Symmetry reduction of gravitational Lagrangians

based on: G. Frausto, I. Kolář, TM, Ch. Torre, (soon on arXiv)

Tomáš Málek

Institute of Mathematics Academy of Sciences of the Czech Republic

> EREP2024 Coimbra July 23, 2024

- [Motivation: Weyl trick](#page-2-0)
- [Rigorous treatment: Principle of symmetric criticality](#page-9-0)
- [Systematic study](#page-30-0)
- [Examples](#page-38-0)

Einstein field equations [Einstein (Nov 25, 1915)]

Einstein field equations [Einstein (Nov 25, 1915)]

symmetry $\frac{1}{\text{reduction}}$

1 symmetry reduction of Lagrangian

$$
g = -a(r)b(r)^2 dt^2 + a(r)^{-1}dr^2 + r^2 g_{S_2}:\qquad \int dx^4 \sqrt{-g}R \implies \int dr r(a-1)b'
$$

1 symmetry reduction of Lagrangian

$$
g = -a(r)b(r)^2 dt^2 + a(r)^{-1}dr^2 + r^2 g_{S_2}:\qquad \int dx^4 \sqrt{-g}R \implies \int dr r(a-1)b'
$$

1 symmetry reduction of Lagrangian

$$
g = -a(r)b(r)^{2} dt^{2} + a(r)^{-1} dr^{2} + r^{2} g_{S_{2}}: \qquad \int dx^{4} \sqrt{-g} R \implies \int dr r(a-1)b'
$$

2 variation wrt *a* and *b* gives Euler-Lagrange equations:

$$
b' = 0
$$
 and $(r(a-1))' = 0$ \implies $a = 1 - \frac{c_1}{r}, b = c_2$

1 symmetry reduction of Lagrangian

$$
g = -a(r)b(r)^2 dt^2 + a(r)^{-1}dr^2 + r^2 g_{S_2}:\qquad \int dx^4 \sqrt{-g}R \implies \int dr r(a-1)b'
$$

2 variation wrt *a* and *b* gives Euler-Lagrange equations:

$$
b' = 0
$$
 and $(r(a-1))' = 0$ \implies $a = 1 - \frac{c_1}{r}, b = c_2$

Infinitesimal group action Γ on M

given by *d*-dim Lie algebra of isometry generators *X* ∈ Γ (Killing vectors)

Example: symmetries of S₂

Infinitesimal group action Γ on M

given by *d*-dim Lie algebra of isometry generators *X* ∈ Γ (Killing vectors)

Infinitesimal group action Γ on M

given by *d*-dim Lie algebra of isometry generators *X* ∈ Γ (Killing vectors)

Infinitesimal group action Γ on M

given by *d*-dim Lie algebra of isometry generators $X \in \Gamma$ (Killing vectors)

Γ-invariant metric *g*ˆ

 $\mathcal{L}_{X_i} \hat{g} = 0$ for $i = 1, ..., d$, where X_i is a base of KVs $X_i \in \Gamma$

$$
\Gamma = \text{span}\{y\partial_z - z\partial_y, z\partial_x - x\partial_z, x\partial_y - y\partial_x\}
$$

Infinitesimal group action Γ on M

given by *d*-dim Lie algebra of isometry generators $X \in \Gamma$ (Killing vectors)

Γ-invariant metric *g*ˆ

 $\mathcal{L}_{X_i} \hat{g} = 0$ for $i = 1, ..., d$, where X_i is a base of KVs $X_i \in \Gamma$

Isotropy subalgebra Γ*^x* of Γ at *x* ∈ M

 $\Gamma_x = \{ X \subset \Gamma : X |_{x} = 0 \} \subset \Gamma$ (i.e. a subset of Γ leaving x unchanged)

$$
\Gamma = \mathrm{span}\{y\partial_z - z\partial_y, z\partial_x - x\partial_z, x\partial_y - y\partial_x\}
$$

Infinitesimal group action Γ on M

given by *d*-dim Lie algebra of isometry generators $X \in \Gamma$ (Killing vectors)

Γ-invariant metric *g*ˆ

 $\mathcal{L}_{X_i} \hat{g} = 0$ for $i = 1, ..., d$, where X_i is a base of KVs $X_i \in \Gamma$

