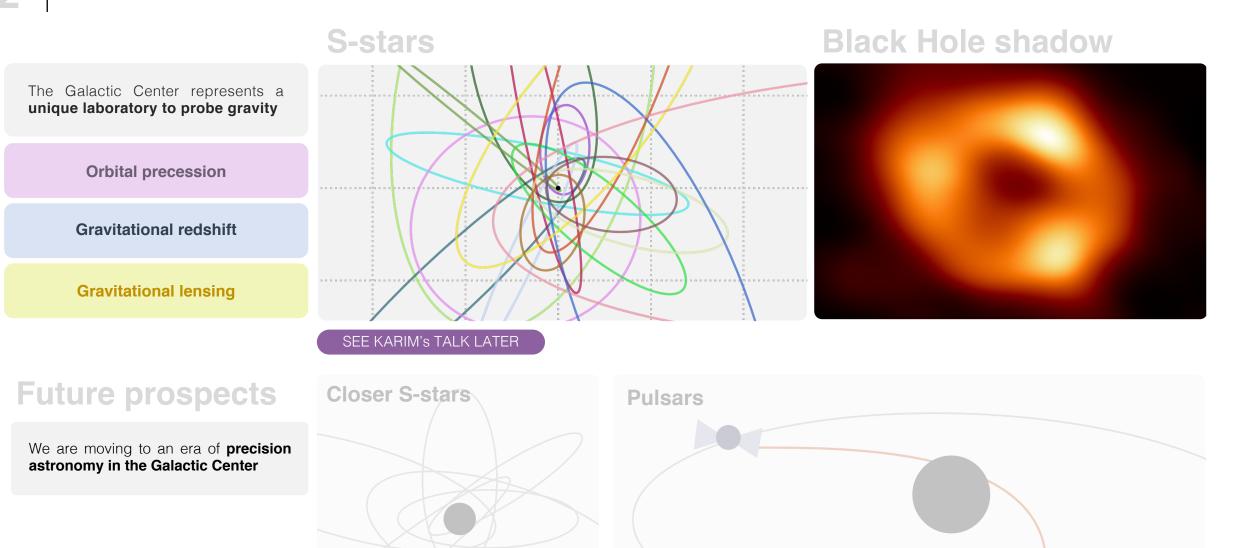


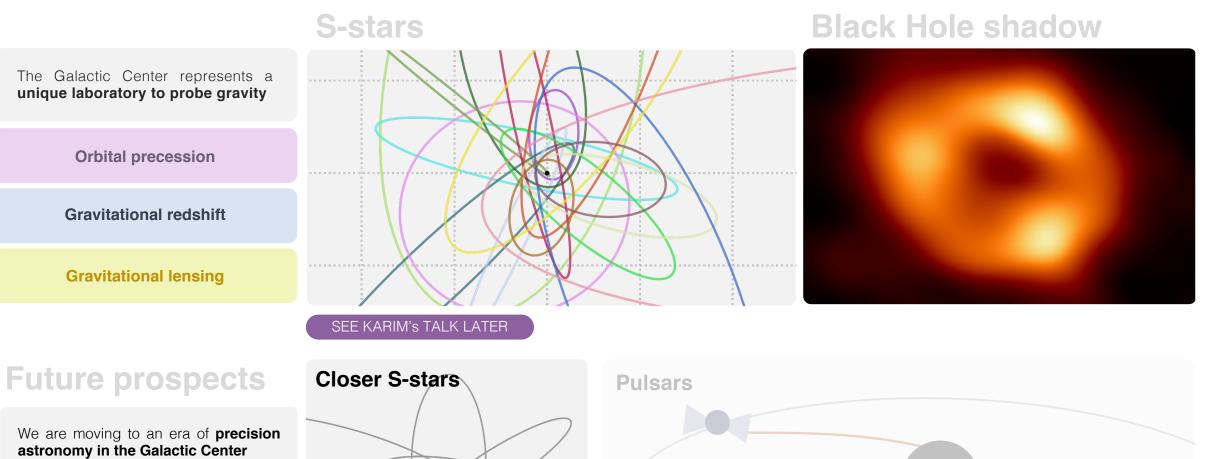
Hubble Space Telescope, the Spitzer Space Telescope, and the Chandra X-ray Observatory (2009)

Black Hole shadow

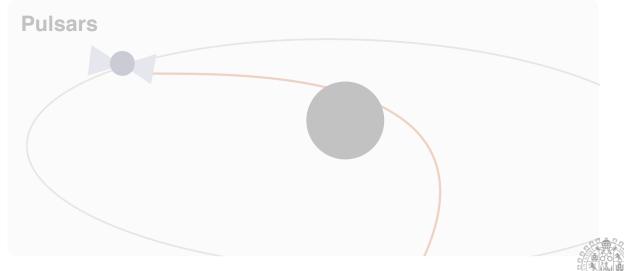
The Galactic Center represents a unique laboratory to probe gravity

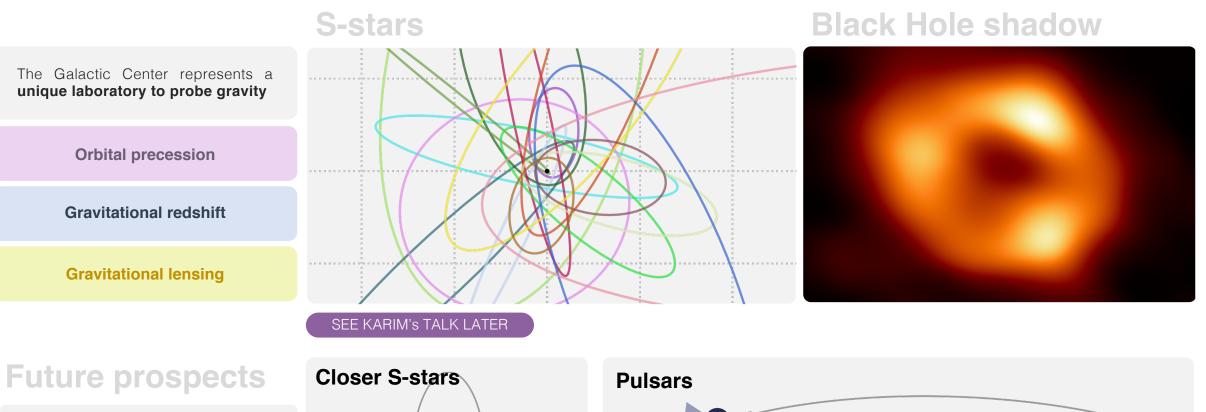




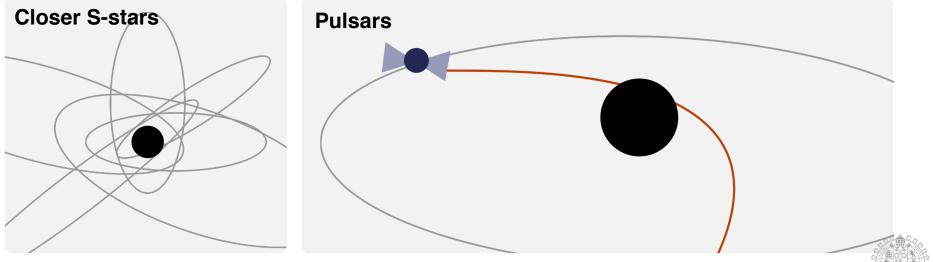


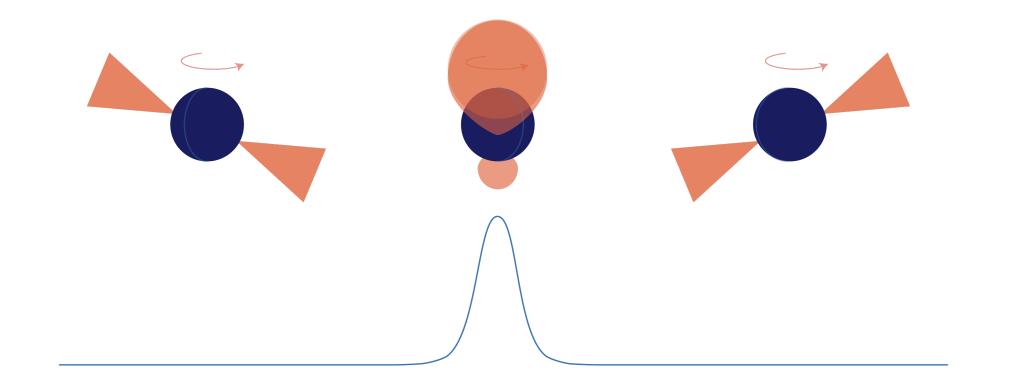
Closer S-stars Pul



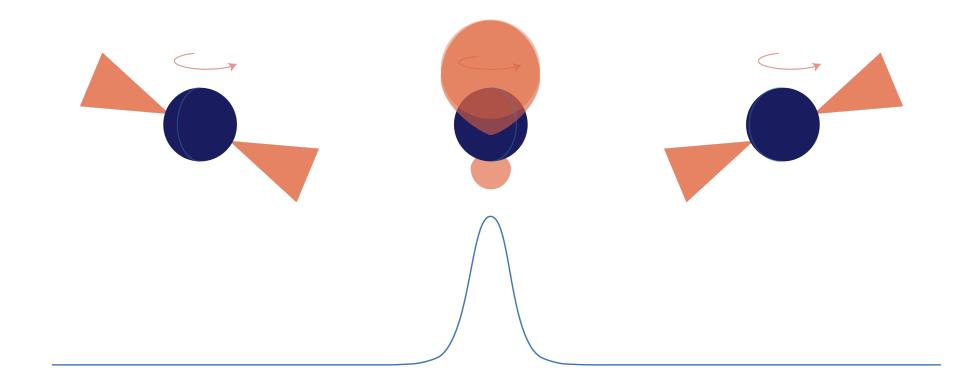


We are moving to an era of precision astronomy in the Galactic Center



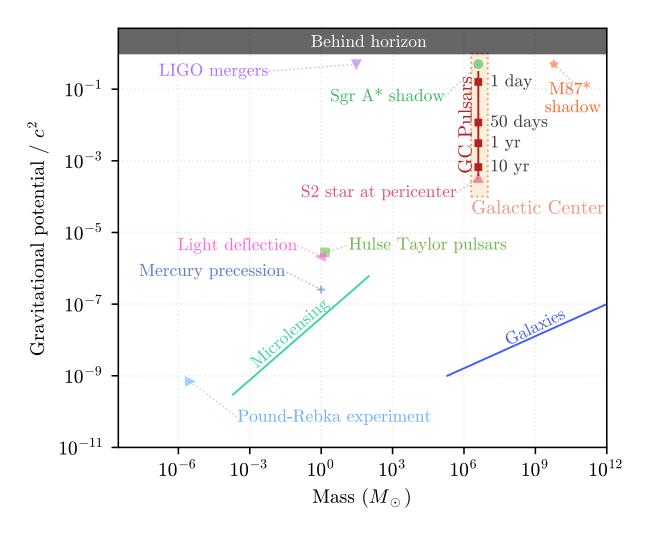


3



Cosmic precision-clocks Stability of one part in 10¹⁵

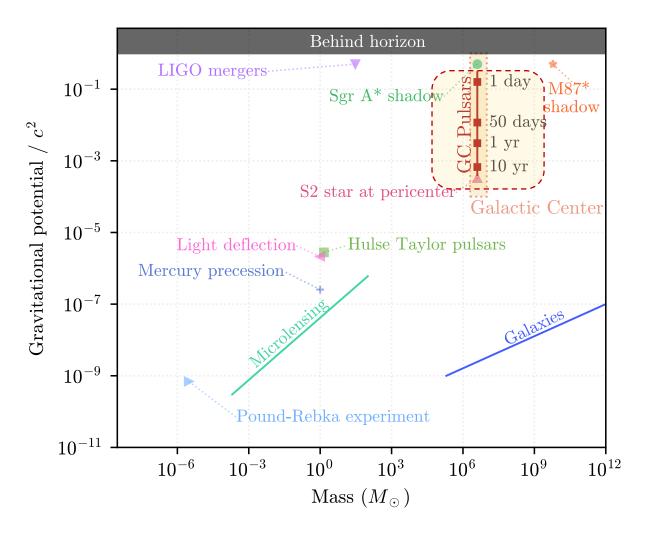
3



Major scientific goal of future facilities like **Squared Kilometer Array** (SKA) that promise not only to be able to detect them but also to perform **timing analysis**.

