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Motivation: Weyl trick

Weyl trick to derive the Schwarzschild solution [Weyl (1917)]

Einstein-Hilbert
action

[Hilbert (the same week)]

variation
=====⇒

δ

Einstein field
equations

[Einstein (Nov 25, 1915)]

symmetry
=====⇒
reduction

reduced FEs
[Schwarzschild (Jan 13, 1916)]

sym
m

etry
==

=
=
=⇒

reduction When are they

⇐==
===

=⇒

equivalent???

reduced Lagrangian variation
=====⇒ FEs of reduced

Lagrangian

1 symmetry reduction of Lagrangian

g = −a(r)b(r)2 dt2 + a(r)−1dr2 + r2gS2
:

∫
dx4√−gR =⇒

∫
dr r(a− 1)b′

2 variation wrt a and b gives Euler-Lagrange equations:

b′ = 0 and (r(a− 1))′ = 0 =⇒ a = 1− c1

r
, b = c2
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Rigorous treatment: Principle of symmetric criticality

Isometries

Infinitesimal group action Γ on M
given by d-dim Lie algebra of isometry generators X ∈ Γ (Killing vectors)

Γ-invariant metric ĝ
£Xi ĝ = 0 for i = 1, . . . , d, where Xi is a base of KVs Xi ∈ Γ

Isotropy subalgebra Γx of Γ at x ∈ M
Γx = {X ⊂ Γ : X|x = 0} ⊂ Γ (i.e. a subset of Γ leaving x unchanged)

Orbit of x ∈ M
dim of orbit l = dim of linearly independent KVs at x
relation to dim p of Γx: l = d− p

Example: symmetries of S2

Γ = span{y∂z − z∂y, z∂x − x∂z, x∂y − y∂x}
Γ(0,0,1) = span{x∂y − y∂x}
orbit of (0, 0, 1) is unit sphere
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Tomáš Málek Symmetry reduction of gravitational Lagrangians EREP2024 4 / 14



Rigorous treatment: Principle of symmetric criticality

Isometries

Infinitesimal group action Γ on M
given by d-dim Lie algebra of isometry generators X ∈ Γ (Killing vectors)

Γ-invariant metric ĝ
£Xi ĝ = 0 for i = 1, . . . , d, where Xi is a base of KVs Xi ∈ Γ

Isotropy subalgebra Γx of Γ at x ∈ M
Γx = {X ⊂ Γ : X|x = 0} ⊂ Γ (i.e. a subset of Γ leaving x unchanged)

Orbit of x ∈ M
dim of orbit l = dim of linearly independent KVs at x
relation to dim p of Γx: l = d− p

Example: symmetries of S2

Γ = span{y∂z − z∂y, z∂x − x∂z, x∂y − y∂x}
Γ(0,0,1) = span{x∂y − y∂x}

orbit of (0, 0, 1) is unit sphere
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Rigorous treatment: Principle of symmetric criticality

Symmetry reduction of Lagrangian

Purely gravitational theory on a 4-dimensional spacetime

S =
∫

M
ε(g)L[g]

Levi-Civita tensor ε(g) defines the volume element
√−gd4x

Lagrangian L[g] constructed from g, R, ∇ · · ·∇R
(Lagrangian 4-form L[g] ≡ ε(g)L[g])

Reduction of 4-form L involves not only substitution of Γ-invariant metric ĝ,
but also reduction of the form degree from 4 to 4− l.

accomplished by contraction with Γ-invariant antisymmetric l-chain χ = χi1 ...ilXi1 · · ·Xil

£Xi χ = 0, i = 1, . . . , d, χi1 ...il = χ[i1 ...il]

reduced Lagrangian L̂ = χ • L[ĝ] = ε̂(ĝ)L[ĝ], (where ε̂(ĝ) = χ • ε(ĝ))
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Rigorous treatment: Principle of symmetric criticality

Principle of symmetric criticality

Variation of Lagrangian 4-form

δL = E(L) · δg + dη(δg)

Euler-Lagrange expression E(L) gives the field equations E(L)[g] = 0
η is boundary 3-form