Isotropy subalgebra Γ*^x* of Γ at *x* ∈ M

 $\Gamma_x = \{ X \subset \Gamma : X |_{x} = 0 \} \subset \Gamma$ (i.e. a subset of Γ leaving x unchanged)

$$
\Gamma = \text{span}\{y\partial_z - z\partial_y, z\partial_x - x\partial_z, x\partial_y - y\partial_x\}
$$

$$
\Gamma_{(0,0,1)} = \text{span}\{x\partial_y - y\partial_x\}
$$

Infinitesimal group action Γ on M

given by *d*-dim Lie algebra of isometry generators *X* ∈ Γ (Killing vectors)

Γ-invariant metric *g*ˆ

 $\mathcal{L}_{X_i} \hat{g} = 0$ for $i = 1, ..., d$, where X_i is a base of KVs $X_i \in \Gamma$

Isotropy subalgebra Γ*^x* of Γ at *x* ∈ M

 $\Gamma_x = \{ X \subset \Gamma : X |_{x} = 0 \} \subset \Gamma$ (i.e. a subset of Γ leaving *x* unchanged)

Orbit of $x \in M$

dim of orbit *l* = dim of linearly independent KVs at *x* relation to dim *p* of Γ ^x: $l = d - p$

$$
\Gamma = \text{span}\{y\partial_z - z\partial_y, z\partial_x - x\partial_z, x\partial_y - y\partial_x\}
$$

$$
\Gamma_{(0,0,1)} = \text{span}\{x\partial_y - y\partial_x\}
$$

Infinitesimal group action Γ on M

given by *d*-dim Lie algebra of isometry generators *X* ∈ Γ (Killing vectors)

Γ-invariant metric *g*ˆ

 $\mathcal{L}_{X_i} \hat{g} = 0$ for $i = 1, ..., d$, where X_i is a base of KVs $X_i \in \Gamma$

Isotropy subalgebra Γ*^x* of Γ at *x* ∈ M

 $\Gamma_x = \{ X \subset \Gamma : X |_{x} = 0 \} \subset \Gamma$ (i.e. a subset of Γ leaving *x* unchanged)

Orbit of $x \in M$

dim of orbit *l* = dim of linearly independent KVs at *x* relation to dim *p* of Γ ^x: $l = d - p$

$$
\Gamma = \text{span}\{y\partial_z - z\partial_y, z\partial_x - x\partial_z, x\partial_y - y\partial_x\}
$$

\n
$$
\Gamma_{(0,0,1)} = \text{span}\{x\partial_y - y\partial_x\}
$$

\norbit of (0,0,1) is unit sphere

Purely gravitational theory on a 4-dimensional spacetime

$$
S = \int_{\mathbf{M}} \underline{\epsilon}(\mathbf{g}) L[\mathbf{g}]
$$

Levi-Civita tensor $\underline{\epsilon}(\boldsymbol{g})$ defines the volume element $\sqrt{-g}d^4x$

Lagrangian *L*[*g*] constructed from *g*, R , $\nabla \cdots \nabla R$ (Lagrangian 4-form $L[g] \equiv \underline{\epsilon}(g)L[g]$)

Purely gravitational theory on a 4-dimensional spacetime

$$
S = \int_{\mathbf{M}} \underline{\epsilon}(\mathbf{g}) L[\mathbf{g}]
$$

Levi-Civita tensor $\underline{\epsilon}(\boldsymbol{g})$ defines the volume element $\sqrt{-g}d^4x$

Lagrangian *L*[*g*] constructed from *g*, *R*, $\nabla \cdots \nabla R$ (Lagrangian 4-form $L[g] \equiv \epsilon(g)L[g]$)

Reduction of 4-form *L* involves not only substitution of Γ-invariant metric *g*ˆ, but also reduction of the form degree from 4 to 4 − *l*.

