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Modeling pulsar observables
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The fully-relativistic timing model

Integrate i i Compute
the pulsar orbit the propagationtime

PyGRO

a Python integrator for General Relativistic Orbits

O https://github.com/rdellamonica/pygro

Integrates geodesic equation for both time-like and null geodesics in any
given asymptotically-flat spherically symmetric space-time

Pulsar orbit ds® = A(r)dt2 e B(r)er + r2d0>?

We stick to the Schwarzschild space-time
for today’s presentation i
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The fully-relativistic timing model

Integrate R Find the connecting
the pulsar orbit photon

Compute
the propagation time

t(72) t(ﬁ) Once the impact parameter is known we can integrate
o the propagation time numerically
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Pulsar timing at the Galactic Center
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Samples of the relation TOA = TOA(7)
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Pulsar timing at the Galactic Center
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Results of the analysis
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AP (107 s)

Results of the analysis

Parameter (unit) Posterior Precision (%)
M (105 M) 4.2610000011(41) 9x 108
a (AU) 175.400000006(55) 3x 1078
e 0.80000000045(46) 5x 1078
P (s) 2.0000000000009(41) 2 x 10710
P (1071%5) 0.99998(12) 1 x 1072

AM (102M) Aa (1077AU) Ae (107%)
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microseconds as promised by next observational
facilities enables unprecedented constraints
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