 $\sigma_{\rm TOA} \sim 100 \,\mu{\rm s}$

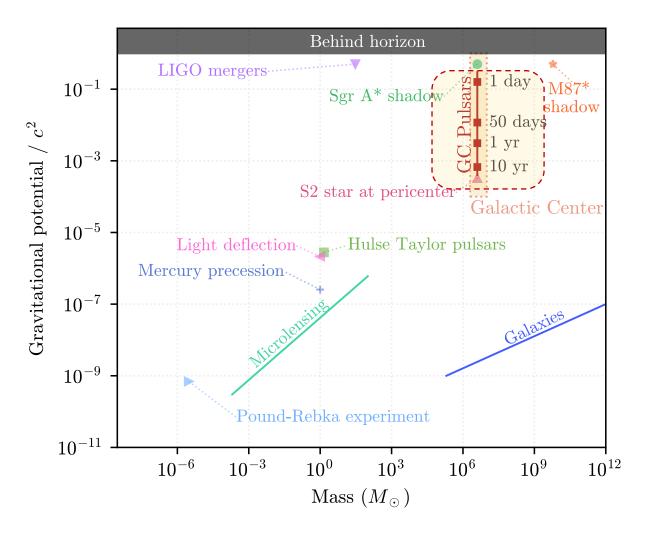
3



Major scientific goal of future facilities like **Squared Kilometer Array** (SKA) that promise not only to be able to detect them but also to perform **timing analysis**.

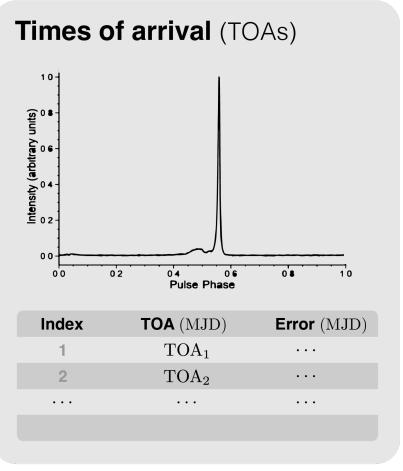
 $\sigma_{\rm TOA} \sim 100 \,\mu{\rm s}$

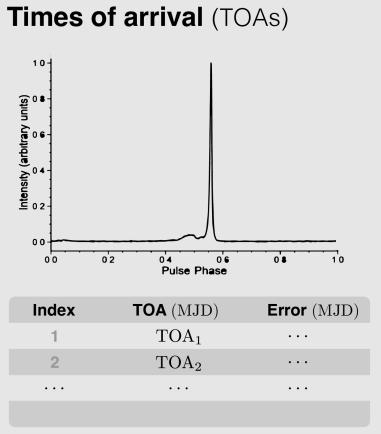
3

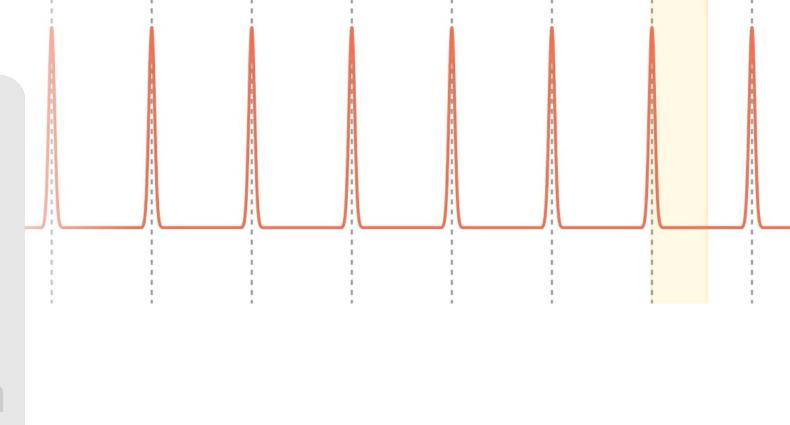


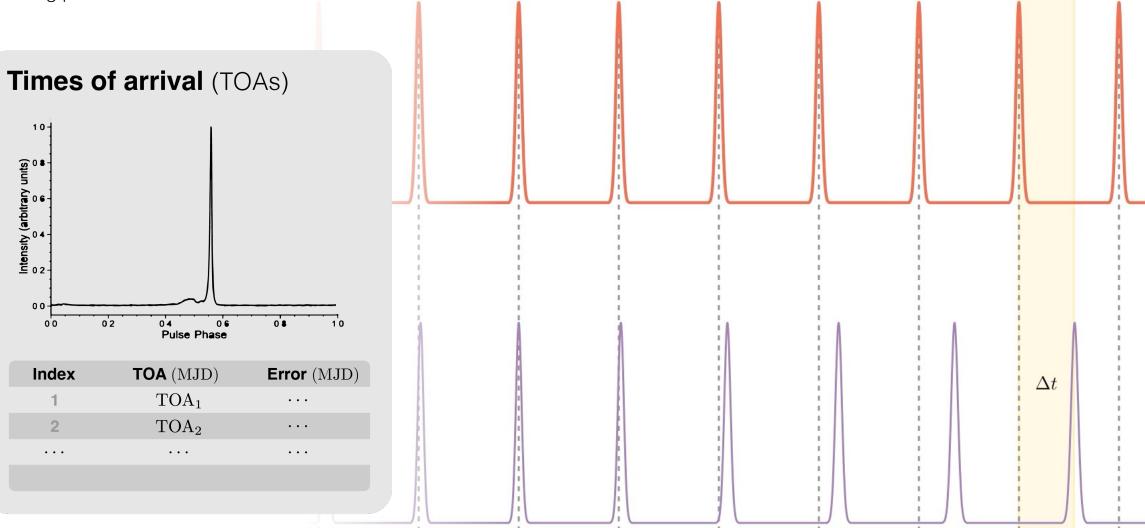
Major scientific goal of future facilities like **Squared Kilometer Array** (SKA) that promise not only to be able to detect them but also to perform **timing analysis**.

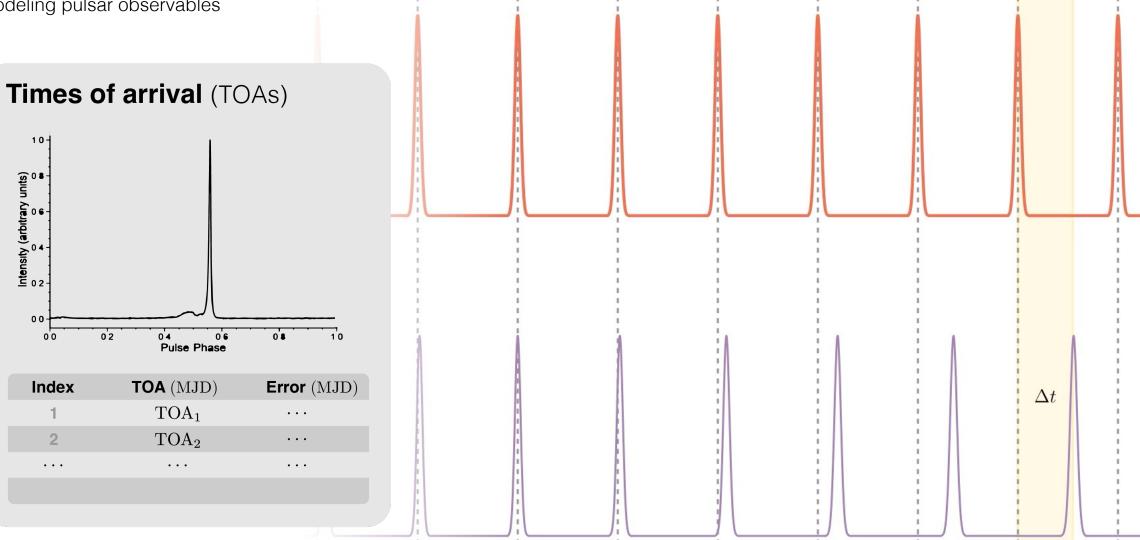
 $\sigma_{\rm TOA} \sim 100 \,\mu {\rm s}$