Purely gravitational theory on a 4-dimensional spacetime

$$
S = \int_{\mathbf{M}} \underline{\epsilon}(\mathbf{g}) L[\mathbf{g}]
$$

Levi-Civita tensor $\underline{\epsilon}(\boldsymbol{g})$ defines the volume element $\sqrt{-g}d^4x$

Lagrangian *L*[*g*] constructed from *g*, *R*, $\nabla \cdots \nabla R$ (Lagrangian 4-form $L[g] \equiv \epsilon(g)L[g]$)

Reduction of 4-form *L* involves not only substitution of Γ-invariant metric *g*ˆ, but also reduction of the form degree from 4 to 4 − *l*.

accomplished by contraction with Γ -invariant antisymmetric *l*-chain $\pmb{\chi}=\chi^{i_1...i_l}X_{i_1}\cdots X_{i_l}$

$$
\pounds_{X_i}\pmb{\chi}=0, \quad i=1,\ldots,d, \qquad \chi^{i_1\ldots i_l}=\chi^{[i_1\ldots i_l]}
$$

Purely gravitational theory on a 4-dimensional spacetime

$$
S = \int_{\mathbf{M}} \underline{\epsilon}(\mathbf{g}) L[\mathbf{g}]
$$

Levi-Civita tensor $\underline{\epsilon}(\boldsymbol{g})$ defines the volume element $\sqrt{-g}d^4x$

Lagrangian $L[g]$ constructed from $g, R, \nabla \cdots \nabla R$ (Lagrangian 4-form $L[g] \equiv \epsilon(g)L[g]$)

Reduction of 4-form *L* involves not only substitution of Γ-invariant metric *g*ˆ, but also reduction of the form degree from 4 to 4 − *l*.

accomplished by contraction with Γ -invariant antisymmetric *l*-chain $\pmb{\chi}=\chi^{i_1...i_l}X_{i_1}\cdots X_{i_l}$

$$
\pounds_{X_i}\pmb{\chi}=0, \quad i=1,\ldots,d, \qquad \chi^{i_1\ldots i_l}=\chi^{[i_1\ldots i_l]}
$$

■ reduced Lagrangian $\underline{\hat{L}} = \chi \bullet \underline{L}[\hat{g}] = \hat{\varepsilon}(\hat{g})L[\hat{g}]$, (where $\hat{\varepsilon}(\hat{g}) = \chi \bullet \underline{\varepsilon}(\hat{g})$)

Principle of symmetric criticality

Variation of Lagrangian 4-form

$$
\delta \underline{L} = \underline{E}(\underline{L}) \cdot \delta g + \underline{d \eta}(\delta g)
$$

Euler-Lagrange expression $E(L)$ gives the field equations $E(L)[g] = 0$ *η* is boundary 3-form

Principle of symmetric criticality

Variation of Lagrangian 4-form

$$
\delta \underline{L} = \underline{E}(\underline{L}) \cdot \delta g + \underline{d \eta}(\delta g)
$$

Euler-Lagrange expression $E(L)$ gives the field equations $E(L)[g] = 0$ \blacksquare *η* is boundary 3-form

Principle of symmetric criticality [Palais (1979), M. E. Fels, C. G. Torre (2002)]

Variation of Lagrangian commutes with symmetry reduction for all possible theories:

$$
\forall \underline{L} : \underline{E}(\underline{L})[\hat{g}] = 0 \Longleftrightarrow \underline{E}(\underline{\hat{L}})[\hat{g}] = 0
$$

i.e. reduced FEs are equivalent to the FEs of the reduced Lagrangian

Principle of symmetric criticality

Variation of Lagrangian 4-form

$$
\delta \underline{L} = \underline{\mathbf{E}}(\underline{L}) \cdot \delta \mathbf{g} + \underline{d} \underline{\eta}(\delta \mathbf{g})
$$

Euler-Lagrange expression $E(L)$ gives the field equations $E(L)[g] = 0$ \blacksquare *η* is boundary 3-form

Principle of symmetric criticality [Palais (1979), M. E. Fels, C. G. Torre (2002)]

Variation of Lagrangian commutes with symmetry reduction for all possible theories:

$$
\forall \underline{L} : \underline{E}(\underline{L})[\hat{g}] = 0 \Longleftrightarrow \underline{E}(\underline{\hat{L}})[\hat{g}] = 0
$$

i.e. reduced FEs are equivalent to the FEs of the reduced Lagrangian

Two conditions imposed solely on Γ are necessary and sufficient for validity of PSC.