Principle of symmetric criticality [Palais (1979), M. E. Fels, C. G. Torre (2002)]

Variation of Lagrangian commutes with symmetry reduction for all possible theories:

∀L : E(L)[ĝ] = 0⇐⇒ E(L̂)[ĝ] = 0

i.e. reduced FEs are equivalent to the FEs of the reduced Lagrangian

Two conditions imposed solely on Γ are necessary and sufficient for validity of PSC.
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Rigorous treatment: Principle of symmetric criticality

PSC1 “Lie algebra condition”

PSC1 ensures that the reduction of the boundary term dη is a boundary term dη̂
for the reduced Lagrangian

δL̂ = E(L̂) · δĝ + dη̂(δĝ)

i.e. dη does not produce volume term modifying the FEs

PSC1 most simply formulated as an extra condition on l-chain:

PSC1
£vχ = 0 for all Γ-invariant vector fields v (£Xiv = 0)

if PSC1 satisfied then Euler-Lagrange equations of the reduced Lagrangian
always yield at least a subset of the reduced equations
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Rigorous treatment: Principle of symmetric criticality

PSC2 “(local) Palais condition”

PSC2 arises from the requirement that this subset contains all reduced equations
i.e. all reduced FEs appear in the reduction of Euler-Lagrange term E(L̂)

δL̂ = E(L̂) · δĝ + dη̂(δĝ)

PSC2
Let Sx and S∗x denote the vector space of Γx-invariant (0

2) and (2
0) tensors at x, respectively.

Denote by V0
x the vector space of (2

0) tensors which have a vanishing scalar contraction
with all elements of Sx. Then in the neighborhood of x:

S∗x ∩V0
x = {0}

i.e. there is no Γx-invariant (2
0) tensor that contracts to zero with all Γx-invariant (0

2) tensors

PSC2 satisfied iff the isotropy algebra contains no null-rotation subalgebra
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Systematic study

Classification of infinitesimal group actions

need for an exhaustive classification of all infinitesimal group actions on 4-dim ST

Petrov classification [Petrov (1969)]: incomplete, many mistakes

Hicks classification [Hicks, Ph.D. thesis (2016)]

based on classifying isometry algebra and isotropy subalgebra pairs (Γ, Γx)
isotropy subalgebras Γx can be identified with subalgebras of the Lorentz algebra
cases denoted by [d, l, c]

1 d is dim of Γ
2 l is dim of orbits (l = d− p)
3 c enumerates possible cases of given dimensions

explicit infinitesimal generators given for each case
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Systematic study

PSC-compatible infinitesimal group actions

number of cases

total PSC1 PSC2 PSC
92 57 71 44

only 42 qualitatively different cases
(the answer to the ultimate question of life,
the universe, and everything.)

for each PSC-compatible Γ we determined the corresponding
l-chains χ and Γ-invariant metrics ĝ in adapted coordinates

ĝ =
s

∑
i=1

φiqi, where s =


2, for [6, 3, ?], [6, 4, ?], [7, 4, ?]
4, for [3, 2, ?], [4, 3, ?], [5, 4, ?]
10, for [3, 3, ?], [4, 4, ?]

and φi = φi(x1, x2, . . . , x(4−l))
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Tomáš Málek Symmetry reduction of gravitational Lagrangians EREP2024 10 / 14



Systematic study

PSC-compatible infinitesimal group actions

number of cases

total PSC1 PSC2 PSC
92 57 71 44

only 42 qualitatively different cases
(the answer to the ultimate question of life,
the universe, and everything.)

for each PSC-compatible Γ we determined the corresponding
l-chains χ and Γ-invariant metrics ĝ in adapted coordinates

ĝ =
s

∑
i=1

φiqi, where s =


2, for [6, 3, ?], [6, 4, ?], [7, 4, ?]
4, for [3, 2, ?], [4, 3, ?], [5, 4, ?]
10, for [3, 3, ?], [4, 4, ?]

and φi = φi(x1, x2, . . . , x(4−l))
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Systematic study