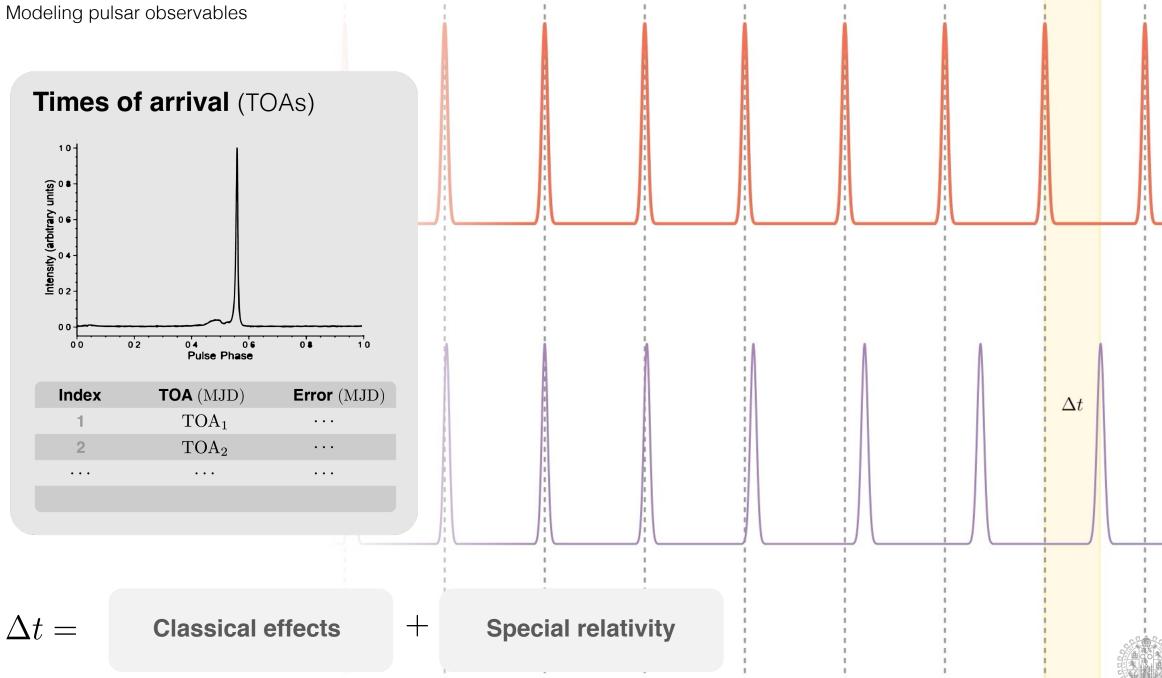


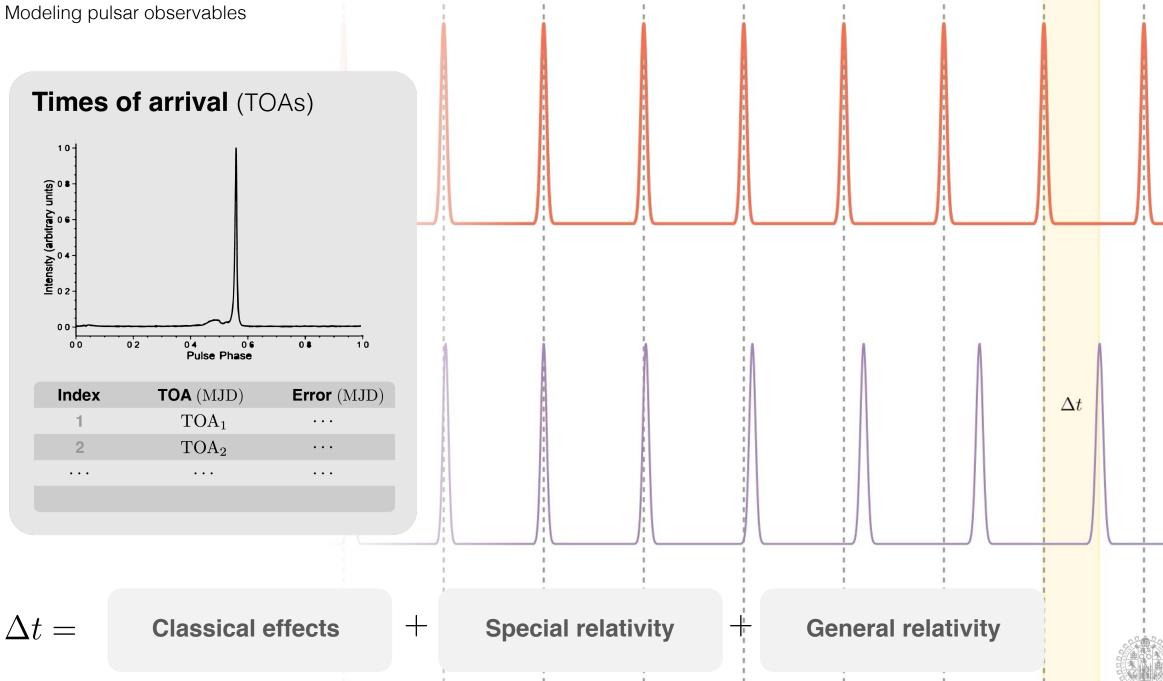






$\Delta t =$ **Classical effects**





Consider a Keplerian orbit with orbital parameters $(a, e, t_P, i, \Omega, \omega)$ and compute the **post-Keplerian** evolution of this parameter from a **post-Newtonian** approximation

GR effects on the trajectory

GR effects

on the photons

5

 $\dot{\omega} = \frac{6\pi GM}{c^2 a(1-e^2)}, \quad \dots$

Use **post-Newtonian** approximations for all the different delays, assuming that the total delay is a linear sum of the single effects.

$$\Delta t_{\text{Rømer}} = \frac{a(1-e^2)\sin i\sin(\omega+\phi)}{c(1+e\cos\phi)}$$

$$\Delta t_{\text{Shapiro}} = \frac{2GM}{c^3} \ln \left[\frac{1+e\cos\phi}{1-\sin i\sin(\omega+\phi)}\right]$$

$$\Delta t_{\text{geo}} = \frac{2GM}{c^3} \left[\frac{|\vec{r}_{\pm}-\vec{r}_s|}{R_E}\right]^2 \qquad \text{Hobbs et al. (2006)} \\ \text{Damour \& Deruelle (1986)} \\ \Delta t_{\text{Einstein}} = \gamma \sin u \qquad \text{Blandford \& Teukolsky (1976)}$$

$$\Delta t = \Delta t_{\text{Rømer}} + \Delta t_{\text{Shapiro}} + \Delta t_{\text{geo}} + [2PN] + [3PN] + \dots$$

Consider a Keplerian orbit with orbital parameters $(a, e, t_P, i, \Omega, \omega)$ and compute the **post-Keplerian** evolution of this parameter from a **post-Newtonian** approximation

on the trajectory

GR effects

on the photons

GR effects

5

 $\dot{\omega} = \frac{6\pi GM}{c^2 a(1-e^2)}, \quad \dots$

Use **post-Newtonian** approximations for all the different delays, assuming that the total delay is a linear sum of the single effects.

$$\Delta t_{\text{Rømer}} = \frac{a(1-e^2)\sin i\sin(\omega+\phi)}{c(1+e\cos\phi)}$$

$$\Delta t_{\text{Shapiro}} = \frac{2GM}{c^3} \ln \left[\frac{1+e\cos\phi}{1-\sin i\sin(\omega+\phi)}\right]$$

$$\Delta t_{\text{geo}} = \frac{2GM}{c^3} \left[\frac{|\vec{r}_{\pm} - \vec{r}_s|}{R_E}\right]^2 \qquad \text{Hobbs et al. (2006)} \\ \text{Damour \& Deruelle (1986)} \\ \Delta t_{\text{Einstein}} = \gamma \sin u \qquad \text{Blandford \& Teukolsky (1976)}$$

$$\Delta t = \Delta t_{\text{Rømer}} + \underbrace{\Delta t_{\text{Shapiro}} + \Delta t_{\text{geo}}}_{[1PN]} + [2PN] + [3PN] + \dots$$

Consider a Keplerian orbit with orbital parameters $(a, e, t_P, i, \Omega, \omega)$ and compute the **post-Keplerian** evolution of this parameter from a **post-Newtonian** approximation

 $\dot{\omega} = \frac{6\pi GM}{c^2 a(1-e^2)}, \quad \dots$

GR effects on the trajectory

5

Use **post-Newtonian** approximations for all the different delays, assuming that the total delay is a linear sum of the single effects.

$$\Delta t_{\text{Rømer}} = \frac{a(1-e^2)\sin i\sin(\omega+\phi)}{c(1+e\cos\phi)}$$
$$\Delta t_{\text{Shapiro}} = \frac{2GM}{c^3} \ln\left[\frac{1+e\cos\phi}{1-\sin i\sin(\omega+\phi)}\right]$$
$$\Delta t_{\text{geo}} = \frac{2GM}{c^3} \left[\frac{|\vec{r}_{\pm}-\vec{r}_{s}|}{R_E}\right]^2 \qquad \text{Hobbs et al. (2006)}$$
$$Damour \& \text{Deruelle (1986)}$$
$$Damour \& \text{Deruelle (1986)}$$
$$Blandford \& \text{Teukolsky (1976)}$$

$$\Delta t = \Delta t_{\rm Rømer} + \underbrace{\Delta t_{\rm Shapiro} + \Delta t_{\rm geo}}_{[1PN]} + [2PN] + [3PN] + \dots$$

 Δt Proper time of emission Coordinate time of arrival

GR effects on the photons

Consider a Keplerian orbit with orbital parameters $(a, e, t_P, i, \Omega, \omega)$ and compute the **post-Keplerian** evolution of this parameter from a **post-Newtonian** approximation

GR effects on the trajectory

GR effects on the photons

 $\dot{\omega} = \frac{6\pi GM}{c^2 a(1-e^2)}, \quad \dots$

Use **post-Newtonian** approximations for all the different delays, assuming that the total delay is a linear sum of the single effects.

$$\Delta t_{\text{Rømer}} = \frac{a(1-e^2)\sin i\sin(\omega+\phi)}{c(1+e\cos\phi)}$$
$$\Delta t_{\text{Shapiro}} = \frac{2GM}{c^3} \ln\left[\frac{1+e\cos\phi}{1-\sin i\sin(\omega+\phi)}\right]$$
$$\Delta t_{\text{geo}} = \frac{2GM}{c^3} \left[\frac{|\vec{r}_{\pm}-\vec{r}_s|}{R_E}\right]^2 \qquad \text{Hobbs et al. (2006)}$$
$$Damour \& \text{Deruelle (1986)}$$
$$Damour \& \text{Deruelle (1986)}$$

 $\Delta t_{\rm Einstein} = \gamma \sin u$

$$\Delta t = \Delta t_{\rm Rømer} + \underbrace{\Delta t_{\rm Shapiro} + \Delta t_{\rm geo}}_{[1PN]} + [2PN] + [3PN] + \dots$$

$$\tau_i = \mathrm{TOA}_i - \Delta t_i$$

Actual time of emission

Reconstructed time of emission

Consider a Keplerian orbit with orbital parameters $(a, e, t_P, i, \Omega, \omega)$ and compute the **post-Keplerian** evolution of this parameter from a post-Newtonian approximation

GR effects on the trajectory

h

Use **post-Newtonian** approximations for all the different delays, assuming that the total delay is a linear sum of the single effects.

$$\Delta t_{\rm Rømer} = \frac{a(1-e^2)\sin i\sin(\omega+\phi)}{c(1+e\cos\phi)}$$
$$\Delta t_{\rm Shapiro} = \frac{2GM}{c^3}\ln\left[\frac{1+e\cos\phi}{1-\sin i\sin(\omega+\phi)}\right]$$
$$\Delta t_{\rm geo} = \frac{2GM}{c^3}\left[\frac{|\vec{r}_{\pm}-\vec{r}_s|}{R_E}\right]^2$$
Hobbs et al. (2006)
Damour & Deruelle (1986)

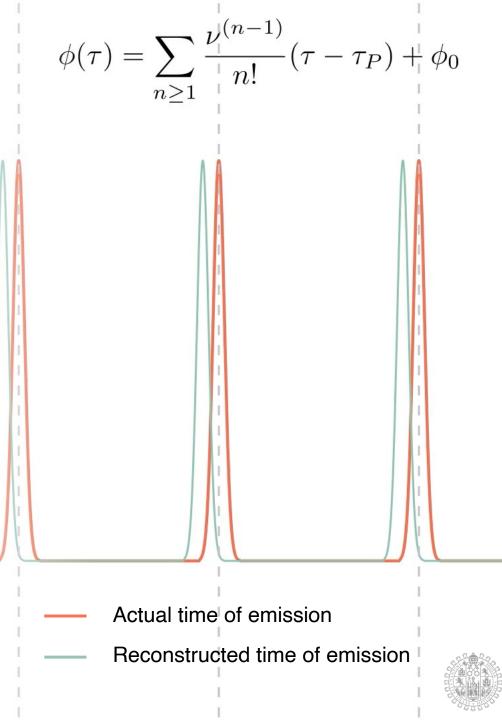
 $\Delta t_{\rm Einstein} = \gamma \sin u$

 $\dot{\omega} = \frac{6\pi GM}{c^2 a(1-e^2)}, \quad \dots$

$$\Delta t = \Delta t_{\rm Rømer} + \underbrace{\Delta t_{\rm Shapiro} + \Delta t_{\rm geo}}_{[1PN]} + [2PN] + [3PN] + \dots$$

Hobbs et al. (2006)

Blandford & Teukolsky (1976)



GR effects on the photons Modeling pulsar observables

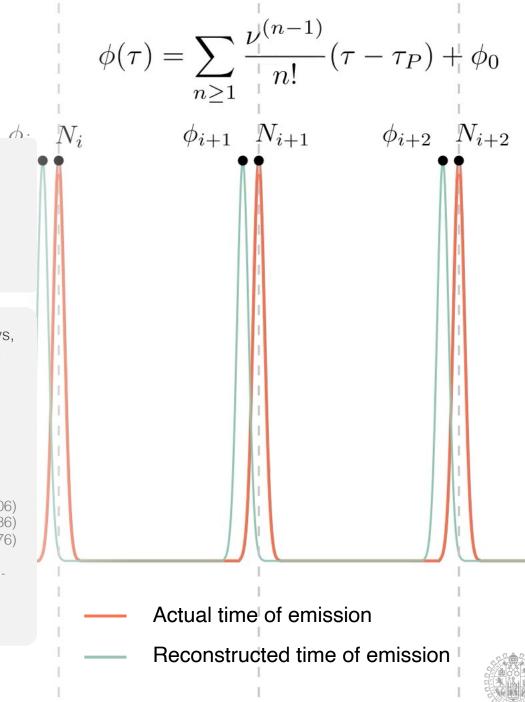
What is usually done...