PSC1 "Lie algebra condition"

■ PSC1 ensures that the reduction of the boundary term *d_n* is a boundary term *dn*[∂] for the reduced Lagrangian

$$
\delta \underline{\hat{L}} = \underline{E}(\underline{\hat{L}}) \cdot \delta \hat{g} + \underline{d} \underline{\hat{\eta}}(\delta \hat{g})
$$

i.e. *dη* does not produce volume term modifying the FEs

PSC1 "Lie algebra condition"

■ PSC1 ensures that the reduction of the boundary term $\frac{d\eta}{d\eta}$ is a boundary term $\frac{d\hat{\eta}}{d\eta}$ for the reduced Lagrangian

$$
\delta \underline{\hat{L}} = \underline{E}(\underline{\hat{L}}) \cdot \delta \hat{g} + \underline{d} \underline{\hat{\eta}}(\delta \hat{g})
$$

i.e. *dη* does not produce volume term modifying the FEs **PSC1** most simply formulated as an extra condition on *l*-chain:

PSC1

 $\mathcal{L}_v \chi = 0$ for all Γ -invariant vector fields $v \left(\mathcal{L}_{X_i} v = 0 \right)$

PSC1 "Lie algebra condition"

■ PSC1 ensures that the reduction of the boundary term *d_n* is a boundary term *dn*[∂] for the reduced Lagrangian

$$
\delta \underline{\hat{L}} = \underline{E}(\underline{\hat{L}}) \cdot \delta \hat{g} + \underline{d} \underline{\hat{\eta}}(\delta \hat{g})
$$

i.e. *dη* does not produce volume term modifying the FEs ■ PSC1 most simply formulated as an extra condition on *l*-chain:

PSC1

 $\mathcal{L}_v \chi = 0$ for all Γ -invariant vector fields $v \left(\mathcal{L}_{X_i} v = 0 \right)$

 \blacksquare if PSC1 satisfied then Euler-Lagrange equations of the reduced Lagrangian always yield at least a subset of the reduced equations

PSC2 "(local) Palais condition"

PSC2 arises from the requirement that this subset contains all reduced equations i.e. all reduced FEs appear in the reduction of Euler-Lagrange term $E(\hat{L})$

$$
\delta \underline{\hat{L}} = \underline{E}(\underline{\hat{L}}) \cdot \delta \hat{g} + \underline{d} \hat{\eta} (\delta \hat{g})
$$

PSC2 "(local) Palais condition"

PSC2 arises from the requirement that this subset contains all reduced equations i.e. all reduced FEs appear in the reduction of Euler-Lagrange term $E(\hat{L})$

$$
\delta \underline{\hat{L}} = \underline{E}(\underline{\hat{L}}) \cdot \delta \hat{g} + \underline{d} \hat{\eta} (\delta \hat{g})
$$

PSC2

Let S_x and S_x^* denote the vector space of Γ_x -invariant $\binom{0}{2}$ $_2^0$) and $\binom{2}{0}$ $\binom{2}{0}$ tensors at *x*, respectively. Denote by V_x^0 the vector space of $\binom{2}{0}$ $\binom{2}{0}$ tensors which have a vanishing scalar contraction with all elements of *Sx*. Then in the neighborhood of *x*:

$$
S_x^* \cap V_x^0 = \{0\}
$$

i.e. there is no Γ_x -invariant $\binom{2}{0}$ σ_0^2) tensor that contracts to zero with all $\Gamma_{\rm x}$ -invariant $\binom{0}{2}$ $_{2}^{0}$) tensors

PSC2 "(local) Palais condition"

PSC2 arises from the requirement that this subset contains all reduced equations i.e. all reduced FEs appear in the reduction of Euler-Lagrange term $E(\hat{L})$

$$
\delta \underline{\hat{L}} = \underline{E}(\underline{\hat{L}}) \cdot \delta \hat{g} + \underline{d} \hat{\eta} (\delta \hat{g})
$$

