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GR effects
on the photons

GR effects
on the trajectory

What is usually done…

Consider a Keplerian orbit with orbital parameters
and compute the post-Keplerian evolution

of this parameter from a post-Newtonian approximation
(a, e, tP , i,Ω,ω)

ω̇ =
6πGM

c2a(1− e2)
, . . .

Use post-Newtonian approximations for all the different delays,
assuming that the total delay is a linear sum of the single effects.

∆tRømer =
a(1− e2) sin i sin(ω + φ)

c(1 + e cosφ)

∆tShapiro =
2GM

c3
ln

[

1 + e cosφ

1− sin i sin(ω + φ)

]

∆tgeo =
2GM

c3

[

|r⃗± − r⃗s|

RE

]2

∆tEinstein = γ sinu

Hobbs et al. (2006)
Damour & Deruelle (1986)

Blandford & Teukolsky (1976)

∆t = ∆tRømer +∆tShapiro +∆tgeo
︸ ︷︷ ︸

[1PN ]

+[2PN ] + [3PN ] + . . .
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Find the null geodesic that connects emitter and
observer

Emitter-observer problem

Integrate the geodesic equations for a time-like
geodesic describing the motion of a test particle in
the BH space-time

d
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The fully-relativistic timing model

Integrate
the pulsar orbit

Integrates geodesic equation for both time-like and null geodesics in any 
given asymptotically-flat spherically symmetric space-time

ds
2 = A(r)dt2 +B(r)dr2 + r

2
dΩ2

PyGRO
a Python integrator for General Relativistic Orbits

https://github.com/rdellamonica/pygro
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We stick to the Schwarzschild space-time 
for today’s presentation
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ObserverObserver

Find the connecting
photon

φo − φe =

∫

ro

re,γ

b

r

√

A(r)B(r)

r2 − b2A(r)
dr

Given an emission point

Solve numerically for b
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Pulsar orbitPulsar orbit

ObserverObserver

Compute
the propagation time

to − te =

∫

ro

re,γ

r

A(r)

√

A(r)B(r)

r2 − b2A(r)
dr

Once the impact parameter is known we can integrate 
the propagation time numerically

The fully-relativistic timing model6



Compute
the propagation time

Timing model

The fully-relativistic timing model

Find the connecting
photon

Integrate
the pulsar orbit

τ TOA

6
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Theory parameter

Eccentricity

Inclination

Distance from the BH

edge-on

face-on

Amplitude of the residuals
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2

Ndata
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(

Ri

σi

)2

Likelihood
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Inverted
timing model

τTOA

Ndata ≤ Ndense ≤ Npulses

Samples of the relation TOA = TOA(τ) logL = −
1

2

Ndata
∑

i=1

(

Ri

σi

)2Spline interpolation
Likelihood

M, a, e, P, Ṗ Subset of parameters

Pulsar timing at the Galactic Center10

Ri =
φ(τi)−Ni

ν

MCMC analysis
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Nature and physical properties of Sgr A*

Underlying theory of gravity

All relativistic effects are self-
consistently included in the integrated
observables

We have developed a numerical code (PyGRO) for the relativistic computation of
orbits and photon propagation in any spherically symmetric spacetime, based on
the integration of the geodesic equation.

We have implemented our
geodesic computations for the
problem of pulsar timing,
using mock catalogue of
potential future observations
in the Galactic Center



Conclusions

Pulsars at Galactic Center
Timing analysis of Galactic Center pulsars on
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