Consider a Keplerian orbit with orbital parameters $(a, e, t_P, i, \Omega, \omega)$ and compute the **post-Keplerian** evolution of this parameter from a **post-Newtonian** approximation

GR effects on the trajectory

GR effects on the photons

 $\dot{\omega} = \frac{6\pi GM}{c^2 a(1-e^2)}, \quad \dots$ Use **post-Newtonian** approximations for all the different delays, assuming that the total delay is a linear sum of the single effects. $\Delta t_{\rm Rømer} = \frac{a(1-e^2)\sin i\sin(\omega+\phi)}{c(1+e\cos\phi)}$ $\Delta t_{\text{Shapiro}} = \frac{2GM}{c^3} \ln \left[\frac{1 + e \cos \phi}{1 - \sin i \sin(\omega + \phi)} \right]$ $\Delta t_{\rm geo} = \frac{2GM}{c^3} \left[\frac{|\vec{r}_{\pm} - \vec{r}_s|}{R_E} \right]^2$ Hobbs et al. (2006) Damour & Deruelle (1986) Blandford & Teukolsky (1976) $\Delta t_{\rm Einstein} = \gamma \sin u$ $\Delta t = \Delta t_{\rm Rømer} + \Delta t_{\rm Shapiro} + \Delta t_{\rm geo} + [2PN] + [3PN] + \dots$ [1PN]



Consider a Keplerian orbit with orbital parameters $(a, e, t_P, i, \Omega, \omega)$ and compute the **post-Keplerian** evolution of this parameter from a **post-Newtonian** approximation

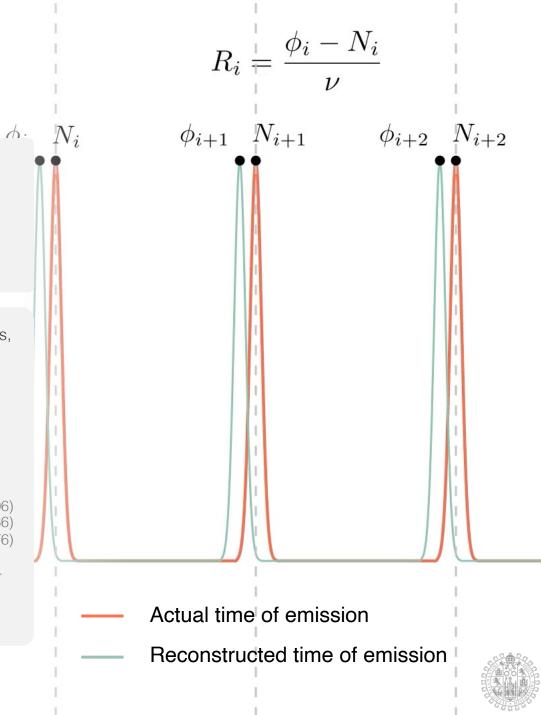
on the trajectory

GR effects

h

GR effects on the photons

 $\dot{\omega} = \frac{6\pi GM}{c^2 a(1-e^2)}, \quad \dots$ Use **post-Newtonian** approximations for all the different delays, assuming that the total delay is a linear sum of the single effects. $\Delta t_{\rm Rømer} = \frac{a(1-e^2)\sin i\sin(\omega+\phi)}{c(1+e\cos\phi)}$ $\Delta t_{\text{Shapiro}} = \frac{2GM}{c^3} \ln \left[\frac{1 + e\cos\phi}{1 - \sin i\sin(\omega + \phi)} \right]$ $\Delta t_{\rm geo} = \frac{2GM}{c^3} \left[\frac{|\vec{r}_{\pm} - \vec{r}_s|}{R_E} \right]^2$ Hobbs et al. (2006) Damour & Deruelle (1986) Blandford & Teukolsky (1976) $\Delta t_{\rm Einstein} = \gamma \sin u$ $\Delta t = \Delta t_{\rm Rømer} + \Delta t_{\rm Shapiro} + \Delta t_{\rm geo} + [2PN] + [3PN] + \dots$ [1PN]



Modeling pulsar observables

What is usually done...

d.

Consider a Keplerian orbit with orbital parameters $(a, e, t_P, i, \Omega, \omega)$ and compute the **post-Keplerian** evolution of this parameter from a **post-Newtonian** approximation

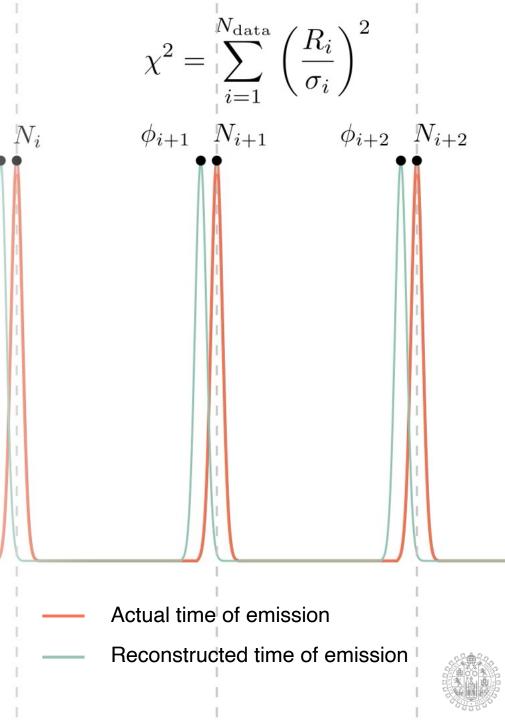
on the trajectory

GR effects

h

GR effects on the photons

 $\dot{\omega} = \frac{6\pi GM}{c^2 a(1-e^2)}, \quad \dots$ Use **post-Newtonian** approximations for all the different delays, assuming that the total delay is a linear sum of the single effects. $\Delta t_{\rm Rømer} = \frac{a(1-e^2)\sin i\sin(\omega+\phi)}{c(1+e\cos\phi)}$ $\Delta t_{\text{Shapiro}} = \frac{2GM}{c^3} \ln \left[\frac{1 + e \cos \phi}{1 - \sin i \sin(\omega + \phi)} \right]$ $\Delta t_{\rm geo} = \frac{2GM}{c^3} \left[\frac{|\vec{r}_{\pm} - \vec{r}_s|}{R_E} \right]^2$ Hobbs et al. (2006) Damour & Deruelle (1986) Blandford & Teukolsky (1976) $\Delta t_{\rm Einstein} = \gamma \sin u$ $\Delta t = \Delta t_{\rm Rømer} + \Delta t_{\rm Shapiro} + \Delta t_{\rm geo} + [2PN] + [3PN] + \dots$ [1PN]



Consider a Keplerian orbit with orbital parameters $(a, e, t_P, i, \Omega, \omega)$ and compute the **post-Keplerian** evolution of this parameter from a **post-Newtonian** approximation

on the trajectory

GR effects

on the photons

GR effects

5

 $\dot{\omega} = \frac{6\pi GM}{c^2 a(1-e^2)}, \quad \dots$

Use **post-Newtonian** approximations for all the different delays, assuming that the total delay is a linear sum of the single effects.

$$\Delta t_{\text{Rømer}} = \frac{a(1-e^2)\sin i\sin(\omega+\phi)}{c(1+e\cos\phi)}$$

$$\Delta t_{\text{Shapiro}} = \frac{2GM}{c^3} \ln \left[\frac{1+e\cos\phi}{1-\sin i\sin(\omega+\phi)}\right]$$

$$\Delta t_{\text{geo}} = \frac{2GM}{c^3} \left[\frac{|\vec{r}_{\pm} - \vec{r}_s|}{R_E}\right]^2 \qquad \text{Hobbs et al. (2006)} \\ \text{Damour \& Deruelle (1986)} \\ \Delta t_{\text{Einstein}} = \gamma \sin u \qquad \text{Blandford \& Teukolsky (1976)}$$

$$\Delta t = \Delta t_{\text{Rømer}} + \underbrace{\Delta t_{\text{Shapiro}} + \Delta t_{\text{geo}}}_{[1PN]} + [2PN] + [3PN] + \dots$$

GR effects on the trajectory

5

GR effects on the photons

What is usually done...

Consider a Keplerian orbit with orbital parameters $(a, e, t_P, i, \Omega, \omega)$ and compute the **post-Keplerian** evolution of this parameter from a **post-Newtonian** approximation

$$\dot{\omega} = \frac{6\pi GM}{c^2 a(1-e^2)}, \quad \dots$$

Use **post-Newtonian** approximations for all the different delays, assuming that the total delay is a linear sum of the single effects.

$$\Delta t_{\text{Rømer}} = \frac{a(1-e^2)\sin i\sin(\omega+\phi)}{c(1+e\cos\phi)}$$

$$\Delta t_{\text{Shapiro}} = \frac{2GM}{c^3} \ln \left[\frac{1+e\cos\phi}{1-\sin i\sin(\omega+\phi)}\right]$$

$$\Delta t_{\text{geo}} = \frac{2GM}{c^3} \left[\frac{|\vec{r}_{\pm} - \vec{r}_s|}{R_E}\right]^2 \qquad \text{Hobbs et al. (2006)}$$

$$\Delta t_{\text{Einstein}} = \gamma \sin u \qquad \text{Blandford & Teukolsky (1976)}$$

$$\Delta t = \Delta t_{\text{Rømer}} + \underbrace{\Delta t_{\text{Shapiro}} + \Delta t_{\text{geo}}}_{[1PN]} + [3PN] + \dots$$

What should be done

 Integrate the **geodesic equations** for a time-like geodesic describing the motion of a test particle in the BH space-time

$$\frac{d^2x^{\mu}}{ds^2} + \Gamma^{\mu}_{\nu\rho} \frac{dx^{\nu}}{ds} \frac{dx^{\rho}}{ds} = 0$$

GR effects on the trajectory

5

What is usually done...

Consider a Keplerian orbit with orbital parameters $(a, e, t_P, i, \Omega, \omega)$ and compute the **post-Keplerian** evolution of this parameter from a **post-Newtonian** approximation

$$\dot{\omega} = \frac{6\pi GM}{c^2 a(1-e^2)}, \quad \dots$$

Use **post-Newtonian** approximations for all the different delays, assuming that the total delay is a linear sum of the single effects.

$$\Delta t_{\rm Rømer} = \frac{a(1-e^2)\sin i\sin(\omega+\phi)}{c(1+e\cos\phi)}$$

$$\Delta t_{\rm Shapiro} = \frac{2GM}{c^3}\ln\left[\frac{1+e\cos\phi}{1-\sin i\sin(\omega+\phi)}\right]$$

$$\Delta t_{\rm geo} = \frac{2GM}{c^3}\left[\frac{|\vec{r}_{\pm}-\vec{r}_s|}{R_E}\right]^2 \qquad \text{Hobbs et al. (2006)}$$

$$\Delta t_{\rm Einstein} = \gamma\sin u \qquad \text{Blandford & Teukolsky (1976)}$$

$$\Delta t = \Delta t_{\rm Rømer} + \Delta t_{\rm Shapiro} + \Delta t_{\rm geo} + [2PN] + [3PN] + \dots$$

What should be done

 Integrate the **geodesic equations** for a time-like geodesic describing the motion of a test particle in the BH space-time

$$\frac{d^2x^{\mu}}{ds^2} + \Gamma^{\mu}_{\nu\rho}\frac{dx^{\nu}}{ds}\frac{dx^{\rho}}{ds} = 0$$

Emitter-observer problem

 Find the null geodesic that connects emitter and observer

GR effects on the photons

GR effects on the trajectory

h

GR effects on the photons

What is usually done...