PSC2

Let S_x and S_x^* denote the vector space of Γ_x -invariant $\binom{0}{2}$ $_2^0$) and $\binom{2}{0}$ $\binom{2}{0}$ tensors at *x*, respectively. Denote by V_x^0 the vector space of $\binom{2}{0}$ $\binom{2}{0}$ tensors which have a vanishing scalar contraction with all elements of *Sx*. Then in the neighborhood of *x*:

$$
S_x^* \cap V_x^0 = \{0\}
$$

i.e. there is no Γ_x -invariant $\binom{2}{0}$ σ_0^2) tensor that contracts to zero with all $\Gamma_{\rm x}$ -invariant $\binom{0}{2}$ $_{2}^{0}$) tensors

PSC2 satisfied iff the isotropy algebra contains no null-rotation subalgebra

Classification of infinitesimal group actions

need for an exhaustive classification of all infinitesimal group actions on 4-dim ST

Classification of infinitesimal group actions

need for an exhaustive classification of all infinitesimal group actions on 4-dim ST ■ Petrov classification [Petrov (1969)]: incomplete, many mistakes

Classification of infinitesimal group actions

- need for an exhaustive classification of all infinitesimal group actions on 4-dim ST
- Petrov classification [Petrov (1969)]: incomplete, many mistakes

Hicks classification [Hicks, Ph.D. thesis (2016)]

based on classifying isometry algebra and isotropy subalgebra pairs (Γ, Γ*x*)

- **isotropy subalgebras** Γ_r can be identified with subalgebras of the Lorentz algebra \blacksquare cases denoted by [d, l, c]
	- 1 *d* is dim of Γ
	- 2 *l* is dim of orbits $(l = d p)$
	- 3 *c* enumerates possible cases of given dimensions

 \blacksquare explicit infinitesimal generators given for each case

PSC-compatible infinitesimal group actions

÷

 $\frac{x}{x}$

 $\overline{\mathbf{x}}$ ÷

 $\frac{1}{\sqrt{2}}$

 $\overline{\mathbf{x}}$

 $\overline{}$ $\frac{x}{x}$

 $\frac{x}{x}$

 $\overline{\mathbf{x}}$ ÷

 $\frac{1}{\sqrt{2}}$

 $\overline{\mathbf{x}}$

÷

Ÿ

PSC-compatible infinitesimal group actions

number of cases

PSC-compatible infinitesimal group actions

number of cases

only 42 qualitatively different cases (the answer to the ultimate question of life, the universe, and everything.)

 $\overline{ }$

 \overline{J}

ᢦ

PSC-compatible infinitesimal group actions

number of cases

only 42 qualitatively different cases (the answer to the ultimate question of life, the universe, and everything.)

 \blacksquare for each PSC-compatible Γ we determined the corresponding *l*-chains *χ* and Γ-invariant metrics *g*ˆ in adapted coordinates

$$
\hat{g} = \sum_{i=1}^{s} \phi_i q_i, \text{ where } s = \begin{cases} 2, & \text{for } [6,3,\star], [6,4,\star], [7,4,\star] \\ 4, & \text{for } [3,2,\star], [4,3,\star], [5,4,\star] \\ 10, & \text{for } [3,3,\star], [4,4,\star] \end{cases} \text{ and } \phi_i = \phi_i(x_1, x_2, \dots, x_{(4-l)})
$$

Relations among PSC-compatible infinitesimal group actions

$$
\hat{g} = \sum_{i=1}^{s} \phi_i q_i, \text{ where } s = \begin{cases} 2, & \text{for } [6,3,\star], [6,4,\star], [7,4,\star] \\ 4, & \text{for } [3,2,\star], [4,3,\star], [5,4,\star] \text{ and } \phi_i = \phi_i(x_1, x_2, \dots, x_{(4-l)}) \\ 10, & \text{for } [3,3,\star], [4,4,\star] \end{cases}
$$

Tomáš Málek **[Symmetry reduction of gravitational Lagrangians](#page-0-0)** EREP2024 11 / 14

Weyl trick revisited $([4,3,3]$: stationary S_2)

n infinitesimal group action

$$
\Gamma = \text{span}\{\cos\varphi\,\partial_{\theta} - \cot\vartheta\sin\varphi\,\partial_{\varphi},\,\sin\varphi\,\partial_{\theta} + \cot\vartheta\cos\varphi\,\partial_{\varphi},\,\partial_{\varphi},\,\partial_{t}\}
$$