Relations among PSC-compatible infinitesimal group actions

[3,2,1]
pl. Vaidya

[3,2,2]
hyp. Vaidya

[3,2,3]
Vaidya

[3,2,4][3,2,5][3,3,2]
Bonnor

[4,3,1]
hyp. Schwarzschild

[4,3,3]
Schwarzschild

[4,3,6]
pl. Schwarzschild

[4,3,8]
Goenner-Stachel

[4,3,11]
Melvin

[4,4,9]

[6,3,1]
closed FLRW

[6,3,2]
flat FLRW

[6,3,3]
open FLRW

[6,3,4] [6,3,5][6,3,6]
see [6,3,3]

[6,4,1]
Nariai/Bertotti-Robinson

[6,4,2]
anti-Nariai

[6,4,3]
Plebański-Hacyan

[6,4,4]
Plebański-Hacyan

[6,4,5]

[7,4,1]
Einstein static

[7,4,2]
hyp. Einstein static

[7,4,3]
see [7,4,2]

[7,4,4]

[3,3,9]

[4,3,4]
sph. Taub-NUT

[4,4,1]
Farnsworth-Kerr I

[5,4,2]

[3,3,8]

[4,3,2]
hyp. Taub-NUT

[4,3,9]
NHEK

[4,4,2]
Farnsworth-Kerr II,III

[5,4,1]
Gödel

[5,4,7]

[3,3,3]
Taub

[4,3,5]
pl. Taub-NUT

[4,3,10]
swirling

[4,4,18]
McLenaghan-Tariq

[4,4,22]

[5,4,3][5,4,6]
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Examples

Weyl trick revisited ([4,3,3]: stationary S2)

infinitesimal group action

Γ = span{cos ϕ ∂ϑ − cot ϑ sin ϕ ∂ϕ, sin ϕ ∂ϑ + cot ϑ cos ϕ ∂ϕ, ∂ϕ, ∂t}

Γ-invariant metric

ĝ = −φ1(r)dt2 + φ2(r)(dt∨ dr) + φ3(r)dr2 + φ4(r)(dϑ2 + sin2 ϑ dϕ2)

residual gauge freedom t→ t + A(r), r→ B(r) do not invalidate PSC
and allows us to fix φ2 = 0 and φ4 = r2

l-chain
χ = csc ϑ ∂t ∧ ∂ϑ ∧ ∂ϕ

Levi-Civita tensor
ε(ĝ) = r2 sin ϑ

√
φ1φ3 dt∧ dr∧ dϑ ∧ dϕ

reduced Lagrangian 1-form

L̂ = χ • ε(ĝ)L[ĝ] = r2√φ1φ3 L[ĝ]dr
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Examples

Symmetry reduction for flat FLRW cosmologies ([6,3,2]: E3)

infinitesimal group action

Γ = span{∂x, ∂y, ∂z, x ∂y − y ∂x, y ∂z − z ∂y, z ∂x − x ∂z}

Γ-invariant metric

ĝ = −φ1(t)dt2 + φ2(t)(dx2 + dy2 + dz2)

residual gauge freedom t→ A(t) which would allow us to set φ1 = 1 breaks PSC
l-chain

χ = ∂x ∧ ∂y ∧ ∂z

Levi-Civita tensor √
φ1φ3

2 dt∧ dx∧ dy∧ dz

reduced Lagrangian 1-form

L̂ = χ • ε(ĝ)L[ĝ] =
√

φ1φ2
3 L[ĝ]dt
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√

φ1φ2
3 L[ĝ]dt
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Conclusion

We established the essential ingredients for a successful symmetry reduction:
1 identified all possible PSC-compatible infinitesimal group actions Γ
2 determined corresponding Γ-invariant metrics

and l-chains in adapted coordinates
3 minimized the amount of unknown functions

employing residual gauge freedom compliant with PSC

As a by-product, we implemeted the symmetry reduction of Lagrangians in
MATHEMATICA employing the xAct package.

Thank you! Obrigado!
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List of infinitesimal group actions Γ
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List of Γ-invariant metrics
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List of Γ-invariant l-chains
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