Consider a Keplerian orbit with orbital parameters $(a, e, t_P, i, \Omega, \omega)$ and compute the **post-Keplerian** evolution of this parameter from a **post-Newtonian** approximation

$$\dot{\omega} = \frac{6\pi GM}{c^2 a(1-e^2)}, \quad .$$

Use **post-Newtonian** approximations for all the different delays, assuming that the total delay is a linear sum of the single effects.

$$\Delta t_{\rm Rømer} = \frac{a(1-e^2)\sin i\sin(\omega+\phi)}{c(1+e\cos\phi)}$$

$$\Delta t_{\rm Shapiro} = \frac{2GM}{c^3}\ln\left[\frac{1+e\cos\phi}{1-\sin i\sin(\omega+\phi)}\right]$$

$$\Delta t_{\rm geo} = \frac{2GM}{c^3}\left[\frac{|\vec{r}_{\pm}-\vec{r}_{s}|}{R_E}\right]^2$$
Hobbs et al. (2006)
Damour & Deruelle (1986)
Damour & Teukolsky (1976)

$$\Delta t = \Delta t_{\rm Rømer} + \underbrace{\Delta t_{\rm Shapiro} + \Delta t_{\rm geo}}_{[1PN]} + [2PN] + [3PN] + \dots$$

What should be done

 Integrate the **geodesic equations** for a time-like geodesic describing the motion of a test particle in the BH space-time

$$\frac{d^2x^{\mu}}{ds^2} + \Gamma^{\mu}_{\nu\rho}\frac{dx^{\nu}}{ds}\frac{dx^{\rho}}{ds} = 0$$

Emitter-observer problem

 Find the null geodesic that connects emitter and observer

Relativistic propagation time

 Integrate the geodesic equations for such null geodesic to get the actual photon path in the BH space-time

GR effects on the trajectory

h

GR effects on the photons

What is usually done...

Consider a Keplerian orbit with orbital parameters $(a, e, t_P, i, \Omega, \omega)$ and compute the **post-Keplerian** evolution of this parameter from a **post-Newtonian** approximation

$$\dot{\omega} = \frac{6\pi GM}{c^2 a(1-e^2)}, \quad \dots$$

Use **post-Newtonian** approximations for all the different delays, assuming that the total delay is a linear sum of the single effects.

$$\Delta t_{\rm Rømer} = \frac{a(1-e^2)\sin i\sin(\omega+\phi)}{c(1+e\cos\phi)}$$
$$\Delta t_{\rm Shapiro} = \frac{2GM}{c^3}\ln\left[\frac{1+e\cos\phi}{1-\sin i\sin(\omega+\phi)}\right]$$
$$\Delta t_{\rm geo} = \frac{2GM}{c^3}\left[\frac{|\vec{r}_{\pm}-\vec{r}_{s}|}{R_E}\right]^2$$
Hobbs et al.
Damour & Deruelle
$$\Delta t_{\rm Einstein} = \gamma \sin u$$
Blandford & Teukolsky

$$\Delta t = \Delta t_{\rm Rømer} + \underbrace{\Delta t_{\rm Shapiro} + \Delta t_{\rm geo}}_{[1PN]} + [2PN] + [3PN] + \dots$$

What should be done

 Integrate the **geodesic equations** for a time-like geodesic describing the motion of a test particle in the BH space-time

$$\frac{d^2x^\mu}{ds^2} + \Gamma^\mu_{\nu\rho} \frac{dx^\nu}{ds} \frac{dx^\rho}{ds} = 0$$

Emitter-observer problem

 Find the null geodesic that connects emitter and observer

Relativistic propagation time

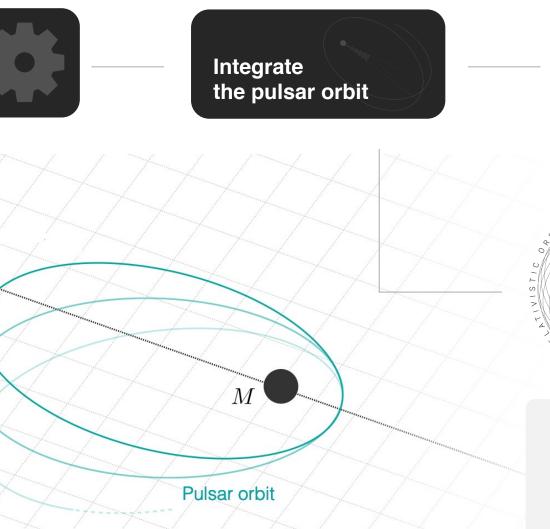
 Integrate the geodesic equations for such null geodesic to get the actual photon path in the BH space-time

The fully-relativistic timing model

Integrate the pulsar orbit Find the connecting photon

Compute the propagation time

The fully-relativistic timing model



Find the connecting photon

Compute the propagation time



PyGRO

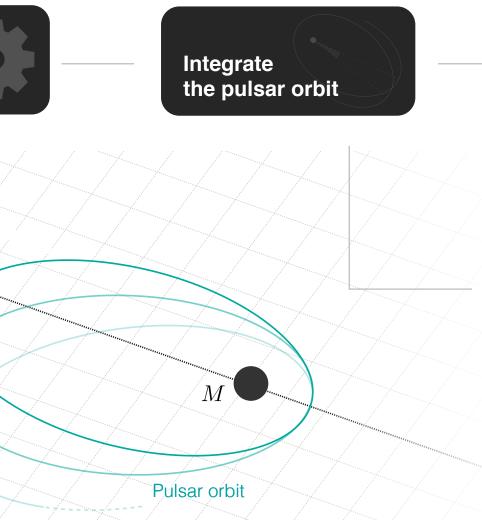
a Python integrator for General Relativistic Orbits

https://github.com/rdellamonica/pygro

Integrates geodesic equation for both time-like and null geodesics in any given asymptotically-flat spherically symmetric space-time

$$ds^2 = A(r)dt^2 + B(r)dr^2 + r^2d\Omega^2$$

The fully-relativistic timing model



Find the connecting photon

Compute the propagation time

DYGF BNBB

PyGRO

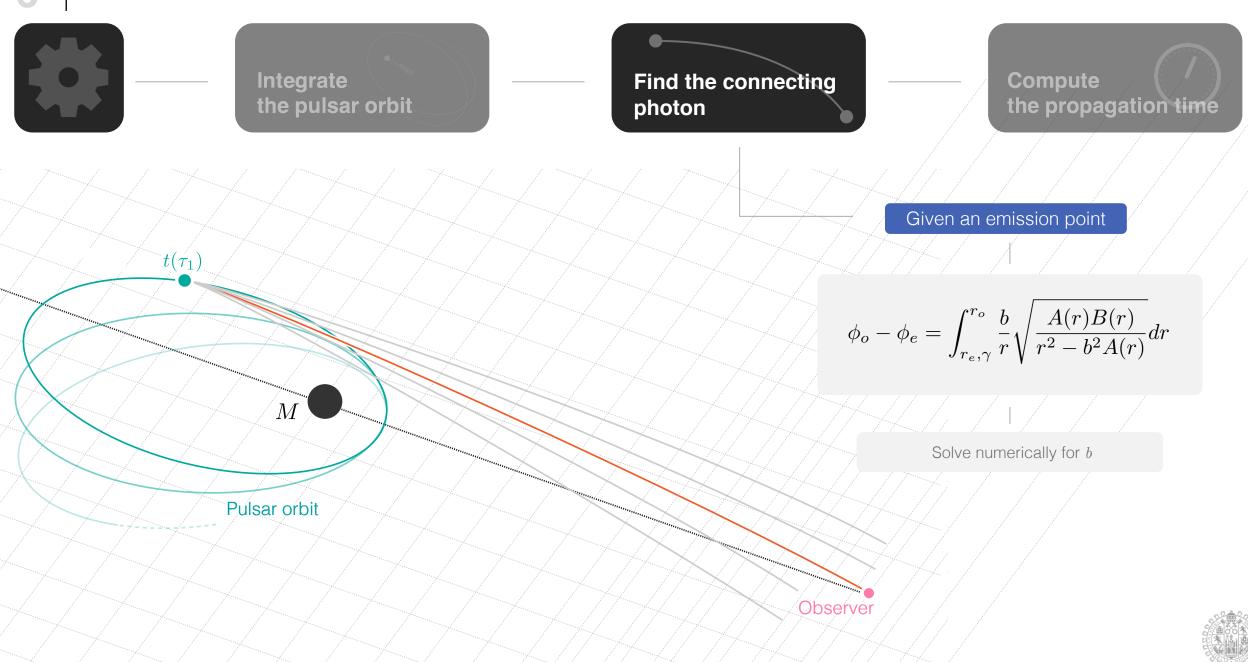
a Python integrator for General Relativistic Orbits

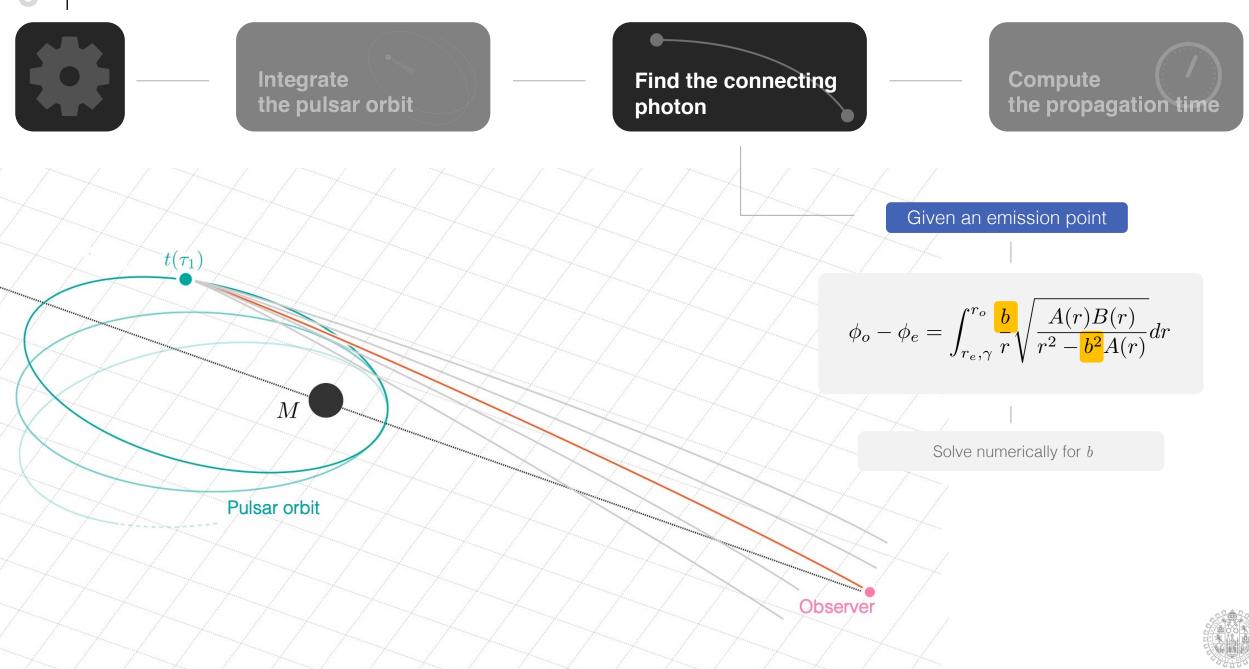
https://github.com/rdellamonica/pygro

Integrates geodesic equation for both time-like and null geodesics in any given asymptotically-flat spherically symmetric space-time