Weyl trick revisited $([4,3,3]$: stationary $S_2)$

 \blacksquare infinitesimal group action

$$
\Gamma = \text{span}\{\cos\varphi\,\mathbf{\partial}_{\theta} - \cot\vartheta\sin\varphi\,\mathbf{\partial}_{\varphi},\,\sin\varphi\,\mathbf{\partial}_{\theta} + \cot\vartheta\cos\varphi\,\mathbf{\partial}_{\varphi},\,\mathbf{\partial}_{\varphi},\,\mathbf{\partial}_{t}\}\
$$

Γ-invariant metric

$$
\hat{g} = -\phi_1(r) \, \mathrm{d}t^2 + \phi_2(r) (\mathrm{d}t \vee \mathrm{d}r) + \phi_3(r) \, \mathrm{d}r^2 + \phi_4(r) (\mathrm{d}\vartheta^2 + \sin^2 \vartheta \, \mathrm{d}\varphi^2)
$$

Weyl trick revisited $([4,3,3]$: stationary S₂)

n infinitesimal group action

$$
\Gamma = \text{span}\{\cos\varphi\,\partial_{\vartheta} - \cot\vartheta\sin\varphi\,\partial_{\varphi},\,\sin\varphi\,\partial_{\vartheta} + \cot\vartheta\cos\varphi\,\partial_{\varphi},\,\partial_{\varphi},\,\partial_{t}\}
$$

Γ-invariant metric

$$
\hat{g} = -\phi_1(r) \, \mathbf{d}t^2 + \phi_2(r) (\mathbf{d}t \vee \mathbf{d}r) + \phi_3(r) \, \mathbf{d}r^2 + \phi_4(r) (\mathbf{d}\vartheta^2 + \sin^2 \vartheta \, \mathbf{d}\varphi^2)
$$

residual gauge freedom $t \to t + A(r)$, $r \to B(r)$ do not invalidate PSC and allows us to fix $\phi_2=0$ and $\phi_4=r^2$

Weyl trick revisited $([4,3,3]$: stationary S₂)

n infinitesimal group action

$$
\Gamma = \text{span}\{\cos\varphi\,\mathbf{\partial}_{\theta} - \cot\vartheta\sin\varphi\,\mathbf{\partial}_{\varphi},\,\sin\varphi\,\mathbf{\partial}_{\theta} + \cot\vartheta\cos\varphi\,\mathbf{\partial}_{\varphi},\,\mathbf{\partial}_{\varphi},\,\mathbf{\partial}_{t}\}\
$$

Γ-invariant metric

$$
\hat{\mathbf{g}} = -\phi_1(r) \, \mathbf{d}t^2 + \phi_2(r) (\mathbf{d}t \vee \mathbf{d}r) + \phi_3(r) \, \mathbf{d}r^2 + \phi_4(r) (\mathbf{d}\vartheta^2 + \sin^2 \vartheta \, \mathbf{d}\varphi^2)
$$

residual gauge freedom $t \to t + A(r)$, $r \to B(r)$ do not invalidate PSC and allows us to fix $\phi_2=0$ and $\phi_4=r^2$ *l*-chain $\overline{}$

$$
\chi = \csc \vartheta \, \partial_t \wedge \partial_\vartheta \wedge \partial_\varphi
$$

Weyl trick revisited $([4,3,3]$: stationary S₂)

 \blacksquare infinitesimal group action

$$
\Gamma = \text{span}\{\cos\varphi\,\mathbf{\partial}_{\theta} - \cot\vartheta\sin\varphi\,\mathbf{\partial}_{\varphi},\,\sin\varphi\,\mathbf{\partial}_{\theta} + \cot\vartheta\cos\varphi\,\mathbf{\partial}_{\varphi},\,\mathbf{\partial}_{\varphi},\,\mathbf{\partial}_{t}\}\
$$

Γ-invariant metric

$$
\hat{\mathbf{g}} = -\phi_1(r) \, \mathbf{d}t^2 + \phi_2(r) (\mathbf{d}t \vee \mathbf{d}r) + \phi_3(r) \, \mathbf{d}r^2 + \phi_4(r) (\mathbf{d}\vartheta^2 + \sin^2 \vartheta \, \mathbf{d}\varphi^2)
$$

residual gauge freedom $t \to t + A(r)$, $r \to B(r)$ do not invalidate PSC and allows us to fix $\phi_2=0$ and $\phi_4=r^2$

l-chain $\overline{}$

$$
\chi = \csc \vartheta \, \pmb{\partial}_t \wedge \pmb{\partial}_\vartheta \wedge \pmb{\partial}_\varphi
$$

■ Levi-Civita tensor

$$
\underline{\epsilon}(\hat{g})=r^2\sin\vartheta\sqrt{\phi_1\phi_3}\,\mathbf{d}t\wedge\mathbf{d}r\wedge\mathbf{d}\vartheta\wedge\mathbf{d}\varphi
$$

Weyl trick revisited $([4,3,3])$: stationary S_2)

 \blacksquare infinitesimal group action

$$
\Gamma = \text{span}\{\cos\varphi\,\partial_{\vartheta} - \cot\vartheta\sin\varphi\,\partial_{\varphi},\,\sin\varphi\,\partial_{\vartheta} + \cot\vartheta\cos\varphi\,\partial_{\varphi},\,\partial_{\varphi},\,\partial_{t}\}
$$

Γ-invariant metric

$$
\hat{g} = -\phi_1(r) \, \mathbf{d}t^2 + \phi_2(r) (\mathbf{d}t \vee \mathbf{d}r) + \phi_3(r) \, \mathbf{d}r^2 + \phi_4(r) (\mathbf{d}\vartheta^2 + \sin^2 \vartheta \, \mathbf{d}\varphi^2)
$$

residual gauge freedom $t \to t + A(r)$, $r \to B(r)$ do not invalidate PSC and allows us to fix $\phi_2=0$ and $\phi_4=r^2$

l-chain

$$
\chi = \csc \vartheta \, \pmb{\partial}_t \wedge \pmb{\partial}_\vartheta \wedge \pmb{\partial}_\varphi
$$

■ Levi-Civita tensor

$$
\underline{\epsilon}(\hat{g})=r^2\sin\vartheta\sqrt{\phi_1\phi_3}\,\mathrm{d}t\wedge\mathrm{d}r\wedge\mathrm{d}\vartheta\wedge\mathrm{d}\varphi
$$

■ reduced Lagrangian 1-form

$$
\underline{\hat{L}} = \chi \bullet \underline{\epsilon}(\hat{g})L[\hat{g}] = r^2 \sqrt{\phi_1 \phi_3} L[\hat{g}] \, \mathrm{d}r
$$

Symmetry reduction for flat FLRW cosmologies ([6,3,2]: E3)

n infinitesimal group action

$$
\Gamma = \text{span}\{\partial_x, \ \partial_y, \ \partial_z, \ x \partial_y - y \partial_x, \ y \partial_z - z \partial_y, \ z \partial_x - x \partial_z\}
$$

Symmetry reduction for flat FLRW cosmologies ([6,3,2]: E3)

n infinitesimal group action

$$
\Gamma = \text{span}\{\partial_x, \ \partial_y, \ \partial_z, \ x \partial_y - y \partial_x, \ y \partial_z - z \partial_y, \ z \partial_x - x \partial_z\}
$$

Γ-invariant metric

$$
\hat{g} = -\phi_1(t) dt^2 + \phi_2(t) (dx^2 + dy^2 + dz^2)
$$

Symmetry reduction for flat FLRW cosmologies ($[6,3,2]$: E₃)

 \blacksquare infinitesimal group action

$$
\Gamma = \mathrm{span}\{\partial_x, \ \partial_y, \ \partial_z, \ x \partial_y - y \partial_x, \ y \partial_z - z \partial_y, \ z \partial_x - x \partial_z\}
$$

Γ-invariant metric

$$
\hat{g} = -\phi_1(t) dt^2 + \phi_2(t) (dx^2 + dy^2 + dz^2)
$$

residual gauge freedom $t \to A(t)$ which would allow us to set $\phi_1 = 1$ breaks PSC