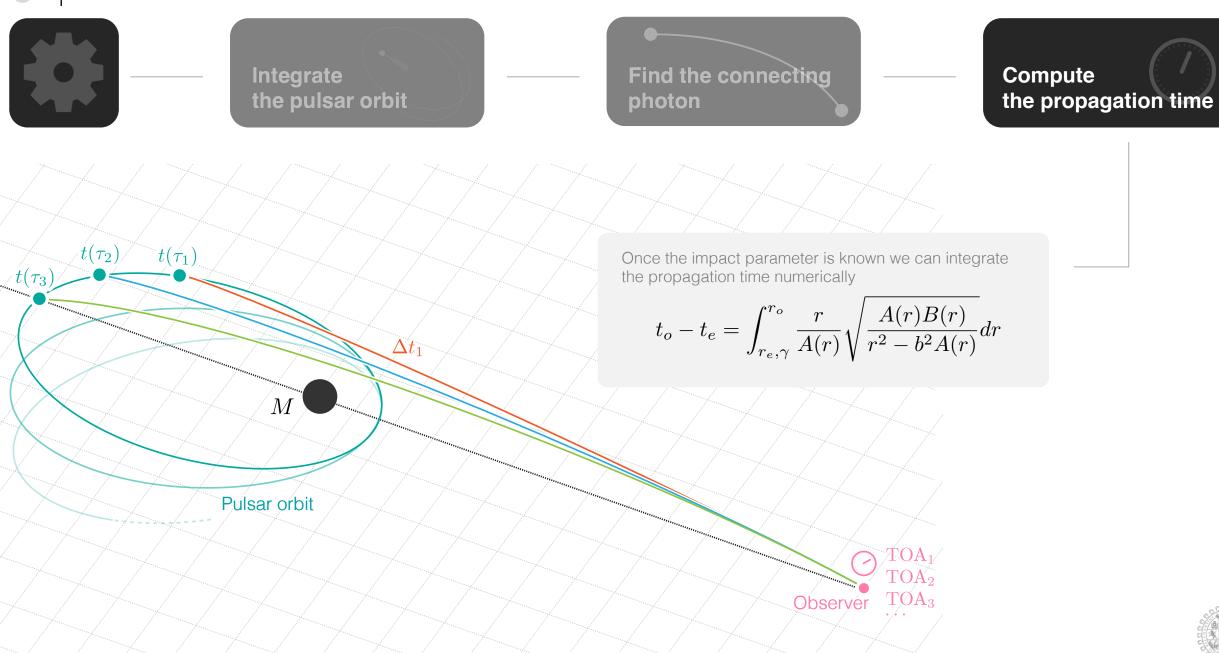
$$ds^2 = A(r)dt^2 + B(r)dr^2 + r^2d\Omega^2$$

We stick to the Schwarzschild space-time for today's presentation





The fully-relativistic timing model

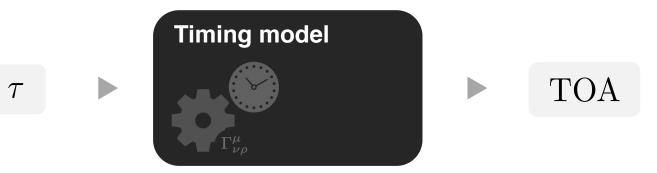


The fully-relativistic timing model

Integrate the pulsar orbit

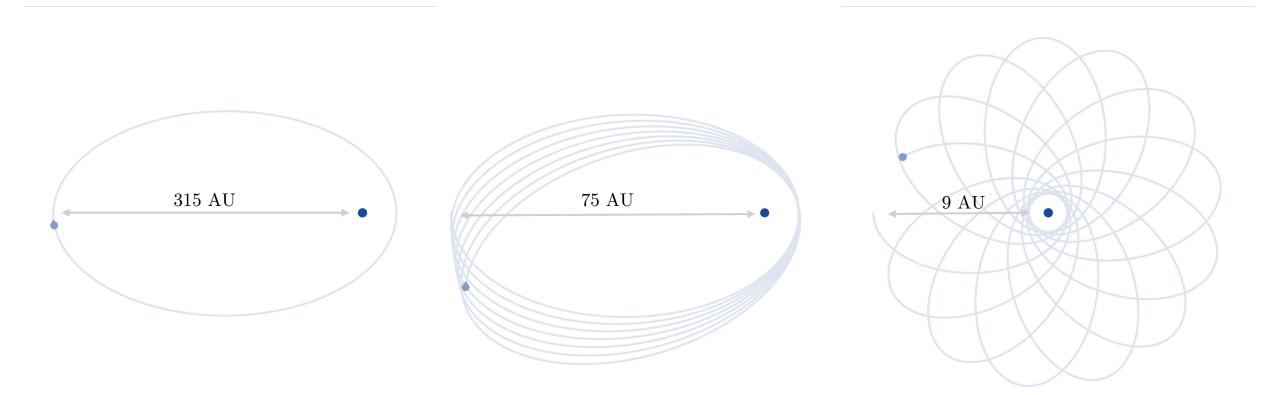
Find the connecting photon

Compute the propagation time



Pulsar toy models

7



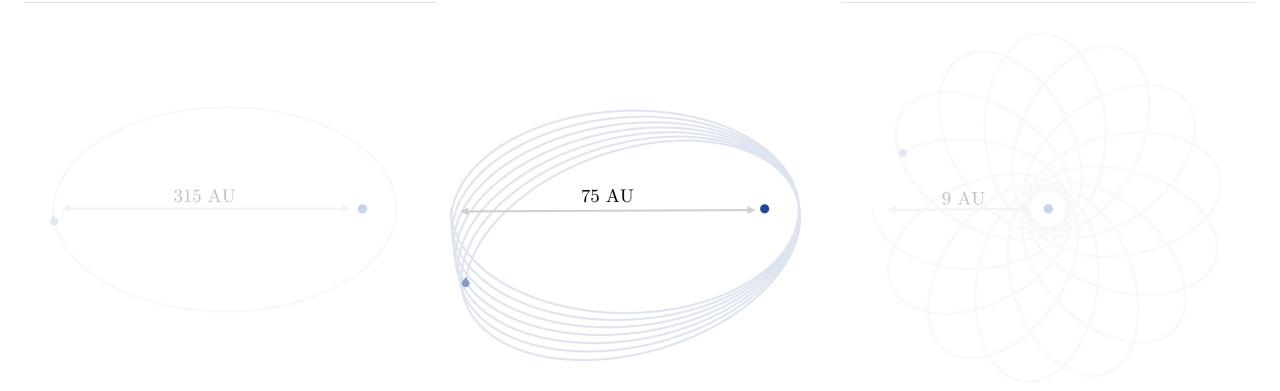
Toy 1

$$a = 4385r_g = 175.4 \text{ AU}$$
 Toy 2
 $a = 1095r_g = 43.8 \text{ AU}$
 Toy 3
 $a = 125r_g = 5 \text{ AU}$
 $e = 0.800$
 $e = 0.800$
 $T \sim 50 \text{ days}$
 $T \sim 2 \text{ days}$

Increasingly extreme orbital features

Pulsar toy models

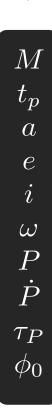
7



Toy 1
$$a = 4385r_g = 175.4 \text{ AU}$$

 $e = 0.800$
 $T \sim 1 \text{yr}$ Toy 2 $a = 1095r_g = 43.8 \text{ AU}$
 $e = 0.800$
 $T \sim 50 \text{ days}$ Toy 3 $a = 125r_g = 5 \text{ AU}$
 $e = 0.786$
 $T \sim 2 \text{ days}$

Increasingly extreme orbital features



M

 t_p

a

e

i

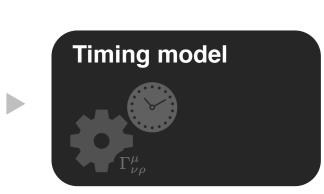
 ω

P

 \dot{P}

 au_P

 ϕ_0



M

 t_p

a

e

i

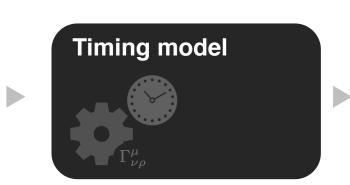
 ω

P

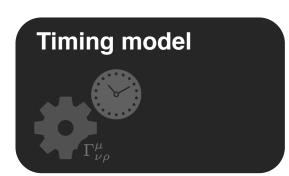
 \dot{P}

 au_P

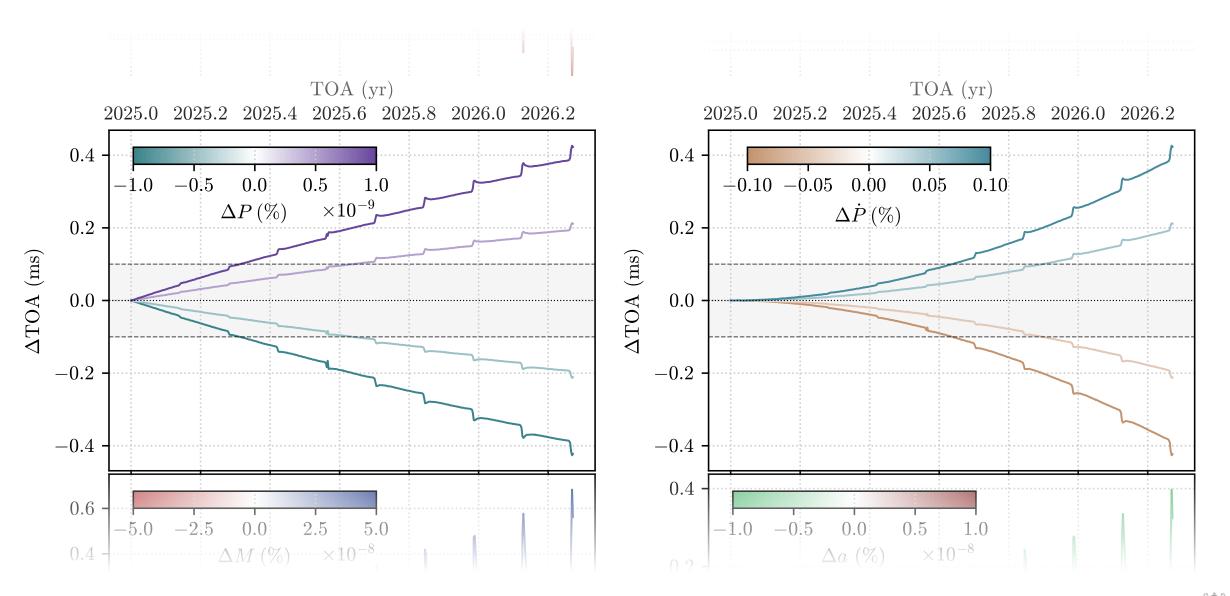
 ϕ_0



Gaussian noise $\sim 100\,\mu{\rm s}$

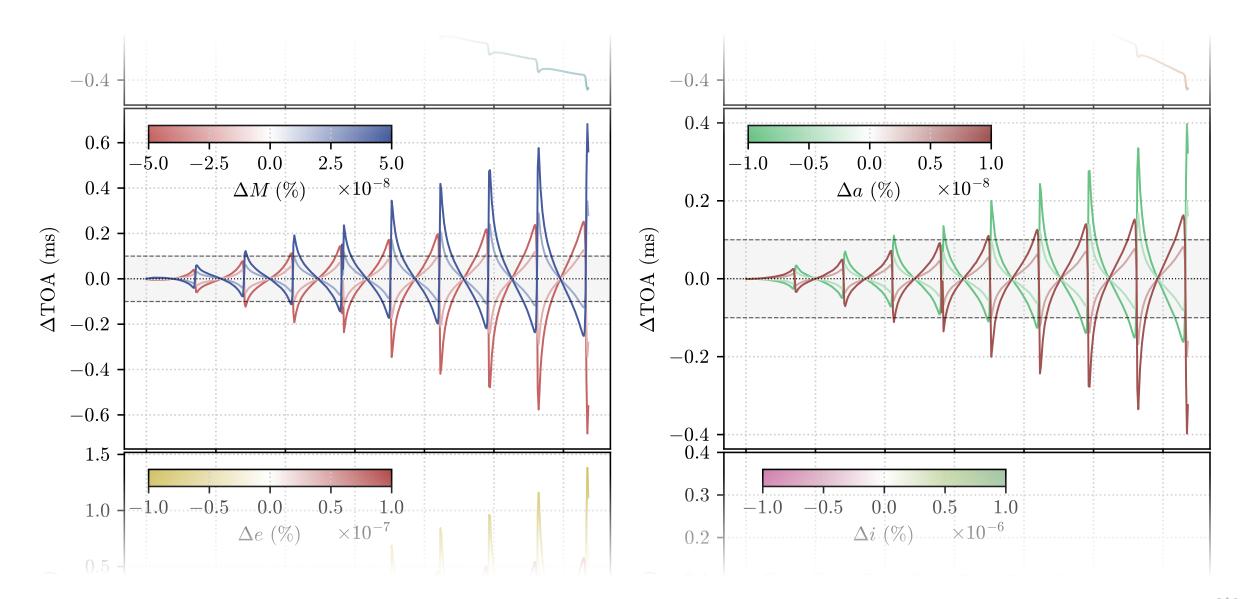


Gaussian noise

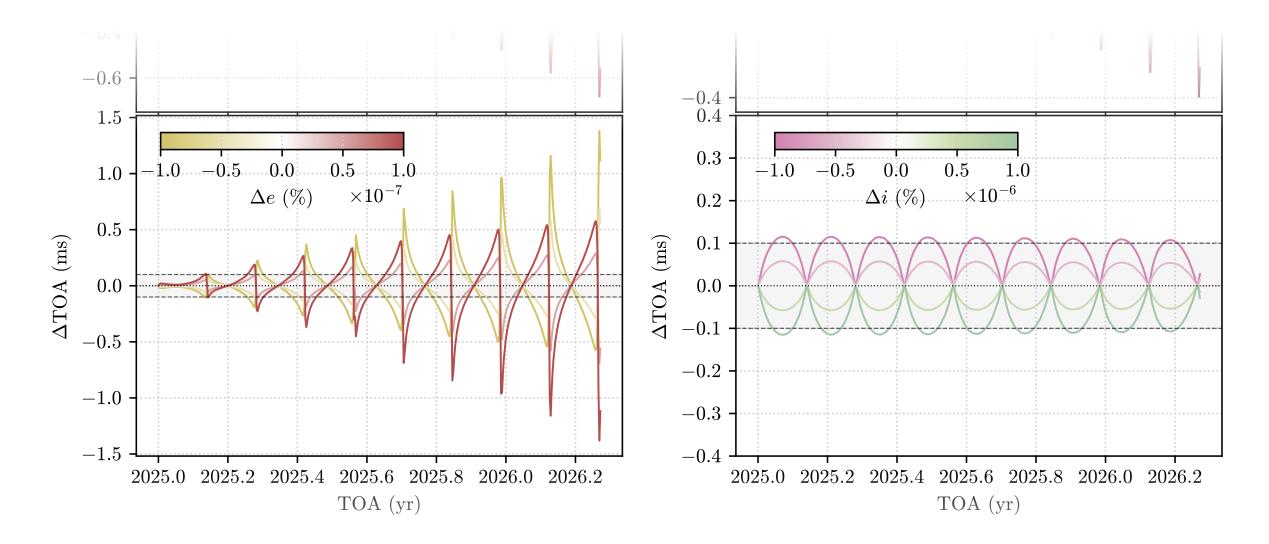


Q

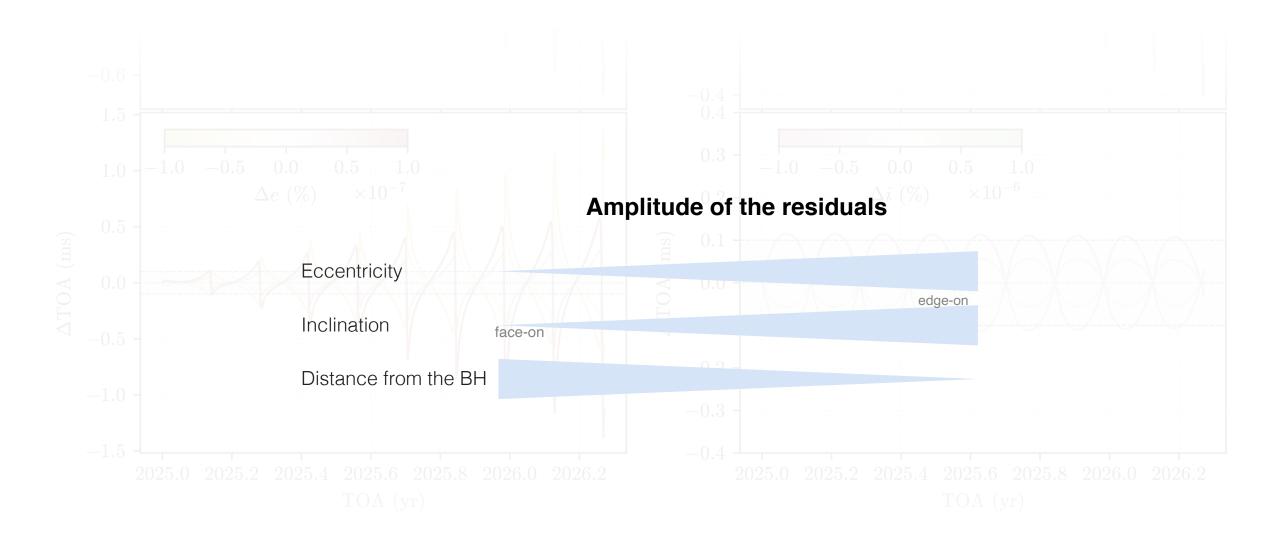
Sensibility to the model parameters

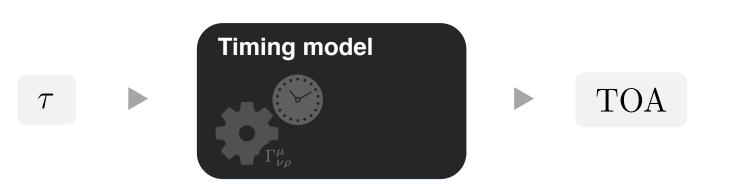


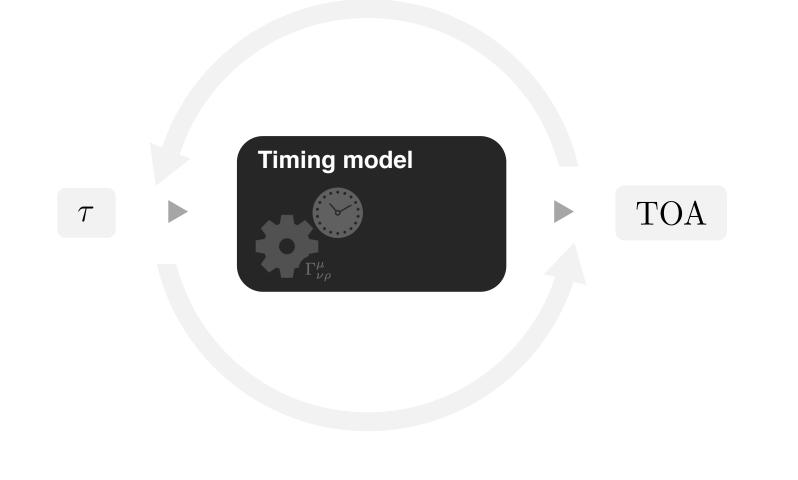
Sensibility to the model parameters

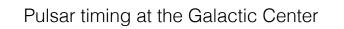


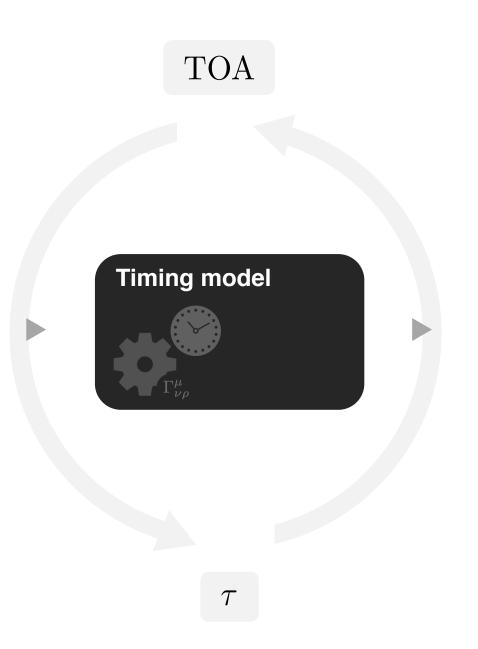
Q

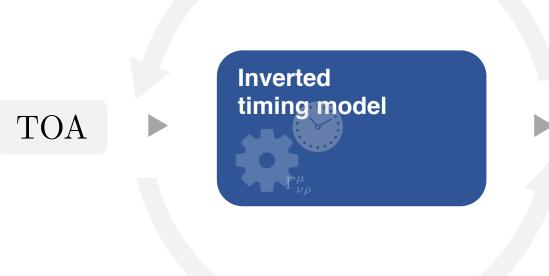












au

TOA

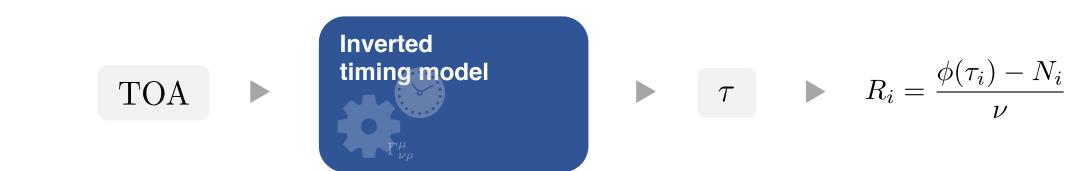
Inverted timing model $\Gamma^{\mu}_{\nu\rho}$

au

TOA

Inverted timing model $\Gamma^{\mu}_{\nu\rho}$

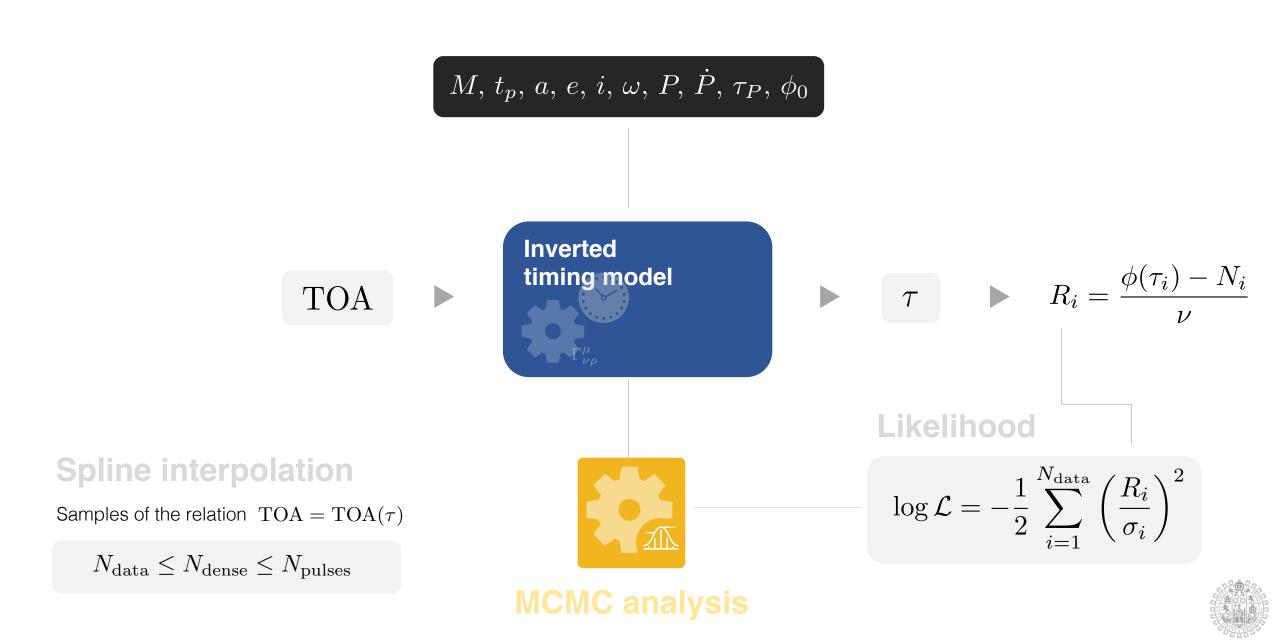
 $\tau \qquad \triangleright \qquad R_i = \frac{\phi(\tau_i) - N_i}{\nu}$