Symmetry reduction for flat FLRW cosmologies ($[6,3,2]$: E₃)

 \blacksquare infinitesimal group action

$$
\Gamma = \mathrm{span}\{\partial_x, \ \partial_y, \ \partial_z, \ x \partial_y - y \partial_x, \ y \partial_z - z \partial_y, \ z \partial_x - x \partial_z\}
$$

Γ-invariant metric

$$
\hat{g} = -\phi_1(t) dt^2 + \phi_2(t) (dx^2 + dy^2 + dz^2)
$$

residual gauge freedom $t \to A(t)$ which would allow us to set $\phi_1 = 1$ breaks PSC *l*-chain $\overline{}$

$$
\chi=\boldsymbol{\partial}_x\wedge\,\boldsymbol{\partial}_y\wedge\boldsymbol{\partial}_z
$$

Symmetry reduction for flat FLRW cosmologies ($[6,3,2]$: E₃)

 \blacksquare infinitesimal group action

$$
\Gamma = \mathrm{span}\{\partial_x, \ \partial_y, \ \partial_z, \ x \partial_y - y \partial_x, \ y \partial_z - z \partial_y, \ z \partial_x - x \partial_z\}
$$

Γ-invariant metric

$$
\hat{g} = -\phi_1(t) dt^2 + \phi_2(t) (dx^2 + dy^2 + dz^2)
$$

residual gauge freedom $t \to A(t)$ which would allow us to set $\phi_1 = 1$ breaks PSC $\overline{}$ *l*-chain

$$
\chi = \boldsymbol{\partial}_x \wedge \boldsymbol{\partial}_y \wedge \boldsymbol{\partial}_z
$$

■ Levi-Civita tensor

$$
\sqrt{\phi_1\phi_2^3}\, \mathbf{d} t \wedge \mathbf{d} x \wedge \mathbf{d} y \wedge \mathbf{d} z
$$

Symmetry reduction for flat FLRW cosmologies ([6,3,2]: E3)

 \blacksquare infinitesimal group action

$$
\Gamma = \mathrm{span}\{\partial_x, \ \partial_y, \ \partial_z, \ x \partial_y - y \partial_x, \ y \partial_z - z \partial_y, \ z \partial_x - x \partial_z\}
$$

Γ-invariant metric

$$
\hat{g} = -\phi_1(t) dt^2 + \phi_2(t) (dx^2 + dy^2 + dz^2)
$$

residual gauge freedom $t \to A(t)$ which would allow us to set $\phi_1 = 1$ breaks PSC *l*-chain

$$
\chi = \boldsymbol{\partial}_x \wedge \boldsymbol{\partial}_y \wedge \boldsymbol{\partial}_z
$$

■ Levi-Civita tensor

$$
\sqrt{\phi_1\phi_2^3}\, \mathbf{d} t \wedge \mathbf{d} x \wedge \mathbf{d} y \wedge \mathbf{d} z
$$

■ reduced Lagrangian 1-form

$$
\underline{\hat{L}} = \chi \bullet \underline{\epsilon}(\hat{g})L[\hat{g}] = \sqrt{\phi_1 \phi_3^2} L[\hat{g}] dt
$$

We established the essential ingredients for a successful symmetry reduction:

- 1 identified all possible PSC-compatible infinitesimal group actions Γ
- 2 determined corresponding Γ-invariant metrics and *l*-chains in adapted coordinates
- 3 minimized the amount of unknown functions employing residual gauge freedom compliant with PSC
- As a by-product, we implemeted the symmetry reduction of Lagrangians in MATHEMATICA employing the xAct package.

We established the essential ingredients for a successful symmetry reduction:

- 1 identified all possible PSC-compatible infinitesimal group actions Γ
- 2 determined corresponding Γ-invariant metrics and *l*-chains in adapted coordinates
- 3 minimized the amount of unknown functions employing residual gauge freedom compliant with PSC
- As a by-product, we implemeted the symmetry reduction of Lagrangians in MATHEMATICA employing the xAct package.

Thank you! Obrigado!

List of infinitesimal group actions Γ

List of Γ-invariant metrics

List of Γ-invariant *l*-chains