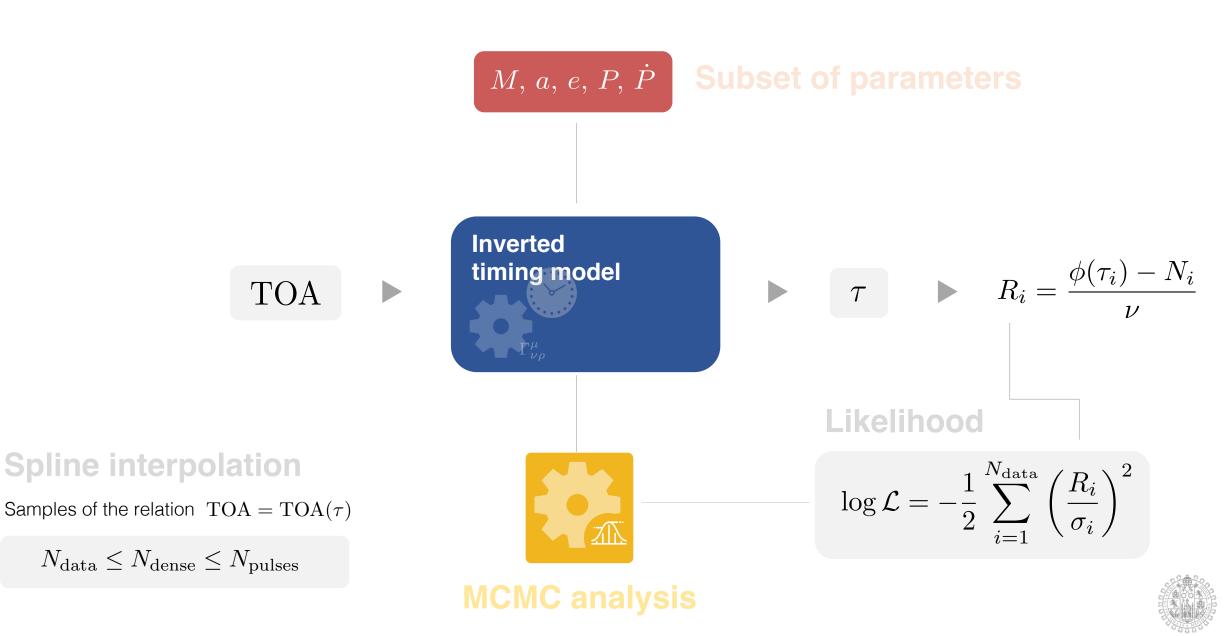


Spline interpolation

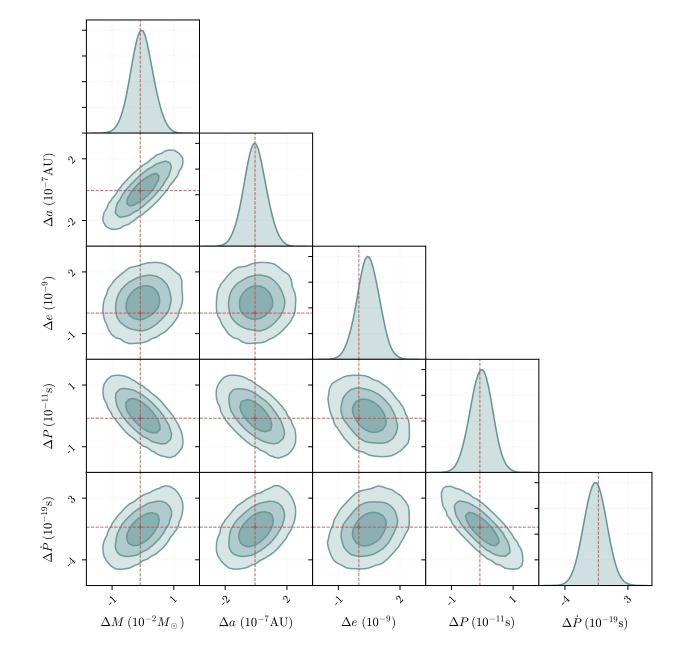
Samples of the relation $TOA = TOA(\tau)$

$$N_{\rm data} \leq N_{\rm dense} \leq N_{\rm pulses}$$

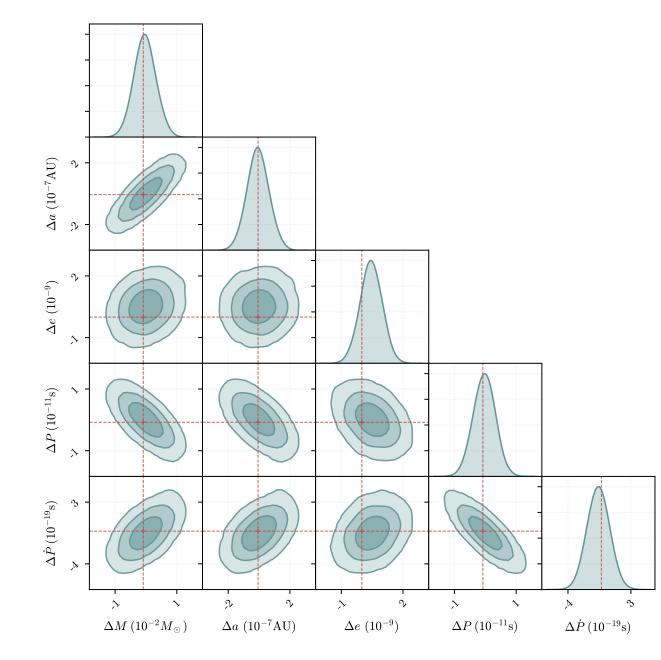




Results of the analysis

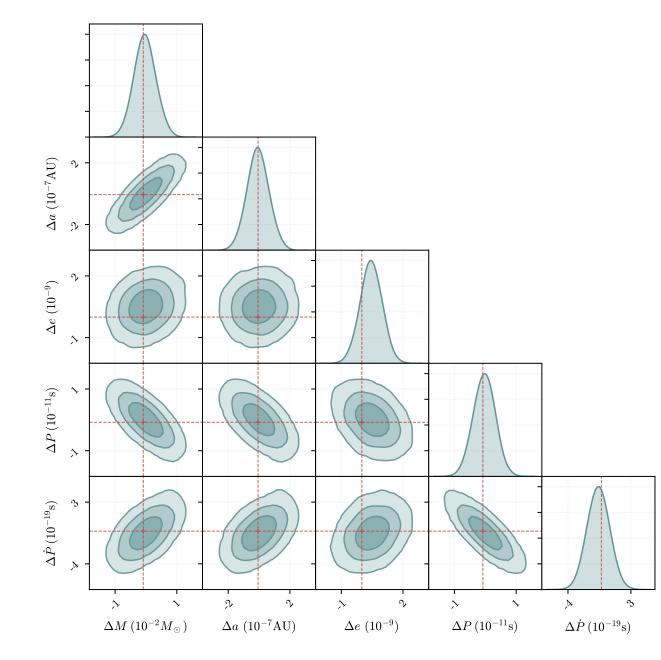


Results of the analysis



Parameter (unit)	Posterior	Precision (%)
$M(10^6 M_\odot)$	4.2610000011(41)	$9 imes 10^{-8}$
a (AU)	175.40000006(55)	$3 imes 10^{-8}$
e	0.8000000045(46)	$5 imes 10^{-8}$
<i>P</i> (s)	2.000000000009(41)	$2 imes 10^{-10}$
$\dot{P}~(10^{-15}~{ m s})$	0.99998(12)	$1 imes 10^{-2}$

Results of the analysis



Parameter (unit)	Posterior	Precision (%)
$M(10^6 M_\odot)$	4.2610000011(41)	$9 imes 10^{-8}$
a (AU)	175.40000006(55)	$3 imes 10^{-8}$
e	0.8000000045(46)	$5 imes 10^{-8}$
<i>P</i> (s)	2.000000000009(41)	$2 imes 10^{-10}$
$\dot{P}~(10^{-15}~{ m s})$	0.99998(12)	$1 imes 10^{-2}$

Pulsars at Galactic Center

Timing analysis of Galactic Center pulsars on relativistic orbits (T < 10 yr) with accuracy of 100 microseconds as promised by next observational facilities enables unprecedented constraints

Nature and physical properties of Sgr A*

Underlying theory of gravity

Pulsars at Galactic Center

Timing analysis of Galactic Center pulsars on relativistic orbits (T < 10 yr) with accuracy of 100 microseconds as promised by next observational facilities enables unprecedented constraints

Nature and physical properties of Sgr A*

Underlying theory of gravity

We have developed a numerical code (**PyGRO**) for the relativistic computation of orbits and photon propagation in any spherically symmetric spacetime, based on the integration of the geodesic equation.

We have implemented our geodesic computations for the problem of pulsar timing, using mock catalogue of potential future observations in the Galactic Center

All **relativistic effects** are selfconsistently included in the integrated observables

Pulsars at Galactic Center

Timing analysis of Galactic Center pulsars on relativistic orbits (T < 10 yr) with accuracy of 100 microseconds as promised by next observational facilities enables unprecedented constraints

Nature and physical properties of Sgr A*

Underlying theory of gravity

We have developed a numerical code (**PyGRO**) for the relativistic computation of orbits and photon propagation in any spherically symmetric spacetime, based on the integration of the geodesic equation.

We have implemented our geodesic computations for the problem of pulsar timing, using mock catalogue of potential future observations in the Galactic Center

All **relativistic effects** are selfconsistently included in the integrated observables

Limitation

We have limited ourselves to spherically symmetric models

With future observations the spin of Sgr A* cannot be neglected

Pulsars at Galactic Center

Timing analysis of Galactic Center pulsars on relativistic orbits (T < 10 yr) with accuracy of 100 microseconds as promised by next observational facilities enables unprecedented constraints

Nature and physical properties of Sgr A*

Underlying theory of gravity

We have developed a numerical code (**PyGRO**) for the relativistic computation of orbits and photon propagation in any spherically symmetric spacetime, based on the integration of the geodesic equation.

We have implemented our geodesic computations for the problem of pulsar timing, using mock catalogue of potential future observations in the Galactic Center

All **relativistic effects** are selfconsistently included in the integrated observables

Limitation

We have limited ourselves to spherically symmetric models

With future observations the spin of Sgr A* cannot be neglected

Future prospects

Extend the methodology to assign initial conditions both for time-like and null particles to axisymmetric spacetime

Publish, document and maintain PyGRO as an open-source Python package for the benefit of the community

Pulsars at Galactic Center

Timing analysis of Galactic Center pulsars on relativistic orbits (T < 10 yr) with accuracy of 100 microseconds as promised by next observational facilities enables unprecedented constraints

Nature and physical properties of Sgr A*

Underlying theory of gravity

We have developed a numerical code (**PyGRO**) for the relativistic computation of orbits and photon propagation in any spherically symmetric spacetime, based on the integration of the geodesic equation.

We have implemented our geodesic computations for the problem of pulsar timing, using mock catalogue of potential future observations in the Galactic Center

All **relativistic effects** are selfconsistently included in the integrated observables

Limitation

We have limited ourselves to spherically symmetric models

With future observations the spin of Sgr A* cannot be neglected

Future prospects

Extend the methodology to assign initial conditions both for time-like and null particles to axisymmetric spacetime

Publish, document and maintain PyGRO as an open-source Python package for the benefit of the community

Thank you for your attention

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

European Social Fund

